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Continuant, caterpillar, and topological index Z. IIl. Graph-theoretical
algorithm for and interpretation of solving linear Diophantine equations.
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Abstract The conventional algorithm for solving the lincar Diophantine cquation in two variables is greatly
improved graph-theoretically by using the Z-caterpillars, namely, by substituting all the relevant series of
integers with the caterpillar graphs whose topological indices represent those integers. By this graph-thcoretical
analysis, the mathematical structure of the lincar Diophantine cquation and its relation with tl;c Euclid’s

algorithm, continued fraction, and Euler’s continuant are clarified.

1. Introduction

1) .
) lor

During its long history of more than two thousand years, several algorithms have been prup(mcdl'
solving the linear Diophantine equations in two variables (fx£my=+1) scemingly leaving no room for another
cfficient one. The one using the continued fractions has been shown to be most efficient and popular, However,
very recently the present author discovered that the topological index Z proposed by him in 1971 has a key
role in bridging between various concepts in elementary algebra and gcmnclryf"?’ In this paper a novel
algorithm is proposed for solving this equation by using the Z-index applied to the relevant caterpillar graphs.
Its close relationship with Euler’s continuant™” for solving continued fraction and Euclid algorithm  for

calculating the GCD of a pair of integers is also discussed.

2. Graph-theoretical features of continued fraction

2.1. Definitions of continued fraction, continuant, and caterpillar graph

[Def. 1] A positive rational number, Oy = p/g (>1), can be expressed by a [inite simple continued fraction as

Q=£=ao+ ; =lag;ay,az,-an-1.an |, 2.0)
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with all positive partial quotients, {a,}. If p and ¢ are prime with each other, or (p, ¢)=1, it can be shown that

ay>1.
[Def. 2] Euler defined the continuant polynomial, or continuant, recursively as ihllo\\'s:s'q]
Ko()= 1,
Ki(x1) =xi,
Ka(xp, x2) =x1x2+ 1,
Ka(xy. x2 o, xn) = xn Ko (e, o oo anm)) + Kvea(ey, x2 .00, ana) . (2.2)

Here all the N parameters {x,} are positive integers. Three well-known propertics of the continuant are
given here as theorems without proof.
[Theorem 1] Reversible character.
Knxr, x2,7, xv) = KMo, =, x2, x1) (23)
[Theorem 2] Recursive relation (cf, (2.2)).
Kaxr, x2,77, xn) =x1 Kv-1(x2, X370+, xy) + Kn-a(x3, x40, xn) (2.4)

[Theorem 3] Tridiagonal determinantal expression.

xy 10 0 0
-1 xp, 1 0 0
0 -1 x3 |1 0
Ky (xy, x9,+-, xy) = : : W e ; i (2.5)
0 0 - =1 xyq |
0 0 - 0 =1 xy

A graph is a mathematical object composed of vertices and cdgcs.'m In this paper only those tree graphs
(without a cycle) with no directed and multiple edges are concerned. A path graph, Sy, is constructed by
consecutively joining N vertices with N-1 edges, and a star graph, K u, is constructed from a central verlex
and N (=0) edges of unit length emanating from it. Now supposc a path graph Sy and prepare the set ol' N stars,
Xn={x1, x2,"**, xn}, where natural number x, denotes K x,,_1. The set Xy has N x, terms and cach term x,, may
take an arbitrary natural number. Then mount each clement of Xy onto cach vertex of Sy one by one cither
from lefi or right to another end. Let us call the resultant graph a caterpillar Cy(x1, x2,", xy) composed
of | V|=%x,, vertices.'""?

In order to characterize a graph the topological index (Toplx) Z was proposed by the present author as
the total matchings plus one."*131M Tpe Toplx of path graph Sy is the Fibonacci number, /v, which is defined
recursively as

IN=IN-1 N2, (2.6)
with
fHo=hn=1, 2.7)

while
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Z(K1a-1)= N (2.8)
Toplx, Znxx1, x2,7*. xn), of caterpillar graph, Cp{(x]. x2.**, xy), can be calculated recursively by using the
Toplces of the component star graphs just in the same procedure as the definition of the continuant, Ky(x1, x2,
-, Xy)- Thus the following theorem has been proved by the present author;'”

[Theorem 4]  Continuant is identical to Z-caterpillar, i.e., the Toplx of caterpillar Cafxy, x2,**, Xy).

Zn(x1, x2,70, xN) = Ka(xy, x2,7+, xn). (2.9)

Many problems in elementary number theory have been shown to be solved quite casily by the aid of
continuant.*” However, discussion using the visualized Z-caterpillars has not only simplified the calculation
but also revealed geometrical or graph-theoretical meaning and interpretation to a number of concepts and
quantities involved in these problems. Advantage of the Z-caterpillar over continuant comes [rom the fact that
continuant is a special case of Toplx for only caterpillar graphs. Now for treating Z-caterpillars two theorems
will be introduced as powerful tools and algorithms for further discussion.

[Theorem 5] (Additive rule)

Zomn(X15 X257, Xn)= Zm(X1,7775 X)) Zn(Xpp 1575 X artn) Fm1 (X177 Xi=1) Zon=1 (Kt 247" X i) (2.10)

Z (X xm) Zi—1 (X1 x-1)
) (2.11)
—Zy-| (2o Ymen)  Zn (-"'m+] v Xmen)
[Theorem 6] (Cassini’s idcnlily)q)
Zplxyy e, -Tn) Zn=2(x2, "y Xno1) = Zp-1 (X1, X 1) Zn-1(x2, ', Xp) = (- I)"- (2.12)

Instead of giving proofs for these two theorems here, Fig. 1 will be given to demonstrate their visual

understanding. The proof of Theorem 6 will be given in Appendix.

T IV7Y. 7%

X
K-t X Fmat Xma2 mn

(@ Theorem5 = T;M"Mj
| . |

v 17 77 v
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T_ Y X I =(-1y"
X - 0
Fig. 1 (a) Theorem 5 and (b) Theorem 6 for caterpillar graphs.

(b) Theorem 6

X s Xp X == Xpd X,

n |



Anna Kuwana, Mivuki Akiho and Tetuya Kawamura NSR. 0., Vol. 60

2.2 Graph-theoretical meaning of continued fraction and related quantities
The standard recipe'*'” for obtaining the set of quotients for a given pair of coprime integers p and q is
exemplified below by taking p=1027 and g=712;

5 315 G 2 K L
p 1027 1 315 71z, 82 315 3 69 8_.._[ 13 69 4 13

—_—_—_— e = —_— = — =54+

14
. T = =3, =1, =34, =440,
g 712 7127315 7 3157 82 T 82769 69713 0 13" 4 T 471

The obtained set of the integers (1, 2. 3, 1, 5, 3, 4) in bold face above constitutes the quotient set (ag, a1,°**, ay)

giving the corresponding continued fraction as
1027 -1+ 1
712 24 ! |
3+ i
|

3+~l—

4

=[1:2,3,1,5,3,4].

5+

The convergents of a continued fraction are successively expressed as follows:
pilgo=lal, pilgi=lacsa], -, plg;=lag;an-, al, -+, palgy=lao; a -, ay) = plq. (2.13)
In the above example we have

P_l P 10 L

Bstitatury Brape ! =428, Py LI Y
9% 1 q 22 V! 2+l 7 1 2 4 |
G 3+—|
I
Botp—— e B, Biae B8 e and finatly P27 L i
A 4s o, 165 a2
| I
3+___]. 34 |
1+— 14—
5 5+[
3

. . . . . 0
According to Euler the above convergents can be expressed by the ratios of continuants as follows:™”

Given the sct of {ay}. the jth convergent (0sj<N) can be calculated by using the following relations:
p_,‘szll(aU! al!”.:'({f)) (2°|4]
quKj(al!GZ).") aj)! (2-15]

to give

P _Ki) 1 Ka(l2) 3 _ K323 _10 _ Ka0230 13

9 Kop(O 1 Kij2 2 Kp(2,3) 7 K3(2,31) 9
Ks(.2,315 75 _ Ke(h,23153) 238 _ K7(.,231.534) 1027 ps _p

K4(2,3,1,5 52 Ks(2,3,1,53) 165 K¢(231,534) 712 ¢4 gq

where the following recursive relations
Pi= 4P+ Py (2.16)

4= ajgj1 g2 (2.17)

hold with their initial conditions,
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Ppo=ap. pm=araptl, (2.18)
=1, q=a. (2.19)
However, one has to perform the above recursive caleulation up to py/gy=p/q in one direction from the
beginning to the end. On the other hand, as will be explained later one need not use this iterative calculation by
treating the Z-caterpillars for this problem.
The Z-caterpillar graphs corresponding to the continuants, or the set of {p;} and {g,} of (2.14) and

(2.15), can be drawn systematically as the P; and Q; graphs in Fig. 2, where the relations

2AP)=p, (2.20)
20)=q (2.21)

are also shown. Thus the graph-theoretical meaning of the partial convergent, p/g,, for any j is clearly
demonstrated. All the graphs, F; and O, giving p; and g; are the subgraphs derived successively (rom the
caterpillar constructed from the set of the quotients for p/q. Note, however, that the order of the quotients
appearing in p; and g; is just the reverse of what we have obtained above. Then the arguments j's assigning the

order of p; and g are consistent to those for r; which we are going to explain.

j=0123456=N

a;= I 2315 34

LV vy
R; r <

ro=1027 _|V VYV pe=1027=4x238+75 |V WYV g,= 712=axiese 52 | N _ WYV
n=T72 LY WYY ps= 238=3x75413 LV _wy 45 165 3%52 19 LY . \wy
ry= 315 VWYY m= 7s=sxisei0 |V W qy= 52-5%94.7 LV W
n= 8 Yy m= B=ixos3d |y Gy= 9=1Ix712 LV
—_— wyy 7= 10=3x%3+1 Ly = T=3x24l Ly
= 1 Ly me= el e 2z
= & y  Po= =i . fo= 1-1 ¢
=1 ¢ : ¢ 0

Fig.2 Thesetsof P, Q, and R Z-caterpillars related to the rational number 1027/712.

Since the pair of integers, p and g, are prime with cach other, their greatest common divisor (GCD)
should be unity. This fact can be ascertained by executing the Euclidean algorithm for finding GCD=1, as is
exemplified in Fig. 3.

Except for rq (=p) and ry (=q), ry’s are the set of residue in this algorithm, and the last entry ry is
obtained to be the GCD of p and q. In this case we gel rys1=1 with =6, the length of the decimal part of the
continued fraction of p/g. Note that when we obtained the set of quotients by the standard recipe, the numbers

appearing alternately in the numerators and denominators form the set of r,’s, whose Z-caterpillars are drawn
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J Ii G Ty T2
To=qori+r 0 1027=1x712+315 ry=p. ri=q
Fy=ary+ry 1 T12=2%x315+82
ra=ayry+ry 2 315=3x82+69
3 82=1x69+ 13
: 4 69=5x13+4
5 13=3x4+1
TN=0aNnTNi 6(N) 4=4x%] rv=ay, Ty =1

Fig. 3  Euclidean algorithm for getting the GCD of (1027, 712) to be unity.
as R; graphs in Fig. 3. They are another series of subgraphs derived from the original caterpillar by
deletingfrom the head, contrary to the case of P; graphs which are obtained by deleting (rom the tail.

Thus it is quite easy to draw the caterpillars, P, Q;, and R;, and also their Z-values without recourse to

iterative calculation as continuant. An example is shown in Fig. 4 for P4 graph by using Theorem 5.

A, 1V, 1Y

10X6+3 %X 5=75
Fig.4 Calculation of Toplx for caterpillar Py by using Theorem 5.

]

With these graph-theoretical tools and algorithms we can solve lincar Diophantine equation in two

variables.

3 Solving linear Diophantine equation in two variables
3.1 D-Eqn is solved by Z-caterpillars
Consider the linear Diophantine equations of various forms,

X+t mY==]. (3.1)
For a given pair of coprime natural numbers of / and m (/ > m), one can obtain the quoticent set (ay, ay, , ay)
either by continued fraction expansion or Euclidean algorithm, However, from now on let us use the set of
{xn} for expressing Z-caterpillars instead of {a,} system. The transformation is straightforward just by
changing the arguments (0, 1,"**, V) to new (1, 2,, N). Anyway one can draw the Z-caterpillars, G and A,
corresponding to / and m as

G = CMx1, x2,"7, xn), 2G)=1 (3.2)

and A= CN—!(xﬁs X3, xNJ’ Z(A} =m, {33)



&)
(o%]
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so as to fulfill the condition, xy>1. The Cassini’s identity, or Theorem 6, has an important clue for solving
(3-1). Then if one can prepare the following pair of subgraphs ol G as,
B = Cyi(x, 32,77, xa) (3.4)
and AB = Cyoa(xa, X3, xny), (3.3)
these four caterpillars, (3.2)-(3.5), are qQualified to apply Theorem 6 to get the following relation (See Fig. 5a),

Z(G) Z(AB) - Z(A) Z(B) = (-1)". (3.6)
N=7 N=8
—=G _ |V WV 1027 G 1V WYV 1027 =—
A LV WUV T A L WYY e
[B LV vy 23 B 1V WYV 739:,
L ~AB |V WV 165 AR LV WYV 547 o~

Il

I

Z(G) Z(AB) - Z(A) Z(B) Z(G") Z(AB") = Z(A") Z(B)
=1027 x 165 - 712 x 238 =1027% 547 - 712 x 789
=—1=(-1)7 =1=(-17*
1027 (165+712 1) - 712 (238+1027 N=-1 1027 (547+712 1) — 712 (789+1027 n=1
(I X-mY=-1 [ X-mY=1
(a) (b)

Fig. 5 Graph-theoretical solution of lincar Diophantine equations,

Since xy>1, one can modify the tail part of G and A into G’ and A’, respectively, as
G* = Cyri(xy, x2,7 ", xygs X1, 1) (3.7)
and A’ = CpMxa, X3,y xn-1, 1), (3.8)
as exemplified in the upper part of Fig. 55. Now both the lengths of these caterpillars are increased by one.
Then by deleting each tail of G* and A’ one gets another pair of caterpillars as
B* = C{x1, x2,7 -, xpe1, Xn-1), (3.9)
and AB’ = Cyy(x2, x3,7*, X1, xpy—1). (3.10)

Now these four caterpillars, (3.7)-(3.10), are also qualified to apply Theorem 6 o get the following relation as

in Fig. 54,
Z(G*) Z(AB) — Z(A") Z(B’)=(—])N”. (3.11)
The values of N in (3.11) and Fig. 5b are formally different, but the essential point is implied in
Theorem 6.

The numerical calculations given in Fig. 5 tell us that the smallest solutions, Xp and ¥y, for the lincar

Diophantine equations in two variables,
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IX—mY=-1 (3.12)
and IX=m¥=1 (3.13)
are, respectively, given in Figs. 5a and b.
Then by adding both sides of
Imi—milt=0
to both sides of (3.12) and (3.13) substituted by .Yy and ¥, for X' and ¥, one gets
T(Xo+mO=m(Yp+11=-1 (3.14)
and [T(Xot+mb=m(Yo+i10D=1, (3.15)
which are the general solutions of (3.12) and (3.13) by substituting r with any integer.
Quite similarly one can obtain the general solutions of
IX+mY=1 and X+ mY=-1, (3.16)
These algorithms are more easily understandable by following some concrete example as in Fig. §
rather than by tracing formal discussion. However, in applying Theorem 6 careful caution is necessary for
assigning the value of N, the length of the largest caterpillar involved.
Thus in the present analysis we could succeed in clarifying the whole mathematical structure of the
lincar Diophantine equation in two variables by using the Z-caterpillar graphs.
3.2 Solutions of D-Eqn are Z-Caterpillars
Finally we will show that all the solutions of lincar Diophantine cquations can be expressed by the
Z-caterpillar graphs derived from that of G (3.2). Instead ol exposing formal discussion let us use the example
given in the above discussion. Namely, as given in Fig. 5 we have already obtained the general solutions of the

pair of linear Diophantine equations in two variables of the form

1027 X-712 Y =~1 (3.17)
and 1027X-712Y=1 (3.18)
as X=165+7121 and Y=238+1027¢ (3.19)
and X=547+T712¢ and Y=789 + 1027 4, (3.20)

respectlively.

In Fig. 6 are given these solutions, (3.20) (r=4~3), of X and Y for (3.18) together with their Z-graphs,
all of which are caterpillars and contain the skeleton of their respective solutions for =1 as subgraphs. Note
that the set of solutions (3.19) for (3.17) are obtained just by changing the sign to the set of solutions (3.20).
Then it is deduced that cither in the casc of (3.17) or (3.18) the three numbers appearing in (3.19) and (3.20),
respectively, construct the absolute magnitudes of all the solutions for X and Y. The general forms of these
solutions for the case of (3.18) are given in Fig. 6. Although the general forms for other Diophantine equations
of the type (3.1) are not given here explicitly, they can casily be obtained in a similar fashion. The most

important point is that the Z-graph G (3.2) representing / in (3.1) derives all the Z-graphs relevant to the
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process and solutions of the linear Diophantine equation in two variables.

Solutions of 1027X-712Y =1

X=547+7121t
X 2
[A"A'AA'%
122  Z,(x, x5, 0, -1-1)
t==1 Z, 00, %3, ,X,4)
1=0  Z, (v X3 Kpps K1)
r=1 Z (6 Xy X, X1, 1,0

-1

—

LV WYV vV

LV _wyvy  -3319
LV WYV 2292
LV WYV -1265
LV WYY 1027)

LV vy 238
AV WY um)«—:g
LV WYYy 7x:9

LV WYY 1816

LV WYY | 2843

LV . \WVY YV 3870

Y="789 + 1027 «
Y 2

AV wyyy

Zp (X Xy = s Xy =t-1)
zl'l— |(-§';. Ko™ 4y, I)

Z(x), X ==, X, X,1)

YARPEY 6 ST PR W e ) |

=
V. WYy Vv

Z(G) = Z(C(x), x5, , X))

Fig. 6  Z-graphs of the solution of lincar Diophantine cquation (3.18).
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Appendix  Proof of Theorem 6

Consider the square determinant D of order 2n-2 as shown below

x 1 0] 0 0

-1 0

Xy |1

s 0 -1 | x| | 0
0 =11 x, I 0

-1 | xpp .
0 R
0 0ol 0 -1 x,

> (A1)

which is constructled by joining the two determinantal continuants of K, (x), *=+, x,) and K,-2(x, 1, "=, x2) with
a pair of off-diagonal clements of 1 and —1. Note that the latter continuant is obtained from the former by
deleting both the terminal rows and columns and reversing all the elements along the diagonal. This
determinant D can be deemed as the Z-index of caterpillar Cy, 2(x),"**, Xu-15 Xy Xuo1+ Xp2y"**5 X2). Then one can

apply Theorem 5 to D in two ways as follows:

D = Zn(x1, " X0) Zp2(Xnoy, 005 X2) F ey (X1, X)) Zp-3(Xpo2, 77, X2)
=Z»—I(xh"':-’fn--l}ZN-I(I::, sy xg) H (e, Xy 2) Zya(Xy oy, 0, X2). (A.2)

Then we have

zﬂ'{xla- s xﬂ) ZH—Z(xn-l» s X.‘c‘) = Zﬂ—] [Xh’ Ty Xnl ) Zn-l (I”, Y I?)

= [zﬂ'—l(xl s " xﬂ—]] Zﬂ—B{xﬂ—Za B x?) . Z!l—z(xl:- it xﬂ--Z) 74]‘2{xtf-| y Ty XE)J

NSR. O.. Vol. 60
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= 17 [Za(x1, %) Zo( ) — Z1(x) Zixa)],
where ¢ indicates the vacant graph.
Since the terms in the square brackets are calculated to be
(x> F1) X1 =xx; =1,
after some change in the order of the elements we have

Zn(x1, 70 Xn) Zp=2X2, ", Xpo1) = Zp=1(X17 7 Xpt) Zp-1(X2, 0y Xn) = (1 )”- O]

(A3)

(A4)




