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Abstract The three series of numbers, Fibonacci (F,), Lucas, (Ly), and generalized Fibonacci (Gy), are
defined to have the same recursive relation, u, = u,, 1+, . By imposing the following set of initial conditions,
JSo==1, L1=1 and Lp=3, and G1=¢>0 and G2=b>0 with b>2a, a number of novel identities were found
which systematically relate f,,, Ly, and G, with each other. Further, graph-theoretical interpretation for these
relations was obtained by the aid of the continuant, caterpillar graph, and topological index Z which was

proposed and developed by the present author.

1. Introduction

In the first paper (referred as I) of this series” it was shown that the continuant, which was proposed by
Euler”™ for discussing continued fractions, is identical to the topological index (Z) or Z-index of the
caterpillar graph constructed from the terms comprising the given continued fraction, where the Z-index is an
integer proposed by the present author for characterizing the topological property of a graph.s’(’) Then the
Fibonacci (f;) and Lucas (L,) numbers are shown to be expressed either by the continuant or caterpillar
graph.7’8) Further, through these close relationships among different mathematical objects and concepts a
number of interesting applications and graph-theoretical interpretations have been developed.
For example, in I the following identity was proved involving generalized Fibonacci numbers (Gy) as

Gmin=Gmfn+ Guetift. (LD
The validity of (1.1) can clearly be demonstrated by the caterpillar trees corresponding to all the entries of
(1.1). It is to be noticed that the initial condition for the Fibonacci numbers f,, is chosen here as

fHo=H=1, (1.2)
different from the widely accepted oneg'1 b as

Fi=F=1. (1.3)
The advantage of the choice of (1.1) over (1.2) will repeatedly be shown in this paper through a number of

novel identities among the Fibonacci, Lucas, and generalized Fibonacci numbers. Graph-theoretical

interpretation for these identities will also be demonstrated.
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2. Definitions

2.1. Fibonacci, Lucas, and generalized Fibonacci numbers

All the series of numbers appearing in this paper commonly obey the following recursive relation,

Un=tpq + Uy y Uy : fn (Fibonacci), L, (Lucas), G, (generalized Fibonacci) 2.1
The initial conditions for f, and L, are chosen as

fo=hH=1 2.2)

Lo=2,L;=1. 23)
Although the latter (2.3) for L, seems to be unanimously chosen, very few authors adopt (2.2) for ﬁ,.lz’B)

By taking

G1=a>0,G,=b>0 @4
a series of numbers,

a, b, at+b, a+2b, 2a+3b, 3a+5b, 5a+8b,- - 2.5)
with the property of (2.1) are conventionally called generalized Fibonacci numbers or generalized Fibonacci
sequence.lo) Although there seems to exist no strict restriction for the initial condition (2.4) for G,, we dare
propose to put

b>2aq. 2.6)

By doing this all the three series of numbers have the same property that u, is not greater than u, as

oz <uy. Q.7
Actually wehave Go=b—a>G,=aand Lo > L,.

Further, we will mainly be concerned with the primitive G,’s with (a, ) = 1. For convenience of the
later discussion the lower members of f, and I, are shown in Table 1, together with two kinds of primitive
Gy’s.

Table 1. Fibonacci, Lucas, and generalized Fibonacci numbers

n 0 1 2 3 4 5 6 7 8 9 10

I 1 1 2 3 5 8§ 13 21 34 55 89

Ly, 2 1 3 4 7 11 18 29 47 76 123

w3 01 4 5 9 14 0B 37 60 97 157

Gz,, 48 13 61 74 135 209 344 553 897 1450 2347

2.2. Continuant and the related determinant

[Def. 1] Continuant.

The continuant polynomial, or simply continuant, which was extensively discussed by Euler, can be
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defined recurrently, as follows:*™¥
Ko() =1;
K1) =x1;

Ka(x1, x2) =x1x2 + 13
Kn(x1, %2, %) = X0 Kn1(¥1, %2, Xn-1) + Kp2(¥1, X2, Xn-2) - (2.8)

The continuant has been known to be reversible as shown in the following three theorems whose proofs
may not be necessary here.”
[Theorem 1] Reversible character.

Kn(x1, %27, Xn) = Knlxn, -, X2, X1) . 2.9)
[Theorem 2] Reversible recursive relation (cf. the last equation in (2.8)).

K1, x2,7775 xn) = x1 Kpm1(x2, X3, X)) + K 2(x3, X477, Xn) . (2.10)

[Theorem 3] Tridiagonal determinantal expression.

x 1 0 0 - 0
-1 x, 1. 0 - O
K, (x, %5000, x,) = 0 _:1 % 1 0
0 0 - -1 x,, 1
6 0 - 0 -1 x, ) 2.11)
It is to be remembered that a tridiagonal determinant is easy to be degraded, and Theorem 3 actually

plays a very important role in the calculation of the continuants and Z-indices."' ¥

Either from Def. 1 or Theorem 3, the Fibonacci (f3) and Lucas (L) numbers can directly be obtained,

respectively, to be

m=Kn(l, 1,0, 1) (n1s), (2.12)
Ja=Kp1(2, 1,7, 1) (m-21’s) (n=2), fi=Ko(), (2.13)
and Lp=Ku(1,2,1,---,1) (oneandn-2 1’s) (n=2), L;=Kji(1), (2.14)
Lp=Ku1(3,1,,1) (m271s) (n=2), L1=Kp(). (2.15)

For the pair of Gy,’s in Table 1 we have
Gln =Kp1(4, 1,++, 1) (n271s) (n=2), G11 =Ko(), (2.16)
and Gra=Kma(4,2,1,4,1,-,1)  (oneandn21s) (n=2), G1=Ks3(4,2,1). . (2.17)

Parallelism among the expressions (2.13), (2.15), and (2.16) for f,, L,, and G n is to be remarked with
reference to Table 1. Derivation of (2.16) and (2.17) will be explained later.
2.3. Topological index Z

For characterizing a graph G the Z-index was proposed to be defined by the present author as
follows.>® First define the non-adjacent number p(G,k) as the number of ways for choosing k disjoint edges

from G. Here p(G,0) is defined to be unity for all the graphs including the vacant graph, and p(G,1) is equal to
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the number of edges in G. By using the set of p(G,k)’s the Z-index Z(G) is defined as
ZG)= ﬁP(G, k)
=0 , (2,18)

where m is the maximum number of &, or 7= [N/2] with & being the number of vertices of G. In other words,
Z(G) is the total sum of perfect and imperfect matchings. See Refs. 1, 5, and 6 for further discussion about the
Z-index.
2.4. Caterpillar graphs

The path graph P, is composed of » vertices which are consecutively connected by n—1 edges. The star
graph Sy, is also composed of  vertices and #»—1 edges, but constructed in such a way that the central vertex is
connected to all other n—1 vertices. The Z-indices of P, and S,, are, respectively, f, and n. A caterpillar graph
is constructed in the following way. Suppose a path P, and prepare a set of n stars X,={x1, x2,"-, x»} where
natural number x,, denotes Sxy, i.c., a star composed of x;, vertices. Then mount each element of X, onto each
vertex of S, one by one either from left or right to another end. The resultant graph is the caterpillar graph

Cu(x1, x2,7, %,) composed of | V'[=Zx, vertices. Refer to Refs. 1 and 14 for further discussion about the

caterpillar.
2.5. Continued fraction

In this paper the following type of simple finite continued fraction Qy is treated, which is expressed and

denoted by a finite set of elements a,, with all positive integers as

Oy = i =la,a,,-+,ay_,a,]<1.

y (2.19)

3. Main Theorems

[Theorem 4] Fundamental set of additivity relations for £, Ly, and G.

Jm+n= ffn + fn-1fn-1 3.1
Lonin=fnLn + fn1Ln-1 3.2)
Gm+n=fmGn* fin1Gn-1. 3.3)

(Proof) By combining (2.1) and (2.2) we have
Un=fi tip-1+f0 un-2
= fil(un—2 + un-3) + fo tin2

= un-2 +f1 Un-3. 34

By doing similar processes we get

Un = fi ik fiol Un—t1 (a2 fo, Ln, and G). 3.5)
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Then by putting n=n-+m and k=m
Umn=Jm Unt fin-1 Un-1 (s f, Ln, and Gy) (3.6)
is obtained. [
[Corollary 1]
Litnt Lintn2= Lin Ln+ Lm-1 Lp-1 3.7
and Gmin+t Gmin2=Lm Gn+ Ly-1 Gni. (3.8)
(Proof) By using the relation,
Ln=Jnt fn-2, (39
Eq. (3.2) can be converted to
Lim+n=Lm—fm-2) Ln+ (Lin-1 = fn-3) Ln-1
=LmLn+ L1 Lp1 — (fn2 Ln + fm3 Ln—1)
=Ly Lyt L1 Ly-1— Lip+n-2, (3.10)
which gives (3.7). O
Quite similarly Eq. (3.3) can be converted to
Gmn= (Lm—fm2) Gn+ Lm-1—fm-3) Gn
=Lm Gn+ Lp-1 Gu-1— Gman-2, (3.11)
which gives (3.8). [

[Theorem 5] Another set of additivity relations for f,, L,, and Gp,.

Jmin=fmfr1 = fm-2fn1 (3.12)
Lm+n= fm L1 — fim—2 L (3.13)
Gm+n=Jm Gn+1 —fm-2 Gp-1. (3.14)

(Proof)  Equation (3.6) can be converted to

Um+n = Jol Unt — Up-1) + (fmn —fm—l) Un-1

= fmthn+1— fin2n-1  (Un : fo, Ly, and G,,). [J (3.15)
[Theorem 6]
Joe1 Ln—fo L1 = (1), (3.16)
For1 Gu=fo Gui1 = (b—2a) (-1)", (317
Ln+1 Gn—Ln Gpe1 = (b~ 3a) (-1)". (3.18)

(Proof) Let us take

HLGI-fiG2=2a—-b<0. (3.19)
Similarly we get

$Gr—fpG3=3b-2(a+b)=b—2a>0 (3.20)
and JfaG3—-f3G4=5(a+b)—3(a+2b)=2a-b<0. (3.21)

By following these steps we will arrive at (3.17). Since L, series have ¢=1 and =3, (3.16) can also be proved.
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Next let us take

LyG1—-Li G2=3a-b<0. (3.22)
Similarly we get

L3Gy—1pG3=4b—-3(a+b)=b-3a>0 (3.23)
and LiG3—IL3Gy=T(a+b)—4(a+2b)=3a-b<0. (3.24)
By following these steps we will arrive at (3.18). [
(Geometrical Proof of (3.16)) See Fig. 1 where f;,’s and L,’s are, respectively, graduated on the abscissa and
ordinate. By noticing the equal areas of the two pairs of hatched rectangles one can obtain the following
identities.

Jot1 Ln = fu Lt

=fot Ln—fo Ln-1

=~ (faLn-1 = fu-1Ln)

=fa1 Ln-2 = fu2 Ln-1

“ =D (ALo—foLy).

Then we have (3.16). []
Ln+1 ————— =
{ /////
Ln~l
L

L., -,—— 5 — !
\,
B ’/;;///x\'
Sy S Jui
St

Fig. 1. Geometrical proof of (3.16).

From Theorem 6 interesting identities involving f;, L,, and G, are derived.

[Theorem 7]

Ly L _CD”

NI S A

(3.25)
f;Hl __f_n - (_1)!1
l‘n+] Ln Lm»an (3.26)
fur Lo (D"
Lo L Sl (327
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(Proof)  Divide (3.16), respectively, by fu+1/4 Lnt1 Ln, and £, Ly, and one gets (3.25), (3.26), and (3.27). O

[Corollary 2}
o _ G _ (B=20)(-1)"
fh G, 1.6, (3.28)
and

Ly G _ (=301

Ln Gn LnGn . (3 _29)

(Proof)  Divide (3.17) and (3.18), respectively, by f; G, and L, Gy, and one gets (3.28) and (3.29). [
All the Theorems and Corollaries can be ascertained by using the numbers in Table 1.
It is to be remarked here that all the Theorems and Corollaries given in this section are applied to those

generalized Fibonacci numbers which obey (2.6) but are not necessarily prime with each other.

4. Comparison with other studies

Although several results in the above section have been reported by other researchers,s'”) no systematic
study seems to have been performed connecting the recursive properties of Fibonacci, Lucas, and generalized
Fibonacci numbers, especially on their graph-theoretical interpretation, which will be given in the following
section.

Relations (3.1)-(3.3) have sporadically been documented but in different forms as

Um+n= fmthn+1 + foittn (u=f, L, G) 4.

and the like under the initial condition (1.3). As will be shown later, the forms of relations (3.1)-(3.3) are not

only neater than (4.1) but also have clearer graph-theoretical meaning.

In Hoggatt’s book” the relations corresponding to (3.16) and (3.27) are, respectively, documented as
Fni1Ln—FyLlpi1=2(-1)" with Fi=FR=1, 4.2)
B L 2CD°
and E L, B, with Fi=F,=1. (4.3)

Both of them are rather neat. However, it is obvious that under the conventional initial condition (1.3), it
is rather difficult to derive such systematic relations that connect £, L, and G as obtained in the above section.
Actually in hitherto published documents the present author could not find any aesthetic identities as (3.25)-

(3.29) involving fractional relations among these series of numbers.

5. Graph-theoretical interpretation of the identities
In this section graph-theoretical interpretation of the identities obtained above will be given. It has
already been proved in I that the continuant Ky(x1, x2 ,"**, x»,) is identical to the Z-index of the caterpillar graph

Culx1, X2 ,'**, %) constructed from the same set of elements {x,}. Namely, we have
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Zn(xlax2 :'”’xn):Kn(xlsJQ 9’“,xn)s (5'1)
where Z,(x1, x2 ,"**, Xn) represents the Z-index of Cy(x1, x2, ", x»). It is also to be remarked here that the three
series of numbers can be represented by the Z-indices of the corresponding series of caterpillar graphs as

shown in Fig. 2. Those readers who are not familiar with the recursive properties and manipulation of the Z-

index are advised to consult I and Refs. 5, 6, and 14.

L
Ja "
C,(1,2,1,---,1)
s—e—e—— (C (1,1,---,1) AT
1 2 n SN 2 = n n-2
I—'—'—O Cn~](2, 15"'71) \ ) Cﬂ-1(3’1’.“’1)
-— S
n-2 n-2 n2 "2
Gln Gzn
n——M—'—o—a C,(1,3,1,---, D) m m
\&v.*l
1 2 n-2 G=C3(4,2,1) G5 =C4(4,2,1,4)
LH C,1@4.1,---, 1) M l I > ] o
w2 n-2 G%=Cs5(4,2,1,4,1) G%=C6(4,2,1,4,1,1)

Fig.2 Caterpillar graphs whose Z-indices correspond to the series of graphs, £, Ly, and Gy,.
See also Table 1.

Parallelism among the caterpillar graphs corresponding to £, Ly, and G, is obvious from the continuant
expressions, (2.13), (2.15), and (2.16) for them. However, derivation of (2.17) is straightforward but needs to
do some manipulation as in Fig. 3, where procedures for obtaining the continued fraction expression for a
given rational number a/b is demonstrated with 13/61 for Gzn as an example. Note that in this case the length
of the caterpillar is larger than the arguments for G n and Z, by two. This discrepancy comes from the
restriction that the generalized Fibonacci numbers in this paper are in principle defined to satisfy the condition
(2.7). Thus, although the continuants, K, and caterpillars, Cy,, have been defined for >0, the Z-indices and the
generalized Fibonacci numbers, G,’s, for n<0 do not necesarily obey the recursive relation (2.1).

With these preliminaries it is easy to understand the graph-theoretical interpretation of the set of the
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b
—=x+ L ol _ 4+ 2
a a 13 13
4 .8 1 4
a, 2 a, -5 =1+ -9—
L _ o % 9 1
=X+
& ’ ay Z =2+ Z
......... 4 0
Gty s o 14T
a
N a, =0, a,=0
ifa=0and a, =0,
then k=1 k=4
a 1 13 1
a_ L 0mgn] = =[0:4.12,4]
b ot __]__1_ (0521, %, . %] 61 4 +_—il_ [
X, + 1 1+ i
+ - 2+~
X, 4
Gl =a Gz =p G3 =qg+b G4 =g+2b
=K3(1.24) =Kq4.1,24) =Ks(1,4,1,2,4) =Ke(1,1,4,1,2,4)
=K3(4,2,1) =Ky4.2,1.4) =Ks4,2,1,4,1) =K¢(4,2,14,1,1)
C3(4,2,1) Cy(4,2,1,4) Cs(4,2,1,4,1) Ce(4,2,14,1,1)
G1:21:13 G2=22=61 G3=Z3:74 G4:Z4:135
Co() Ci(4) Cy(4,2)
o K0 YV x@® V1] ke
:Z—-Z = =Z~1 = 4 :ZO = 9

, 13 9 4 1
0:4,1,2,4]= =, [0:12,4]= —, [0:2.4] ==, [0:4] ==
[ ] ol [ ] T [ 1 5 [0:4] 2

Fig.3. Derivation of the caterpillar graphs corresponding to Gz,, in Fig. 2.

Lm+n :fm Ln +f —1 Ln—l Glm+n =fm Gln +fm—l Gln—l
l l
G L.n 0—.—'—.—'!‘—0—*} Gloin o—O—o—o—"-.—o—.—y
I m n-2 m n-2
G - l f m Ln *—o—o—s r—*—J fm Gln s 0—‘—0&
.« v J LS v 4 M__.‘r_—_.._l At
+ m n-2 m n-2
G @l fm—l Ln—-l *——9 HJ fm_l G n—1 *—o—9 .—vy
[ S— [S— — —
m-1 n-3 m—1 n-3
(@ (b)

Fig. 4. Graph-theoretical interpretation of the additivity Theorem 4.
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additivity Theorem 4.
The fundamental recursive relation for the Z-index of a given graph G is expressed as follows,5’6)
Z(G) = Z(G-]) + Z(GO), (52)

where the subgraph G-/ is obtained by deleting an edge /, e.g., marked with the double bar in Fig. 4, and GO/
is obtained from G-/ by deleting all the edges which were incident to /. As shown in Fig. 4a, G~/ for Ly+n is a
pair of £, and L,, while GO/ is a pair of f,,,—; and L,,_;. From its definition the Z-index of a disjoint pair or
group of graphs becomes the product of the Z-indices of all the components. Then (3.2) is directly obtained
from Fig. 4a according to (5.2). Similarly (3.3) is obtained from Fig. 4b. Equation (3.1) can be proved by

changing Lyy+y, into fin+n by deleting an edge from the right-most moiety of Ly+y.
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