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Abstract Mathematical structure of the families of solutions of Pell equations x* — D y* = 1 (called Peli-1) and »* —
D y? = —1 (Llep-1) are studied by using Cayley-Hamilton theorem. Besides discovery of several new recursive
relations, it was found that the solutions (x,, y,) of Pell-1 are expressed by the Chebyshev polynomialé of the first
and second kinds, 7, and U,, in terms of the smallest solutions (x;, ¥1). The solutions (¢,, u,) of Pellep-1 which are
the combination of Pell-1 and Llep-1 are expressed by using the conjugate Chebyshev polynomials. Similar
results are obtained for the solutions of Pellep-4 through the modified Chebyshev polynomials and their conjugates.

The solutions of Pellep-4b with several D values are found to form various interesting mathematical series of

numbers, such as Fibonacci, Lucas, Pell numbers.

1. Introduction

Let us call Eqns. (1.1) and (1.2), respectively, Pell and Liep,”

¥-Dy'=1 (1.1)

¥-Dy'=—1, (1.2)
where only non-negative integer solutions (x, y) are to be sought for square-free D.'’® Pell has an infinite
number of solutions forming a family for any D besides the trivial solution (xo=1, yo=0), whereas Llep has
solutions only for special values of D. A union of the solutions of Pell and Liep with the same D will be called
here Pellep. It is known that mathematical structure of the Pell equation will be globally understandable by
extending the problem to Pellep-N as

¥’ —Dy* ==+N. (1.3)
In algebraic number theory Pellep-4 is shown to be as important as Pellep-1.

The smallest pairs of non-trivial solutions of Pell and Llep (if ever) will be denoted, respectively, as (x1, 1)
and (7;, 51). In the first paper of this series Pells and Lleps with smaller D (<100) were classified into several
types with respect to the form of the polynomial relations (PR’s) among (D, x;, ;). This is a kind of discussion
along the equator. In this paper mathematical structure of the family of solutions of Pell and Pellep with the same

D will be analyzed as a longitudinal‘ discussion. It will be shown that the solutions of Pellep-1 and Pellep-4 can be
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generally expressed in terms of their smallest solutions through typical Chebyshev polynomials. Further, the
family of solutions of Pell-4, Llep-4, and Pellep-4 with special D's are shown to be closely related to famous
series of numbers, such as Fibonacci, Lucas, and Pell numbers. The results obtained here have contributed to

global understanding of the mathematical structure of the solutions of the Pell equation to a certain extent.

2. Analysis of Pellep-1

2.1. Fundamental Pell-1, Llep-1, and Pellep-1

Due to its long history it is difficult to pin point the original credit for each theorem and technique for
solving and relating the mathematics of Pell and Llep. Then in principle only recent contributions in this field will
be credited in this paper.

First consider the case with D=2, i.e., the original Pell and Llep as

¥-24=1 2.1)
¥ -2y =-1. (22)

The pair of equations (2.1) and (2.2) are nothing else but a formulation of the famous problem already
posed by ancient Greek mathematicians as follows:

Although there is no square whose area is just twice of another square,
the areas of many squares differ by only one from twice another square,
suchas 3?=2x2%+1, 7°=2x5%-1, ete.

The former identity corresponds to (x;, ;) of (2.1), while the latter (r,, s5) of (2.2). Although the identity
1?=2x1>-1 is not applied to this problem, it represents (r, s;) of (2.2). From these observations one can
write the following pair of identities:

(B+2J2)3-242)=1 1+42) 1- )= -1,

By taking their nth powers one gets

B+242)" 3-2P) =1 2.3)
and |

A+42)" (1= 2) = (-1)" v (2.4)
By using (2.3) it has been proved that all the solutions (x,, y,) of (2.1) can be obtained from the following
equation:

x, 442y =G +242) =+ )" (n=0) @5)
whereas for Llep its general solution is obtained by

o2, =1+ d2)B 4242 -1+ (m21) 26)

Now it is obvious that (1+ ‘/5) generates the union (4, u,) of the solutions of (2.1) and (2.2), or the
bigger family of Pellep, as expressed by the following equation,
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t,+2u, =(1+2)" (n=0) @7

In Table 1 the lower members of the solutions of all these Pell, Llep, and Pellep are given, where ro=—1 and so=1

Table 1. Solutions of Pell, Liep, and Pellep families with.D=2

Pell (N=+1) Llep (N=1) Pellep (N==%1)

. Giod2Y a+d2)G+2) a+-+2)

X Vn P Sn b Uy
0 1 0 -1 1 1 0
1 3 2 1 1 1 1
2 17 12 7 5 3 2
3 99 70 41 29 7 5
4 577 408 239 169 17 12
5 3363 2378 1393 985 41 29

are added so that formal discussion can be extended down to #=0 in (2.6) and other recursive relations. Note that
(2.5)- (2.7) are also valid for negative »’s.
From (2.5) we have

K41 + Jz_ynﬂ = (3 +Zﬁ)kxn +ﬁyn)

=0x,+4y,)+ ‘E(an + 3yn)_ ‘ (2.8)
Since x, and y, are all integers, the following pair of equations can be obtained:
Xne1 =3 X T4y, 2.9)
Yri1 = 2%+ 3 yo. (2.10)

Once we get a pair of simultaneous recursive relations for

X
()
In (2.11)
in the form of

un+1 = Aun

(2.12)

with 2x2 coefficient matrix

A=(i Z) 213)

it is straightforward to solve them into a simpler recursive relation by using the following corollary of Cayley-
Hamilton theorem. Namely, we have
(Corollary 1: Cayley-Hamilton)

The square of any 2x2 matrix A (2.13) is reduced to be
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AZ=(r A)A - (det A)1.

2
a

b a b 10
Proof. (c d) =(“+d)(c d)"(“d“bc)(o 1)

Since

N 3 4
) (2 3)
from (2.9) nd (2.10), we have
wni = A2 up = [(ir A) A — (det A) T] #y
=(a+d) up+1 - (ad—bc) uy

=06 Up+] — Up.

Quite the same result can be obtained for (r,, s,,) in (2.6), and one gets the following recursive relations:

J1=6 foi1 — Sz (f=r,5,%,¥).

Then it is straightforward to get the general expressions for these variables as

X=(a"+p")/2
= (g2 3R
with
| a=0+242) gq B-G-242),
which are the solutions of the characteristic polynomial
X¥—6x+1=0
for (2.15).
" From (2.7) for (#,, uy) the recursive relation
Sh=2fa e (=t w)
and general formulas
n=(p"+0")/2
w=(p"— ") 2
- with
p=0+d2) Ly o=0-2)

are obtained, where (2}.23) is the solution of the characteristic polynomial

P-2x-1=0
for (2.20).

Note that the series u, have been known as Pell numbers,
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and y, and s, are their subgroups. This

problem will be discussed in more detail later in this section. It is interesting to observe that (2.19) and (2.24) are

formally related with each other in the following identity

FP-2x—1) (P +2x—1)=x"—6x"+ 1.

(2.25)
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From the second factor of the left hand side of (2.25) the following recursive relation can be derived:
Jo="2f1t foz. (2.26)
If one selects 0 and 1 as the initial values for f; and f; and apply (2.26), a Pell number-like but sign-alternating
series are obtained as: 0,1,-2,5,-12,29,-70, ---.

See Table 1, and notice that all the ratios, x,/y, , #»/sn, and t,/u, converge to \[2- , which will be proved in
the following discussion. It has been known that the square root of a positive number D can be approximated by
the conversion limit of the series of numbers {c,} successively obtained by the following recursive relation

Cnr1=(cs+ Dley )/ 2. .27
If one starts with c; =1 for D=2 in (2.27), a series of numbers rapidly converging to ) are obtained as

32, 17112, 577/408, 665887/470832, ---.
The fourth rational number has 12-digit accuracy to \E , and all the above entries are the 2”th members of #,/u,,
or the 2™ 'th member of x,/y, in Table 1. If one selects 7/5 = r,/s, for ¢;, the 3 * 2™ 'th members of x,/y, will come
out for m>1. The reason why (2.27) generates larger solutions of Pell from a smaller one can be explained as
follows. By pufting &= Xn | Yy into (2.27) onie gets

Xt/ Y1 = On/ Y+ D Yl X)/2= @5n> + D 3,) 1 2 X yi)- : (228)
The numerator and denominator of the right-hand-side of (2.28) are shown to satisfy also the Pell with the same
Das

G+ Dy =D 2% yn) = (%" — Dy = 1. (2.29)
That is, (X+1, Ynr1) Obtained from (2.28) is not the next larger solution of (x, , y,) but a so-called “leapfrog”

solution whose ratio is far more approaching to JB . Now go on to the discussion of the general Pellep-1 problem

with an arbitrary D.

2.2. Properties of the solutions of Pellep-1 with an arbitrary D ‘
Assume that Llep-1 is solvable for a given D. Then all the solutions of the corresponding Pell-1, Llep-1,

and Pellep-1 can be obtained by the following set of equations like (2-5)+2.7) for the case with D=2:
x, +JIDy, =(x, +JDy)" (n=0)

(2.30)
r,+Ds, =(r, +4Ds)) (x, + Dy (n= n, (231)
t,+JDu, =(r, +IDs,)" (n=0) . (2.32)

Then one gets the following equations similar to (2.29):*

@~ D y1®) Gn' =D yu) = @1 Xn+ Dy1ya)’ =D (i yut yixa)’ = 1, (233)
" =D 3’) (ra’ =D ") = 1 rut D y1 5, =D (i 8,7+ y17n) =1, (234)
(">=D 51D (2= D u,>) = (F11,+ D 51 ) — D (ry s, + 51 1,)° = (1) (2.35)

Note here that r1=f; and s,=u; (See Table 1). From (2.33) the following set of recursive equations for the solutions

of Pell-1 can be derived.
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Xne1 = X120+ D Y1 Yy

Y1 = Y1 Xnt X1 Yn-
For Llep-1 one gets

Fut1 = X1 7n+ D y1 5y

Snt1 = Y1 Fn T X1 Sp.
Also for Pellep-1 one gets

i1 =T+ D sy uy

Up1= S1 In T 1y Uy,

NSR. 0., Vol. 57

(2.36)
(2.37)

(2.38)
(2.39)

(2.40)
(2.41)

By using the procedure in the preceding section the following recursive relations can be obtained:

Ja =2 X1 f1 —fo2 (f=x,y,r, s of Pell-1 and Llep-1)

Fn=2r1fo1tfon (f=t, u of Pellep-1).

(2.42)
(2.43)

In deriving (2.43) the relation r12 -D s12 = — 1 is used. The results (2.15) and (2.20) obtained for D=2 are special

cases of (2.42) and (2.43), respectively.

Thus if D is given and the smallest solutions (x;, y;) and (r1, 1) (if ever) are found, it is straightforward to

obtain larger family members of the solutions to a desired extent by using (2.36)-(2.41) or (2.42)~2.43).

However, because of the recursive relations (2.42) and (2.43) all these solutions can be expressed by a more

compact functional form with respect to (x;, x1) , (71, 1), and (#;, #;).

In Table 2 are given the smaller family members of (x,, ¥,) and (%, u,) expressed by the smallest solutions

(x1, y1) and (#;, #;). While the absolute values of the coefficients of the corresponding terms are the same for (xp,

yn) and (4,, u,), the former set of variables have a sign-alternating property contrary to all positive terms for the

latter. On the other hand it is difficult to express (ry, s,) in terms of only (ry, s51) as inferred from the hybrid

recursive relation of (2.38) and (2.39).

Table 2. Smaller members of (X, ¥») and (£, #,) expressed by their smallest members

n Xn= Xn(x1) Y= y1¥u(x1) 1= Valt) n =t W)
1 x »n 4} U

2 2x%1 y1(2 %) 26%+1 w(2t)

3 4x°-3x n@x>-1) 41°+3 42 w(d 6>+ 1)

4 8x —8x°+1 yi8 x> —4 xy) 81 +847+1 w86 +41)

Then let us denote (X, y») and (,, #,) in functional forms as
Xu = Xolx1)

Ya=nYu(x1)

(2.44)
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and
6= Vo(t1)
U, = mWi(ty). (245)
The explicit expressions for lower members of these functions are already given in Table 2.
From (2.36) we have
Xox1) = x1 Xa(x1) + D 31> Yo (3%1)
= %1 X (1) + G > = 1) Yoa (1), (2.46)
while from (2.37) '
Yu(x1) = Xp1(x1) + %1 Yoa(x1). (2.47)
Again by using Corollary 1 to the pair of recursive equations (2.46) and (2.47), the following pair of
recursive relations are obtained,
Xo%1) = 21 X1 (%1) = Xn-ox1) (2.48)
Yu(x1) = 2x1 Y1 (x1) — Y1) (249)
This pair of polynomials, X, and Y, respectively, are nothing else but the Chebyshev polynomials of the
first and second kinds, 7, and U,.*' U, is sometimes called Pell polynomial.!®'>'® Although there exist a
number of definitions for them, it is sufficient to ascertain their recursive relation,
JnX) = 2X fo1(x) — fr2(x) (2.50)
and initial values for #=0 and 1 for proving the following identities:
Xu(x) = T(x)
Yo(x) = Upa(x) (251
Then one méy be allowed to state the following theorem without giving its proof explicitly.
(Theorem 1)

All the family members of the solutions of Pell-1 are generally expressed in terms of the Chebyshev

polynomials as

Xn = T,,(xl)
Yn=y1Up1(x1). (2.52)
[}
For the sake of later discussion the polynomial expressions for 7, and U, will be given here,'”
|/2} n o N .
T,(x) Z) ( ) k)x (x* -1 .
(2.53)
ln/zj n+ 1 n-2k 2 k
U, (x)= 20 (2k . 1)x (x> -1)
(2.54)

Their lower members are listed in Table 3.
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Table 3. Chebyshev polynomials of the first and second kinds,

1st kind 2nd kind

Tolx) =1 Ux)=1

Ti(x)=x U(x)=2x

Tox) =251 Ur(x) =451

T5(x)=4x -3 x Us(x)=8x—4x
Tu(x)=8x"~8x*+ 1 Ux)=16x"—12 5+ 1
Ts(x)=16x"—20x°+ 5x Us(x)=32x"—32x+6x
Te(x) =32x°—48x*+18x* -1 Us(x) = 64 x°— 80 x*+ 24 x* — 1

T*, (x), and U*,(x) have exactly the same forms, respectively, as

Tu(x), and U,(x) but with all positive signs.

Next consider Pellep-1. Similarly to the case with Pell-1, from (2.40) and (2.45) we have
Va(t) =ty Ver(t) + D wy® Wyi(11)

=4 Vua(t) + (1" +1) Woi(20), (255
while from (2.41) and (2.45)
Wu(t) = Var(t1) + 1y Wy (11)- (2.56)

By applying Corollary 1 to the pair of recursive equations (2.55) and (2.56), the following recursive
relations are obtained:
Va(t1) =281 Vpr(81) + Vioth) (257
Walt1) =261 Wui(t)) + Woo(t)- (2.58)
.As shown in Table 2 all the terms of ¥, and W, have positive signs and their absolute values are,
respectively, the same as those of X, and Y, or of 7, and U,. Let us here call ¥, and W, the pair of conjugate
Chebyshev polynomials of the first and second kinds and denote them as 7*, and U*,, respectively. By modifying

(2.53) and (2.54) their polynomial expressions can be given as follows:

|n/2]

T* (x)= 1 E (Zr;c)x,hzk 2+ l)k

£ (2.59)
|ni2j n+1
U*, (x)= Z (2k+ l)x"""(x2 +1)f
=0 (2.60)

Then one may again state the following theorem:

(Theorem 2)

All the family members of the solutions of Pellep-1 are generally expressed in terms of the conjugate

Chebyshev polynomials as
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[ ,T*n(tl)
U =mU*y (1), - (261
where #; and u; are the smallest solutions of (1.3) with N=1. O

As evident from Table 1, the solutions of Llep-1 and Pell-1 alternately appear in the solutions of Pellep-1.
Then one gets the following Corollary:
‘(Corollary 2)

All the solutions of Pell-1 and Llep-1 can, respectively, be expressed by the conjugate Chebyshev

polynomials as

Xn = T*24(t1)

Yn=wU¥spy (1), (2.62)
and

= T*m 1(r1)

8n = 851U* 302 (). ‘ (2.63)

O
Again notice that 1= #; and 5;= #;. Remark that x, and y, can be expressed by either (x;, 1), or (f1, ). As
an example Table 4 gives various ways for calculating the value of x; of Pell-1 with D=13, which are introduced

in this paper.
Table 4. Worked out example for calculating x; of Pell-1 with D=13.

(236)  x3=x10+ Dy yo = 649 X 842401+13 X 180 X 233640
(2.44) = 21 = 2 X 649 X 842401-649
(255) = Ty(x) = 4X649°-3 X 649
(2.67) = Te*(t) = 32X 18°+48 X 18%+18 X 18%+1
= 1093435849
x= x>+ D y;* = 649%+13 X 1807 = 842401
2= 2x1x02= 2 X 649 X 180 = 233640

y;can also be calculated to be 303264540.

In the first paper of this series the solutions (x1, y1) and (ry, s1) (if ever) of the Pell-1 and Llep-1 with
smaller D (<100) are given. All their family members can be obtained quite easily as in Table 4. The values of D
were classified into several types with respect to the form of the polynomial relation connecting (D, x1, y1). As
there have been found a number of interesting mathematical properties among the respective classes, discussion

of the family members of each class will diverge. Selected topics will be introduced elsewhere.
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Table 5. General expressions for giving the solutions of Pell-1, Llep-1, and Pellep-1 in terms

of Chebyshev polynomials

Peli-1 Llep-1 Pellep-1
Xn = Tu1) = T*2n(t1) Fn = T*op1(r1) t,=T*,(t)
Yn = Y1Una(x1) = w1 U* 9 (1) Sp=851U*302 (1) Uy = U¥py (11)

Although the relation (2.52) has already been known for Pell-1,” to the author’s awareness general
solutions of Llep-1 and Pellep-1 have not been reported yet. Then the new results in which Chebyshev and

conjugate Chebyshev polynomials are involved will be summarized in Table 5.

3. Analysis of Pellep-N

3.1. Characteristic properties of Pellep-4 solutions

One can extend the above discussion to generalized Pell equations, or Pellep-N. However, according to our
preliminary research neat general expressions for the solutions of Pellep-N seem to exist only for N=4. This is in
concordance with the fact that Pellep-4 has a key role in algebraic number theory.>>®

First we give the list of (x1, y1) and (71, s1) (if ever) for Pellep-4 with D<100 in Table 6. Let us compare
them with the corresponding results for Pellep—l.l) As a general rule which is applied to almost two thirds of the
cases, (x1, y1) and (r1, s1) (if ever) for Pellep-4 are just the double of those for Pellep-1. Those D values which do
not apply to this rule is printed in bold in Table 6. It is a natural consequence that there always exist Lle-p-4
solutions for D with Lepp-1, but for several D’s without Llep-1 new Llep-4 solutions (71, 51) come out as printed
also in bold. Note, however, that in this case (x1, y1) obey the general rule, i.e., twice the values for Llep-1. These
D values are also printed in bold. Other (x1, 1) and (1, s1) (if ever) values of Pellep-4 for D printed in bold take
rather smaller values than Pellep-1 solutions. For example, 10- and 9-digit (x1, y1) numbers for D=61 are lowered
down to 4- and 3-digits for Pell-4. Here we are not going into more detailed discussion, but it is to be remarked
that only in the cases with bold D’s there appear odd numbers in the solution of Pellep-4.

By following the procedures used in Pellep-1 analysis general expressions for the solutions of Pellep-4
were obtained as summarized in Table 7, where modified types of Chebyshev polynomials of the first and second
kinds, Cu(x) and Sy(x),”>'¥ are conveniently used together with their conjugate polynomials C*,(x) and S*,(x).
Cu(x) and S,(x) are related to T,,(x) and U,(x) as

Co(x) =2 T,(x/2) 3.1
$u(x) = Up/2), - (32)

and can explicitly be expressed by
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Table 6. List of (x1, y1) and (r1, s1) of Pellep-4
D 2 3 5 6 7 8 10 11 12 13 14 15 17 18
x1 6 4 3 10 16 6 38 20 4 11 30 8 66 34
1 4 2 1 4 6 2 12 6 1 3 8 2 16 8
" 2 1 2 6 3 8
s1 2 1 1 2 1 2
D 19 20 21 22 23 24 26 27 28 29 30 31 32 33
x1 340 18 5 394 48 10 102 52 16 27 22 3040 6 46
y» 78 4 1 8 10 2 20 10 3 5 4 546 1 8
ri 4 10 5
s1 1 2 1
D 34 35 37 38 39 40 41 42 43 44 45 46 47
x1 70 12 146 74 50 38 4098 26 6964 20 7 48670 96
v 12 2 24 12 8 6 640 4 1062 3 1 7176 14
r 12 6 64
51 2 1 10
D 48 50 51 52 53 54 55 56 57 58 59 60 61
x1 14 198 100 1298 51 970 178 30 302 39206 1060 8 1523
»n 2 28 14 180 7 132 24 4 40 5148 138 1195
1 14 36 7 198 39
1 2 5 1 26 5
D 62 63 65 66 67 68 6% 70 71 72 73 74
x1 126 16 258 130 97684 66 25 502 6960 34 4562498 7398
y1 16 2 32 16 11934 8 3 60 826 4 534000 860
" 16 8 2136 86
51 2 1 . 250 10
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D 75 76 77 78 79 80 8 8 84 85 8 87 88
x] 52 340 9 106 160 18 326 164 110 83 20810 56 394
yi 6 39 1 12 18 2 36 18 12 9 2244 6 42
" 18 9 '

S1 2 1

D 89 9 91 92 93 94 95 96 97 98 99
Cxp 1000002 38 3148 48 29 4286590 78 10 125619266 198 20
e 106000 4 330 5 3 442128 8 1 1275470 20 2
l 1000 11208

51 106 1138

See text for the explanation of D’s and (#}, s;) values printed in bold.

Table 7. General expressions for giving the solutions of Pell-4, Llep-4, and Pellep-4 in terms

of modified Chebyshev polynomials

Pell-4

Llep-4 Pellep-4

X = Cy(x)) = C*p(t)

Yo = Y1Sn1(x1)= u1S* 201 (81)

Pp = C¥2p9(r1) t, = C*y(ty)

Sp=815% 202 (1) Uy = u1S*n 1 (1)

Table 8. Modified Chebyshev polynomials of the first and second kinds,

1st kind 2nd kind
Co(x)=2 So(x)=1
Cix)=x Si(x)=x
Cox)=x*-2 S(x)=x*—1
CGx)=x-3x S =x-2x

C4(x)=x4—4x7‘+ 2

Cs(x) =% — 52+ 5%

Cs(x)=x—6x"+9x*-2

Six) =x* -3+ 1
Ss(X)=x"—4x*+3x

Se()=x"—5x*+6x"-1

C*,(x), and S*,(x) have exactly the same forms, respectively, as C,(x),

and S,(x) but with all positive signs.
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\n/2] (n—k

C,(x) = (_l)k_n_ )xn—Zk
z» n-k\ k (7>0) (3.3)

[n/2} n-k
S - _lk( ) n-2k
W) ZD( 0

Lower members of C, and S, are given in Table 8. All the terms of C*, and S*, have positive signs and their

(n20) . (34

absolute values are, respectively, the same as those of C, and S,,, Their definitions can be given by

{nr2] -k
C*"(x)=;,nik(nk )x"'”‘ :
s (>0) (.5)
|ni2} — k
S*,(x) = 2 (nk )x"’Zk
k=0 (n>0). : 3.6)

The recursive relations for the solutions of Pellep-4 were also obtained as in Table 9, where they are

compared with those for Pellep-1.

Table 9. Recursive relations of the solutions of Pellep-1 and Pellep-4

Pell-N Pellep-N
N=1 Lu Jn=2X fu1-fr2 T, U* Jn=2X o1 +f2
N=4 G S Jn =X fu-1-fu2 C*, §* Jn =X fu1+Su2

In these recursive relations x takes the smallest solution of Pell (x1) or Llep (#1). Then it is inferred from
Table 6 that only in the case of Pellep-4 with D=5 Fibonacci and /or Lucas series may appear in the solution of
Pellep-N, and it is actually the case. In Table 10 the solutions of Pellep-4 with D=5, 8, 13, and 20 (but not 21!) are
shown together with the graphs whose topological indices Z’s match these interesting series of numbers. This

17,18)

graph-theoretical interpretation of the Pell polynomial in terms of Z, which has been proposed by the present

author, will be the main topic of the next paper.

3.2. Other Pellep-N cases
Because it is still in a preliminary stage of study, only one point is to be mentioned here. For Pellep-9
most solutions are multiples of 3, but as in the case with D=7 new comers appear as follows:

2 _7x1’= 9, 532 _7x20%° = 9, etc. They will destroy the regular pattern like Pellep-1 and Pellep-4.
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Table 10. Families of solutions of Pellep-4 with D=5, 8, 13, and 20. The graphs are those whose topological

indices just correspond to x’s and y’s for each Pellep-4.

D=5 Fn=Fn1+Ffp2 D= In=2lp1tIn2

. 12osxi?=—4 ¢ —  22_gx12=-_4 ¢

o  32_5x12=a4 < *-8x2%=4 |
A 42 5y2-_4 _ A 142-gxs52=_4 U

O 7-5x3%=4 -~ I 342-8x12%= 4 LLI
O 112-5x52=—4 ~~ Y 82 8x20%-_4 LLLI
" D=13 Ju=3fp-1+l2 D =20 In=4Sn1+In2
v 2_13x12=-4 ¢ v £2_20x12=—4 ¢
o< 112-13x3%=4 >oe  182-20x4%=4 ¥

A 362-13x10°=-4 Wy A 762 -20x 172 =—4 WY
jj: 1192-13x33%= 4 yuy j:t 3222 _20x722= 4 VMY

ﬁ 3932 _13x 1092 =—4 yyvy j\ft 13642 20 x3052=—4  YYVY
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