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Abstract For a non-directed graph G composed of vertices and edges the topological index Zg has been
defined by the present author as the total sum of perfect and imperfect matchings. The Zg values of several
typical series of graphs have been known to be equal to Fibonacci, Lucas, and Pell numbers. In this paper
the solutions of Pell equation x2~Dy2=:N for special values of D with N=1 and 4 are shown to give these
series of numbers, which means that this is the first graphical or graph-theoretical interpretation of the
solutions of Pell equation. In this analysis the Chebyshev polynomials of the first and second kinds, 7, and
U,, together with their modified version, C,, and S,,, are involved. For any D with N=1 and 4, there were

found certain series of graphs whose Zg values just represent the solutions of Pell equation.

1. Introduction

‘We have been studying the mathematical structure of the solutiobns of Pell equation of various types,

or Pellep-N1 2) |

¥ —-Dy*=+N (Pellep-N), .1
especially for N=1 and 4. There i) regardless of the chaotic behavior of the solutions of Pell equation a
majority of D values can systematically be grouped into several types, and ii) the family of solutions for a
given D are explicitly expressed in terms of the Chebyshev polynomials of the first and second kinds.

On the other hand, the pfesent author has proposed the topological index ZG3'5) for characterizing a
graph which is composed of sets of vertices and edges, and has recently succeeded in clarifying
mathematical structure of various algebras related to elementary mathematics and number theory, such as
Fibonacci and Lucas numbers, Pell numbers, Pascal’s triangle, Pythagorean and Heronian triangles, etc®
Further, It was found that the solutions of Pell equations are closely related to the above-mentioned

numbers and mathematical concepts through Zg, representing some series of relatively simple graphs. For
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example, the families of solutions of (1.1) with N=4 and D=5 and 8 are nothing else but the Zg values of
the series of path, cycle, and some other graphs, which take Fibonacci, Lucas, Pell, and related numbers.
In this paper, the concept and algorithms relevant to the topological index Zg will be introduced, and
newly obtained graph-theoretical interpretation of the solutidns of Pell equation will be demonstrated.
Further, a novel role of Zg will be discussed as a new powerful tool for relating algebra and geometry.
However, before introducing the topological index, let us recall several series of numbers, such as
Fibonacci, Lucas, Pell, efc., which will play an important role in this paper, together with various series of

graphs. Those graphs will also be introduced here.

2. Series of Numbers and Graphs
2.1. Two classes of series of numbers

First define two sets of series of numbers which obey the following recursive relations

m=@D -1+ frz  (a=0-3) 2.1)
with the initial conditons as
ClassA: fy=1 and fj=a+l 22)
ClassB: fy=2 and fj=a+l. (2.3)
The numbers with a=0 in Classes A and B are, respectively, the Fibonacci (Fy,) and Lucas (L) numbers.
Note, however, that for Class A, different initial conditions are conventionally used as

fo=0 and fi=1 (conventional Fibonacci and Pell numbers). 24)

Table 1. Two classes of series of numbers.

a n 0 1 2 3 4 5 Class
0 F, 1 1 2 3 5 8 A
,, 2 1 3 4 7 11 B
1 P, 1 2 5 12 29 70 A
Q. 2 2 6 14 34 82 B
2 v, 1 3 10 33 109 360 A
Xy 2 3 11 36 119 393 B
3 W, 1 4 17 72 305 1292 A
Yn 2 4 18 76 322 1364 B
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Two series of numbers with a=1, Pell (P,) and Pell-Lucas (Qy) numbers,7’8) respectively, belong to
Classes A and B. Also in the case of Pell numbers the initial conditions of (2.4) are conventionally used.”
D The merit or advantage of the initial conditions (2.2) for Fibonacci and Pell numbers will gradually be
demonstrated. In Table 1 eight series of numbers from a=0 to 3 are given, where two more pairs of series
of numbers (v, x,) with a=2 and (wy, yp) with ¢=3 are added.

2.2 Various series of graphs

Path graph S, is the most fundamental series of graphs, which is composed of consecutively
connected n vertices with n—1 edges. By adding a unit edge to each of the vertices of S, one gets a comb
graph U,,.. Then by adding a pair and triplet of unit edge to each of the vertices of S, one gets, respectively,
graphs V,, and W,,. These four series of tree graphs are shown in Fig. 1

Although the smallest polygon is triangle, here let us define a series of “monocyle graphs” {C,}
beginning from n=1 | as shown in Fig. 1. C; may be called “digon” composed of a pair of vertices and two
edges connecting them. C, is not “monogon” without an edge but is equivalent to a vertex. These two
graphs do not seem to fit into the category of polygon, but later it will be shown that they smoothly fit
into the algebraic structure involved not only in Pell equation but also in other recursive relations treated
in this paper through the topological index Zg. The main bodies of the four series of graphs, C,, CU,, CV,,
and CW,, are non-tree.

In Fig. 1 the topological indices Zg’s of all the eight series of graphs are also given. It is to be
noted that all the Zg’s of tree graphs, S,, U,, V,, and W,, are, respectively, identical to the series of
numbers in Class A, F, Pn, vn, and wy,, while the Zg’s of non-tree graphs, C,, CU,, CV,, and CW,, are,
respectively, identical to Class B, L, Oy, X, and y,. No entry for =0 is defined in non-tree graphs, while
in all the tree graphs the entry for »=0 is vacant graph, whose Zg is unity by definition. The most
important conclusion derived from Fig. 1 is that for several well known series of numbers one can find
their geometrical counterparts as graphs. It will be shown that this is also the case with other series of
numbers if some mathematical condition is satisfied.

Then look at Fig. 2 showing the lower members of the families of solutions of \four Pellep-4 with
D=5, 8, 13, and 20 (but not 21!). Amazingly, all the non-tree graphs and numbers in Fig. 1 and #=0~4
members of tree graphs therein are appearing. A question arises. Do the solutions of Pellep-4 with any
other D value or of general Pellep-N or Pell—N have this kind of graphical or graph-theoretical
counterparts? At the present stage of our research the answer is yes at least for N=1 and 4. Now brief

explanation of Zg will be given. |
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n 1 2 3 4 5
S [ ] o *—a— [ o e e ] @il
" 2 3 5 8 Fy
u, | Ll Ll Ll
2 5 12 29 70 P,
Vo, ¥ WOy vyvyvy VVVVY
3 10 33 109 360 v,
W, V LW VYVV VVVY VVVVY
4 17 72 305 1292 Wy
cC, « <o A o O
1 3 4 7 1 L,
Uy 1o A ey
2 6 14 34 82 On
3 11 36 119 393 *n
CW, v >0< A ﬁ‘
4 18 76 322 1364  Yp

Fig.1 Various series of graphs derived from path (S,) and monocycle (C,) graphs, and their topological

indices Zg correspondihg to Fibonacci (F,), Lucas (L,), Peil (P,), Pell-Lucas (Q,) numbers, efc.



39

Pell Equation.Ill. Graph-theoretical meaning of the solutions of the Pell equation through topological index Z

January 2007

w4 0

1 '8 o "way) o) puodsariod

150l's 97 asoya sydes jo souas oy yim 1913803 ‘g Pue ‘¢ ‘g ‘G=q 10§ p-dafjed Jo suonnjos 7 Big

~ ARKA ¥ == £50€ X 0T~ ,¥9¢1 % ~

KRA ¥ =gCLx 07— ;T unn
—_ - u
po=gLIX0T- 9L vBU
L ¢ Po=gIX 0T g A )
NI:.\_ + 1Yy =Y 0c=d
n/
(" KA b= = /60T X €1~ ,€6€ wﬂm
MM b = EEX €1~ 4611 Hﬁ
u
A p—gixei-ee N o AD
> .VUNMXMN|NM~ >O<
b p=gIxelogE A
Ty T-Upe Up clI=a

[T v —=,62%8-,T8 \Q. J
Tl b =ZI%8— ¥t Hﬂ
u
b—=,5%x8- bl ,4\ > 110
| ¥ =%X8-79 o
L ¢ Ym=gx8-z  —
U T =Yy 8=a
(A~ TS XS Il )
z ALEEN©
v b =g£%XS-.L O
— pm=gZxs— 4y >"D

* 4 ”NMXW‘NM o

L ¢ rTEgxsT L T

T, Uty s=a




40 Haruo Hosoya NSR. O., Vol. 57

3. Topological Index

‘Graph-theoretical concepts used here are those which have conventionally been approved.u'”) All
the graphs treated here except for “digon™ are non-directed and simply connected. The number of ways
for choosing £ disjoint edges from a given graph G is defined as the non-adjacent number p(G,k).3’4) Here

p(G,0) is defined as unity for any G including vacant graph, and p(G,1) is equal to the number of edges of
G.

By using the set of p(G,k)’s for G the Z-counting polynomial Qs(x) is defined as

Q)= p(Gi 2
o= ZGh 3.1)

where m is the maximum number of &, or 7 = [N/2] with ¥ being the number of vertices of G. Total

sum of p(G.,k)’s for a given G is defined as the topological index Zg as

=3 (G k) Q1)
Z = 2 X . (2)

In other words, Zg is the total sum of perfect and imperfect matchings.

By using the adjacency matrix A and unit matrix I of the same size the characteristic polynomial for

G with N vertices is defined as'>'¥

Po(x) = (-1)" det(A -xT)_

(3.3)
For tree graphs the coefficients of Pg(x) exactly coincide with the set of p(G,k)’s as>?
N
PT (x) = zakxl‘l—k
= 2(’1)kP(T,k)xN‘2k (T :tree)
) (34)
and then we have
Zr = (_1)NPT @
=S| (T:tree)
anakl ' 65

For non-tree graphs Pg(x) can be expressed by the set of p(G,k)’s for G and its subgraphs obtained by
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deleting the component rings.l

For the series of S, and C, the p(G,k)’s are given by3’4)
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p(sn»k) = (

n~—

k

)

)

3.7

3.8

These numbers and Zg’s are given in Table 2. The general forms of Z-counting polynomials Qg(x)

Table 2 p(G,k) and Zg values of (a) path S, and (b) monocycle C, graphs

@ p(G,k)
n G =0 1 2 3 4 Zs
1 . 1 1
2 / 11 2
3 N 1 2 3
s N 1 3 1 5
5 /N 1 4 3 8
6 NV T 5 6 1 13
7 M\ 1 6 10 4 21
s MWV 15 10 1 34
() p(G.k)
n G kB0 1 2 3 4 Z
2 O 1 2 3
3 A 1 3 4
s [ 1 4 2 7
s O 1 5 5 1
6 O 1 6 9 2 18
;7 O 1 7 14 7 29
s O 1 8§ 20 16 2 47
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and Zg’s for these graphs are given by

o (n-k
Qs, (%) =§(nk ) xt

(9)
Qe,0=3=2("1) “ (3.10)
z,=050-5("") o
ST o

That Fibonacci numbers can be obtained by adding the elements of Pascal’s triangle has long been
known.'*1 However, its graph-théoretical interpretation including the meaning of each element of
Pascal’s triangle was first reported by the present author.4) Rotate Table 2a counterclockwise by 45
degree, and shift each row one by one, then a Pascal’s triangle will appear. From Table 2b another
triangle, namely, asymmetrical Pascal’s triangle will come out, which is obtained by adding a pair of

Pascal’s triangle.l6) Refer to Ref. 16 for its interesting mathematical properties and features.

Further, for U, and CU,, graphs, we have

B (n -k
Qun(x)-Z(nk )(l+x)""‘*x’t

(3.13)
Qey, (1) = Z;ﬁ("; )(Hx)"'”‘ < G.14)
Zy, = Quy () = 22"‘“(" ,:k) (3.15)
Zu,= Qe = 57557 @19

For the pairs of (V,, CV,) and (W5, CW,)) graphs one needs to replace (1+x) in Qg(x) with (1+ax) and 2

in Zg with 1+a. The reason for these tricks comes from the property of the counting polynomial Qg(x).

Although the definition of p(G,k) is simple, calculation for large graphs will knock against the wall of
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combinatorial explosion. To overcome this situation several recursive relations have been found and

worked out.** Here only the fundamental recursive relation for p(G.,k), Qg(x), and Zg are given.

P(G.k)= p(G - Lk) + p(GOLk ~1) ' (3.17)
Qs (%)= QG_[(x) +X QGGl(x) (3.18)
Zs =Zg 1+ Zgel, (3.19)

where G~/ is a subgraph of G obtained by deleting edge / from G, and further by deleting all the edges

which were incident to / one gets GOI. Several examples for using them will be given in Appendix.

4. Analysis of Pellep-4

Already in our analysis it was shown that all the families of solutions of Pell-4 and Pellep-4 can
generally be expressed in terms of the modified Chebyshev polynomials of the first and second kinds and

their conjugate versions as follows:

Pell-4 ’ Pellep-4
%, = Cy(x1) = C*n(tl)
Vn = Y1Sp-1(%1) U= 18%,1 (1) 4.1)

Although there have been proposed 'several different definitions, the following polynomials forms are

convenient in this discussion.

Modified Chebyshev polynomials: ' "'®)
|n/2) "y
C(x)= z (- n (”’ L )xn—zk
e .o =>0) @2)
|n/2} n-k
S”(x) = z (_1)"( § )xn~2k
2nd kind - (n20) )
and their conjugate forms,
C*, (%)= é‘:j _._'Z..(” - k)xn—zk
e RET e CY

' (2] gy — o
S* (x) = Z ( ‘ )xn-.
2nd kind =0 (n=0). 4.5)
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In Table 3 lower members of Cy,(x) and Sy(x) are given. Their conjugate forms are obtained just by

changing all the negative signs into positive ones.

It has already been shown by the present author that the Lucas L, and Fibonacci numbers F, can be

obtained from Cy(x) and S(x) as follows:'®
Co()=1"Ln, 4.6)
Sp(d) =1" Fy. @.7n

However, notice that the initial conditions (2.2) of Fy, are different from the conventional ones (2.4) but
shifted as explained before. These relations are more simply transformed into their conjugates as,
C*(1) =Ly, 4.3
S*y(1) = F, ' 4.9
Further, one can get interesting results by putting x=2, 3, and 4 into S*, and C*, as
S*4(2) = Py, S*4(3) =V, S*(4) =wp, (n=0) (4.10)
C*w(2) = On C*4(3) = Xn C*(4) = I (n>0). @1y
This means that S*,(x) represents the series of graph obtained by joining x—1 unit edges to each vertex of
graph S;,. This result is véry important for transforming the general algebraic solution of Pellep-4 into the

geometric representation. Then try to find the corresponding recipe for the solution of Pell-4.

Table 3. Modified Chebyshev polynomials of the first and second kinds

1st kind 2nd kind

" Cofx)=2 So(x) =1
Ci@)=x Si(x)=x
Cox) =x*-2 | Sax) =x*—1
Gx)=x-3x Six)=x-2x
Ci)=x*-4x*+2 Si)=x'-3x2+1
Cs(¥)=x"-5x+5x Ss()=x"—4x+3x
Cs(x)=x—6x*+9x*-2 Ss(x) =x°-5x*+ 62"~ 1

First prepare Table 4 giving the values of Sy(x) and Cy(x) for x=2~6. Both the series of numbers,

Syp(x) and Cy(x), with a fixed x value are found to obey the following recursive relation:

Jn=%fr-1—fn2- 4.12)
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By taking into account this relation it was not so difficult to obtain several series of graph whose Zg
values just correspond to the numbers given in Table 4. The results for Sy(x) and C,(x) with x=3~6 are
shown in Fig. 3, which gives us a hint for transforming the solution of Pellep-4 into geometry.

Now one can get the universal recipe for representing the family of solutions of Pell-4 and Pellep-4
both in algebraic and geometric (or graph-theoretical) forms. Once the smallest solution (x1, y1) for the
case with no Llep-4 solution or the smallest solution (1, uy) for the case of Pellep-4 is obtained, all the
family of solutions can systematically be obtained as numbers and/or gtaphs by using the recipe

illustrated as in Fig. 4.

Table 4. The values of S,(x) and Cy(x) for x=2~6

x= 2 3 4 5 6
S1(%) 2 3 4 5 6
S(x) 3 8 15 24 35
S3(x) 4 21 56 115 204
Sa(x) 5 55 209 551 1189
Ci(x) 2 3 4 5 6
Cax) 2 7 14 23 34
C3(x) 2 18 52 110 198
Cs(x) 2 47 194 527 1154

Although two series of non-tree graphs are involved in Fig. 4, they can be replaced by other series

of tree graphs, but of less symmetrical shape. Discussion of this problem will be given elsewhere.

5. Analysis of Pellep-1

In the preceding paper of this series?‘) the general expressions for the family solutions of Pell-1 and

Pellep-1are also given as

Pell-1 : Pellep-1

Xpn = To(1) t, = T*(t)

Yn =y1Un—l(xl) Up = Uy U*rhl (tl) s (5'1)
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X = 3 4 5 6
S L v X
3 4 5 6
—— .l MV vy
15 24 35
S, ()< 8 |
. . oo L 1.1 V.V.V y. V. V
1 56 115 204
e Lot 1.l M.V.V,y ¥Y.V.V.N
~ 55 200 551 1189
P

C ()<

O —O 4 > 5 > 6
<> 7 <>_4 23 34
<:> 18 {\ 52 <:§ 110 98

O

Fig. 3

»C”
Nl
SO e
47 194 X 527 1154

Eight series of graphs whose Z; just correspond to the values of modified Chebyshev
polynomials of the ﬁrstb(C,,(x)) and second (S,(x)) kinds given in Table 4.
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where 7, and U, are the Chebyshev polynomials of the first and second kinds, respectively, and 7*, and
U*, are also their conjugate forms. The explicit forms are not given here, because they are easily
available.! 1718 By doing similar analysis one can obtain the universal recipe for representing the family
of solutions of Pell-1 and Pellep-1 both in algebraic and geometrical forms but a little less symmetrical
than the case with Pell-4 and Pellep-4 (See Fig. 5). Anyway one can enjoy beautiful mathematics among
seemingly chaotic solutions of the Pell eqnation. Work is in progress toward the general Pellep-N

solutions.

Appendix
Fundamental recursive equation

For explaining the recursive relation of p(G,k) numbers two kinds of subgraphs, G—/ and GOI, of G
are necessary, which was already introduced in (3.17)-(3.19) as illustrated in Fig. Al. Recall that the
p(G,k) number is the number of ways for choosing £ disjoint edges from G. This number is the sum of the
two sets of counting, the one including a given edge / and the other excluding it. The former number can
be obtained by choosing #~1 edges from GO/, while the latter number is the contribution from graph G-1.
The first and second terms of the right-hand-side of (3.17) are, respectively, l-exclusive and l-inclusive
contributions. This idea comes from the inclusion-exclusion principle, which is one of the main principles
frequently used in the enumeration problems in discrete mathematics, such as graph theory and
combinatorics. In the case of Qg(x) the second term has a facfor x meaning that one edge out of k disjoint
edges is already reserved.

Let us show two examples for using these recursive relations. See Fig. A2a for comb graph, Uj.
Choose the central edge as /, and one gets a pair of Uy=S4 as G-/ and a pair of U;=S; as GOL Then we
have |

Quit) = [Qs4(®)I” +x [Qs2A1°
=1 +3x+x)° +x (1 +x)
=1+7x+135°4+7x° +Jc4
Zua=Zs4® +Z5)" = 57 + 2= 29,
which belongs to the Pell numbers.
Next consider gear graph CUy4. By choosing any edge forming a sqﬁare as /, .its G-I and GOJ,

respectively, become Uy and U;. Then we have



50 Haruo Hosoya NSR. O., Vol. 57

Qcu4(x) = Qualx) +x Qua(x)
=A+T7x+ 135475 +xY+x (1 +3x+ 1)
=1+8x+ 161c2+8)c3 +x4

Zecua=Zyus+Zy=29+5=34.

Worked out examples for the solution of Pell-4
See Fig. A3, where four series of graph, A,, B, Cp, and D, are shown with their Qg(x) and Zg.
Among them C, and D,, have already been introduced in Fig. 3, and actually the solutions of Pell4 with

D=21 (232—21x52=1 etc.). It will be shown here how these four series of graphs are related with each

other with the same type of recursive relation.

By applying the fundamental recursive equation of Fig. Al to A,~Dy, one can obtain the following

recursive relations:
Ap=A1Bp1+xAni (A1)
Bn=B1Bn1+xAni. | (A2)
B,=A1Cy1+xBp1. (A.3)
Cp=B1Cp-1 +xBy1. (A4)
D, =B,+xBy1.. (A.5)

Depending on the choice of edge / in graph G a number of different recursive relations can be obtained.
However, it will be shown that the above selection works fairly well for our purpose. By noting A)=1 + 2x

and B1=1 + 3x one can obtain the two sets of matrix representations from the pairs of (A.1) and (A.2), and

(A.3) and (A.4) as follows:

(A (x 1+2x\ (A,
B,/ \x 1+3x)\B,, (A.6)
and
B, x 1+42x\ (B,
Cn) =(x 1 +3x) Cn—l) (A.7)
Note that both the sets of simultaneous recursive equations have the same coefficient matrix.

2)

According to the recipe used in the former paper of this series™ one can obtain the following

recursive relation equally applied to A, By, and Cy;:
2
Ja=(+4x) fu1-% fn2. _ (A.8)

The relation (A.5) has a different type from the others. However, as will be shown below D, also obeys
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G-I GOl

p(G-1k) + p(GOLkI1)
Q¢ () + xQge; ()

— Zg_, | + Z o

Fig. A1 Fundamental recursive relation for p(G, k), Qq(x), and Z.
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Qgx): cuy = U + XUy

Fig. A2 Examples of applying recursive relation (Fig. A1) to obtain Qg(x) of cdmb and gear graphs.
Z; can be obtained by putting x=1 into Qg(x).
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the recursive relation (A.8).
(Proof of (A.8) for /~D)
By putting (A.5) into the following formula one obtains:
Dy—(1+45) Dyt + Dy
=By~ (1+3%) Byt —X(1+3%) By +x B3
=By~ (1 +4x) Byt +%* Bpo
o [Bp_i — (1 +4x) By +x° B3],
which is equal to 0 according to (A.8) for /~B. O
Since Qg(1)=Zg (3.2), the recursive relation of Z,, = Zg, for each series of graph can be obtained as
Zn=52Zp1—Zp3. (A9)
The above results could be obtained by several trial-and-error steps. However, by using the operator
technique developed by the present author they can straightforwardly be derived as follows: 2021
First define the stép‘-up operator
Of=fin, (A.10)
and assume that this operator commonly functions to A,~D,, as has been showh above. Then the set of
recursive relations (A.1) and (A.3)-(A.5) can formally be expressed as a set of simultaneous linear
equations
©O-xA, -(1+2x)B, =0
(0-xB, -(1+2x)C, =0
-xB, +[0-(14+3x)]C,=0

‘(6+X)B"+6Dn=0 (A.ll)

In order for the “variables” A,~D,, to have non-trivial solution, the coefficient determinant constructed
from the set of simultaneous linear equations (A.11) should be zero as
O-x —(1+2% 0 0

O-x  -0+20) 0 6@ [0 ~1+40)0 +x2]=0
0 -X O0-(1+3x) O

0 -(O+x) 0 o

(=

(A.12)
By applying the third factor of the operator polynomial (A.12) to A,~D,, one gets (A.8).

Although‘ this operator technique is not mathematically rigorous, a number of useful recursive
relations have successfully been obtained in the graph-theoretical analysis of various counting
polynomials for large polycyclic networks.2>? Anyway the structure of the determinant in (A.12)

clearly illustrates the mathematical structure and relations of the set of the series of graphs A,~D,.
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