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abstract?

Recently studies on asymmetric encryption schemes with proven security are very active. Among them,
RSA-based schemes are practically most important. As such we have, the most popular OAEP, OAEP+, SAEP,
SAEP+, REACT and so on. These schemes are proven semantically secure against adaptive chosen-ciphertext at-
tack (denoted IND-CCA , which is the strongest security) under the random oracle model, on the RSA assumption.
To assure the practical security theoretically, (for instance, to establish the security equivalent to the complexity
of 1024 bits-long integer factorization), we must quantitatively estimate the exact key size needed for each scheme
through the reduction. But this is not well studied until now. Therefore in this paper we estimate the exact key
size needed by each scheme in order to theoretically guarantee security, based on the precise evaluation of the
reduction efficiency. We compare the results among the schemes, and conclude that REACT is assured theoretical
security with the shortest (almost minimum necessary) key size.

keywords Public-key cryptosystem, RSA-based encryption scheme, OAEP, semantic security, proven
security, real security parameter

1 Introduction

The security of the public-key encryption schemes is classified to 9 levels by the combination of two
aspects, one the achieved levels (one-wayness OW, semantic security IND, non-malleability NM) and the
other the kinds of attack (chosen plaintext attack CPA, chosen-ciphertext attack CCA1, adaptive chosen-
ciphertext attack CCA2). In [1] it was shown that the strongest security NM-CCA2 is equivalent to
IND-CCA2. Thus an encryption scheme has the strongest security if it is shown to be IND-CCA2 secure.
We say that such an encryption scheme has proven security.

The most fundamental RSA or Rabin encryption schemes are not IND-CCA2 secure because they are
deterministic, hence never indistinguishable. The OAEP system [3] based on deterministic encryption
function such as RSA, satisfies IND-CCA2 under the random oracle model [2]. By replacing the ideal
random function in this model by a practical hash function, we can construct an encryption scheme with
established security in a practical sense.

Besides OAEP, there proposed are schemes OAEP+, SAEP, SAEP+, REACT etc. which are also
proven to have the strongest security IND-CCA2 under the random oracle model. It is not known, however,
which length of the key theoretically assures their security in the practical use. Thus in this paper, we
concretely evaluate the key lengths which assure the proven theoretical security to those practically
important encryption schemes based on RSA, such as RSA — OAEP (that is, the RSA cryptosystem
strengthened by OAEP) etc., and compare the results to see which scheme is most favorable.

1Currently The Japan Research Institute, Limited.

2Translator’s note: This is the translation of master’s thesis of the first author, who was my former student, written in
Japanese and submitted on January 2002, under the substantial supervision of the second author. Although its essential
part is already published under the same title in the Proceedings of SCIS2002 9A-3, it is also written in Japanese, and
there are repeated demands for citation of this work in English literature. So I decided to translate it. Considering the
general character of this journal, 1 preferred not the proceeding version but the original master thesis which contains
detailed explanation of the employed notion and cited results, hence more readable to non-specialists. I am grateful to Dr.
G. Hanaoka for encouraging this translation and giving valuable comments for the translated manuscript. (Akira Kaneko)
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2 public-key encryption schemes

2.1 Definitions
A public-key encryption scheme consists of the following three algorithms:

— Key generation algorithm K : On the input of 1%, K returns (pk,sk). Here k is the security
. | k

parameter, meaning the key length, 1% :=1---1, pk is the public key, and sk the private key.
This is a randomized algorithm, that is, the output changes randomly.

— Encryption algorithm £ : Given a plaintext m € {0,1}* and a public key pk, £ returns the
encryption ¢ of m. This may be deterministic or randomized.

— Decryption algorithm D : Given a cipher text c and a private key sk, D retul ns either the plain-
text mm or. “Reject”. This latter implies that the ciphertext is invalid and there is no plaintext
corresponding to it. This is a deterministic algorithm.

We assume that K, £, D all work in polynomial time.

2.1.1 Variety of attacks

The attack of the adversary A is divided to the two steps A = (A1, As) corresponding to before or
after she gets the ciphertext ¢*, respectively. These are a pair of randomized algorithms. If both A; and
Ay are polynomial-time, A is qald to be polynomial-time.

The kind of attack of the adversary A is classified to two big subclasses, passive and active attack A
passive attack tries to decrypt the target ciphertext ¢* from itself and the pubhc information. An active
attack makes several queries to gain further information, for example, sending another ciphertext and
obtaining its decryption.

The passive attack contains chosen-plaintext attack CPA. Here the adversary A can encrypt arb1trar11y
chosen plaintext. For public-key cryptosystem, this attack is inevitable because £, pk are publicized. The
active attack contains chosen-ciphertext attack CCA. Here the decryption oracle plays an important role.
He answers to any query of ciphertext, returns its decrypted plaintext in an instant. According to the
timing where A can use the oracle, CCA is divided to two subclasses.

Non-adaptive chosen-ciphertext attack, CCA1 admits .A; to make query to the decryption oracle, but
does not to Ay, namely, after A obtains the target ciphertext c*, she cannot use the decryption oracle.
On the contrary, adaptive chosen-ciphertext attack, CCA2 admits not only to .A; but also to As the

query to the decryption oracle. But of course query of the target ciphertext c* itself is prohibited. The
last one is the strongest kind of attack.

Remark 2.1 It may be imagined that such an attack as CCA might be very artificial and non-realistic.
But Bleichenbacher’s attack [4] is of this kind. In that attack the adversary A can, for every query of
the ciphertext c obtain a one-bit information of the decrypted result. If this attack could be generalized,
A could obtain the whole decrypted result. Such a generalization is still non-realistic. Since CCA2 is,
however, considered to be the strongest class of attacks, a cryptosystem which is proven secure against
CCA2 may be secure against any type of attacks in the future.

2.1.2 Security achievement level

Security achievement level of encryption schemes is classified to secrecy and non-malleability.. Secrecy
means the extent of hiding transported information. Its level consists of one-wayness, partial one-wayness

and indistinguishability. One-wayness is a basic requirement for any cryptosystem, and means the diffi-
culty of inferring the plaintext from the ciphertext.

Definition 2.2 [One-wayness] A public-key encryption scheme is called one-way, if there is no adversary
of polynomial-time computational power who cannot infer the plaintext from the given ciphertext with
non-negligible probability. More precisely, it is said to be (t,£)-OW if for any adversary A = (A1, A2)
whose computation time is limited to ¢, the success probability Succ®™ (\A) of the following is less than e:

Succ“”(.A) = Pr [(pk, k) « K(1%) : A(Ege(m)) = m).
mEM
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Figure 1: Semantic security against chosen-ciphertext attack.

A public-key encryption scheme is said to be partially one-way if it is difficult to infer some partial
information (e.g. some bit(s)) of the plaintext from the ciphertext. It is said to be semantically secure

if any bit or partial information of the plaintext is difficult to be inferred from the ciphertext. More
precisely,

Definition 2.3 [Semantic security] A public-key encryption scheme in which it is difficult to know any
partial information (other than the length) of the plaintext from the ciphertext, is said to be semantically
secure or indistinguishable. More precisely, it is called (¢, €)-IND if for any adversary A = (A1, A2) whose
computation time is limited to #, the following advantage Adv™™ (A) is less than &:

ind( 4y _ (pk,sk) « K(1F), (mq,my state) Ai(pk), 1 _
Adv™(A) =2 X bﬁl:{)g,l} [ c = Epk(my) : Ag(c,state) = ! ] 1

Here the length of my and m; is the same and fixed by A; from the space of plaintexts M. “state”
denotes the information possessed by Aj, such as pk. It is passed to As.

As is seen from this definition, deterministic encryption schemes, such as the simple RSA or Rabin
encryption, do not satisfy the indistinguishability. In fact, in case of deterministic encryption scheme,
for a pair of plaintexts m;, i = 0, 1, their encryption ¢; = & (m;) are uniquely determined. Hence, by
checking the ciphertext c equal to either of ¢y, ¢;, indistinguishability is obviously broken. Thus an
encryption scheme with indistinguishability should be randomized.

In the sequel we shall abbreviate (t,€)-OW to OW and (¢,)-IND to IND.

The non-malleability expresses the rigidity against manipulation of ciphertext to result intended mod-
ification of the original plaintext, such as bit reversion. This formalizes the impossibility of modification of
the ciphertext ¢ = En(m) to produce a relation f, that is, to work out €= £ (M) satisfying M = f(m).
We denote this property by NM. Non-malleability is known to be equivalent to the semantic security
under the adaptive chosen-ciphertext attack (see below). We therefore omit to give its precise definition.
They are not, however, equivalent in general.

2.1.3 Encryption schemes with proven security

As is seen from §2.1.1 and §2.1.2, the strongest security in public-key ericryption schemes is the non-
malleability against the adaptive chosen-ciphertext attack (NM-CCA2). This is shown to be equivalent
to the semantic security against the adaptive chosen-ciphertext attack (IND-CCA2) in [1]. We call an
encryption scheme proven secure under this setting “an encryption scheme with proven security”. Since
we only treat such schemes in this paper, we simply abbreviate CCA2 to CCA.

The definition of semantic security against adaptive chosen-ciphertext attack can be understood as
in Figure 1. First, the adversary A = (A1, A2) can query the decryption oracle at any time. A; chooses
two plaintexts mg, mj, and receives ¢ = £(my,) which is the encryption of either one (where b & {0,1}).
Since £ is a randomized algorithm, one cannot know which of mg, my is ¢ the encryption of. Thus with
the aid of the decryption oracle A; infers this, and as a result outputs b’ € {0,1}. If ' = b, A is said to
have succeeded in inferring under the semantic security. The success probability Succ™ (A) for that is

ind (pk,sk) «— K(1¥), (mg,m1 state) — Al(pk),
Succ™(A) = b<—-—{0 3 [ ¢ = Eg(mp) : Az(c, state) = : ]
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Since the definition of the semantic security is simpler than that of the non-malleability, we often prove
the security of an encryption scheme by showing IND-CCA.

2.2 Random oracle model

By assuming the existence of the random oracle model proposed in [2], an encryption scheme with
proven security and yet effective was first realized by [3]. This is the so called OAEP (Optimal Asymmetric
Encryption Padding). It was adopted in PKCS (Public-Key Cryptography Standards) #1 Version 2 as
the standard way to use the RSA cryptosystem, and employed in SSL (Secure Sockets Layer). There were
encryption schemes with proven security before OAEP, but they were ineffective and far from practical.

The random oracle model starts by assuming an ideal random function. First consider a hash function
(hereafter abbreviated as Hash) used frequently in the real encryption schemes. Its outputs seem appar-
ently random. But it runs by a uniquely defined deterministic algorithm whose design is publicized. Thus
an input z produces a uniquely defined output Hash(z), hence never random information theoretically.
This produces a difficulty in proving the security of an encryption scheme ermploying such hash functions.
A random function is the idealization of hash functions which returns information theoretically random
values. It cannot be realized. It consists of a big table containing the correspondence of the input and the
output, any output value is chosen randomly. We assume the existence of a virtual server (oracle) which
answers, on the query with an input value, the output value instantaneously. This is called a random
oracle, and a model using such is called a random oracle model.

The actual hash function Hash is shared by all the participants including the adversary A, by pub-
licizing its design, thus enabling for all the participants to share the pair of input and output. On the
other hand, in the random oracle model, anyone can query the oracle, which returns the same value to
everybody on the same query. Thus all the participants can share the pair of input and output just as
using Hash.

The proof of security of OAEP etc. is made under the random oracle model. Since the existence
of random oracle model is non-realistic, practical encryption schemes are constructed by replacing the
random oracle by practical hash functions. Then a scheme thus obtained is no more proven secure. But
it can be considered as an approximation of an encryption scheme proven secure, thereby with a kind
of assured security. In this way a random oracle model plays a role of bridge between the theory and
practice in the study of security of cryptography.

3 RSA-based encryption schemes with proven security

~ In this section, we consider the RSA-based encryption schemes obtained by combining the RSA
function with the five encryption schemes, OAEP, OAEP+, SAEP, SAEP+, REACT, which are proven
secure under the random oracle model. We briefly give their descriptions and then evaluate their security.

In either of these encryption schemes, the key generation algorithm computes the two primes p, ¢ and
their product N = pq (N is assumed to be k bits), and finally outputs (e, N) as the public key pk, (p, q)
or d as the private key sk. Precise conditions on the key generation are assumed to be common to all
RSA or Rabin functions.

The evaluation of the security is made by showing the semantic security against the adaptive chosen-
ciphertext attack. Here we assume that the adversary makes the query gg, ¢g and g times to each
random oracle G, H and H’, respectively. Also, we assume that in the adaptive chosen ciphertext attack,
the number of query made by the adversary to the decryption oracle is gp. If the adversary A breaks the
semantic security within the execution time t and the advantage Advi™(A) > €, she is called an adversary
breaking the semantic security in (t,€)-CCA.

3.1 Reduction of the encryption scheme to the RSA problem

The encryption schemes considered in this paper are proven secure by showing that, on the assumption
of the existence of an adversary A who breaks the semantic security by the adaptive chosen-ciphertext
attack within time ¢ and with the advantage at least €, we can construct B who solves the RSA problem
(or the factorization in case of encryption schemes based on the Rabin function) within time ¢’ and with
the success probability ¢’. Here ', € can be expressed in terms of ¢, e. Namely, if the RSA problem (or
the factorization) cannot be solved within time ¢’, and with the minimum success probability ¢’, then the
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Figure 2: Reduction from cryptosystem to RSA problem.

semantic security of the corresponding encryption scheme cannot be broken within time ¢, and with the
advantage not less than g, thus the security in IND-CCA is shown.

Breaking semantic security means to find which of the plaintexts mg, m; gives the object ciphertext
¢ with a probability greater than % An adversary A with the advantage £ is thought to have some
information for the plaintext corresponding to c¢. B, who wish to solve the RSA problem ¢* = z° mod N
passes c* as the target ciphertext to A who can break the semantic security. B himself simulates the
random oracle or the decryption oracle to answer A, and tries to obtain the solution z of the RSA problem
of ¢* from the response of \A. Then t' is the running time in which B executes these simulations and get
the solution of the RSA problem, and ¢’ is its success probability. Figure 2 explains this.

3.2 RSA-OAEP
Let G and H be the following random functions, where k = n + kg + k1.
G:{0,1}% — {0, 1}k F: {0,1}F % — {0, 1}%.
Then the encryption and the decryption algorithms of this scheme are as follows:
Eok(m;7): Given a plaintext m € {0,1}" and a random number 7 £ {0,1}*, it computes
s=(m|l0")® G(r), t=1r® H(s)

and outputs the ciphertext ¢ = (s||£)° mod N.
Dy (c): It computes (s,t) = c? mod N, then

r=t®H(s), M=s5&G(r).

If [M)x, = 0% it returns [M]", otherwise returns “Reject”. Here [M]x, and [M|™ denote the
lower k; bits and the upper n bits of M, respectively.

Remark 3.1 If f is a general encryption function, the f~OAEP based thereon cannot be proven secure
under the mere assumption of f being one-way ([9]). It is, however, proven secure for partial one-way
function f as is shown in the following theorem ([7]). This is limited to deterministic encryption functions,
and does not apply to randomized encryption functions such as ElGamal encryption.

Theorem 3.2 (Security of f-OAEP) Assume that there exists an adversary A who breaks the se-
mantic security of k bits f-OAEP by the qg, qg and qp times of query against G, H and the decryption
oracle, respectively, with (t,€)-CCA. Then there exists B who can output the set S containing the solution
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Figure 3: RSA-OAEP

of the partial one-wayness of the function f within time t. and with the success probability not less than
el. Here €., t. are specified, respectively, by

_2qpge+49p+496 24D

?
>
& =¢ 2ko k1 ?

t; <t+ quHTf + (QG +qg + QD)THasha

“where Ts denotes the time needed.for the computation of f, and THash denotes the time complexity of the
hash functions which we assume to be common and of O(k) (see §4.1 below).

In this way, OAEP is proven secure based on the partial one-wayness of f. Notice that the partial
one-wayness of the RSA function is equivalent with its one-wayness by the property of the RSA function.
Thus RSA-OAEP can be proven secure based on the one-wayness of the RSA function. The precise
evaluation in this case is as follows:

Theorem 3.3 (Security of RSA—-OAEP) ([7]) Letk > 2ky and assume that there exists an adversary
A who, by the qg, qu and qp times query to G, H and the decryption oracle, respectively, breaks the
semantic security of the k bits RSA-OAEP with (t,€)-CCA. Then, there exists B who solves the RSA
problem within time t' and with success probability not less than €’. Here, €', t' are specified, respectively,
by. .
2qpgc +qp + 2q 32
’ 2 dD4G T 4D T 4G . d9D
£2e _26( 2ko 2k 2k—2kn)’

t' < 2t +2g9cqaTrsa + 2(9c + g1 + qp)THash + g5 TL,

where Trsp denotes the encryption time of the RSA function, T, denotes the time complezity of the lattice

reduction algorithm needed to reduce the one-wayness of the RSA function to its partial one-wayness and
is estimated by O(k%).

3.3 RSA-OAEP+
Let G, H', H be the following three random functions, respectively, where k = n + kg + k3.

G:{0,1}" — {0,1}*, H':{0,1}*~* — {0,1}", H:{0,1} % — {0, 1},
Then the encryption and the decryption algorithms of this scheme are as follows:
Eok(m;r): Given a plaintext m € {0,1}™ and a random number r £ {0,1}*, it computes
s=meGE)||H (r||m), t=r&H(s), |

and outputs the ciphertext ¢ = (s]|t)® mod N.
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Figure 4: RSA-OAEP+

Da(c): It computes (s,t) = c* mod N, and
r=t® H(s), m=I[s"®G(r).

If (s]x, = H'(r ||m), then it returns m, otherwise returns “Reject”.

Theorem 3.4 (Security of RSA-OAEP+) ([9]) Assume that there exists an adversary A who, by
the qg, qm, g, qp times query to G, H, H' and the decryption oracle, respectively, breaks the semantic
security of the k bits RSA-OAEP+ with the advantage (t,€)-CCA. Then there exists B who solves the

RSA problem within time t' and with the success probability not less than €'. Here, €', t' are given,
respectively, by

€ gqum+gp  (gp+1)gc
2 2k 2ko

t' < t+qgeqaTrsa + (96 + qrr + qa + qp)THash,
Thash denoting the time complexity of the hash functions.

g >

3.4 Rabin—-SAEP

Let H be a random functiqn as follows, where k =n + k¢ + k1.
H:{0,1}* — {0,1}k%0,
The encryption and the decryption algorithms of this scheme are as follows:
Eok(m;r): It receives a plaintext m € {0,1}" and a random number r & {0,1}*0, computes
s=(m]|0") @ H(r),

then outputs the ciphertext ¢ = (s||7)2 mod N. »
Dy (c): It calculates (s,r) from ¢ by the same technique as the decryption of the Rabin encryption,
then computes
M =s® H(r).
If [M]k, = 0", then it returns [M]", otherwise returns “Reject”.

SAEP is the abbreviation of Simple-OAEP as can be imagined from its description. In the proof of

security of SAEP and SAEP+, Coppersmith’s algorithm plays an important role. We therefore introduce
here a theorem by Coppersmith.

Theorem 3.5 (Coppersmith) ([5]) Let N be an integer, and let f(z) € Zy[z] be a monic polynomial

of degree d. Then, there exists an efficient algorithm which allows to find all o € Z satisfying f(zo) =
Omod N and |xy| < N/,
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In the sequel we shall denote by T¢(k,d) the execution time of Coppersmith’s algorithm to find the
roots of a polynomial f(z) € Zn[x] of degree d, where k = log, N is the bit length of N. The complexity
of this algorithm is not given by Coppersmith himself in a concrete form available to us. For the case
d = 2,4 which we need later, it was shown by Uchiyama [10] that T¢(k,d) = O(k3).

Theorem 3.6 (Security of Rabin-SAEP) ([5]) Letn < k/4 and n+ k1 < k/2. Assume that there
exists an adversary A who, by the qu resp. qp times query to H resp. the decryption oracle, breaks
the semantic security of k bits Rabin-SAEP with the advantage (t,e)-CCA. Then there exists B who can

completely factorize k bits integer N within time t' with the success probability not less than €’'. Here €,
t' are given, respectively, by

' € 29p 2D
¢ 25 (1- 50 - 52),

t' <t+(gp + VgaTc(N,2) + qpTc(N,4) + (g + gp)THash,

Thash denoting the time complexity of the hash functions.

Remark 3.7 SAEP is not shown secure with general RSA function. It is shown as secure as Rabin-
SAEP only when small e’s such as e = 3 are used. In case e = 3, it can be proved secure for n < k/9
and n+ k1 < k/3. For typical k about the size of N in RSA function, the proof cannot apply because

of this restriction on the length n of the plaintext, which makes the secure use of this encryption scheme
difficult.

3.5 RSA-SAEP+
Let G and H be the two random functions as follows, where k = n + ko + k.
G:{0,1}*% — {0,1}%, H:{0,1}%0 — {0,1}* %0,
The encryptioﬁ and the decryption algorithms of this scheme are as follows:
Ex(m;7): Given a plaintext m € {0, 1}™ and a random number r & {0,1}*, it computes
s = (m|G(m||r) ® H(r),

and outputs the ciphertext ¢ = (s]|r)® mod N.
Dy (c): It computes (s,7) = c? mod N, then

M =s& H(r).

If [M]k, = G([M]™ || r), it returns [M]™, otherwise returns “Reject”.
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Remark 3.8 In the proof of security of RSA-SAEP+, things go like the case of RSA-OAEP. That is,
first the security of f~SAEP+ is proven for the partially one-way function f, then so is the security of
RSA-SAEP+ employing the one-wayness of the RSA function and its property.

Theorem 3.9 (Security of f—SAEP+) ([5]) Assume that there exists an adversary A who, by qg,
gg and gp times query to G, H and the decryption oracle, respectively, breaks the semantic security of
k bits f-SAEP+ with (t,&)-CCA. Then there exists B who can output a set S containing the solution of
the partial one-wayness of the function f within time t. and with the success probability not less than e.
Here g, t. are given by

rs€_Yrap | ap

“25-3(% )

ty <t + 4Ty + (46 + i + qp)Thash-

Theorem 3.10 (Security of RSA-SAEP+) ([5]) Let n+ky < k/2. Assume that there exists an
adversary A who, by the qc, qu, qp times query to G, H and the decryption oracle, respectively, breaks
the semantic security of the k bits RSA-SAEP+ with the setting (t,e)-CCA. Then there exrists B who can
solve the RSA problem within time t' and with the success probability not less than €. Here €', t' are

estimated, respectively, as
2
r< & _Efap | 4p 32
€273 <2kn tom Tt 2k—2kn> ’

t' < 2t +2¢cTrsa +2(gc + qm + ) Thash + ¢4 T,

where T, denoets the same quantity as in Theorem 3.3.

\%

3.6 Rabin—-SAEP-+

The technique of encryption and decryption is the same as RSA-SAEP+: The only difference in case
of Rabin—-SAEP+ is that Rabin function is employed in &, D.

Theorem 3.11 (Security of Rabin—SAEP+) ([5]) Let n+ k1 < k/2. Assume that there exists an
adversary A who, by the qg, qr, qp times query to G, H and the decryption oracle, respectively, breaks
the semantic security of the k bits Rabin-SAEP+ with (t,€)-CCA. Then there exists B who can completely
factorize a k bits integer N within time t' and with the success probability not less than &'. Here, &', t/
are given, respectively, by
’ € 4p 49D
T 12 2ke 2kt’

tl <t+ QGTRabin + QHTC(Nv 2) + (qG +qg + (ID)THash-
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3.7 RSA-REACT

Let G, H be the following random functions:
G:Zy — {0,1}, H:{0,1}* — {0,1}*=.
The encryption and the decryption algorithms of this scheme are as follows:
Epk(m;7): Given a plaintext m € {0,1}** and a random number r £z N, it computes |
et =r*mod N, c2=G(r})dm,

then makes
’ ez = H(r,m,c1,ca),
and outputs C = (c1, o, c3) as the ciphertext.
Dy (c1,c2,c3): It first computes r» = c¢ mod N, then gets

m=G(r) @ ca.
If e3 = H(r,m, c1,ca), then it returns m, and otherwise returns “Reject”.

Theorem 3.12 (Security of RSA-REACT) ([8]) Assume that there exists an adversary A who, by
the qG, qu, qp times query to the G, H and the decryption oracle, respectively, breaks the k bits RSA-
REACT with (t,£)-CCA. Then there ezists B which solves k bits RSA problem within time t' and with
success probability not less than €’. Here, €', t' are given, respectively, by

e, D

€ >e€ ok

t <t+qgeTxor + (9c + g )Trsa + (4G + g1 + gD )THash,
Txor being the time needed for the XOR operations.

Remark 3.13 REACT (Rapid Enhanced-security Asymmetric Cryptosystem Transform) proposed in
[8] applies not only to the deterministic encryption functions such as RSA, but also to the randomized
encryption functions such as ElGamal. Also, REACT admits the use of the symmetric cryptosystem
for EY™ with K = G(r) as the secret key to compute co = EF™(m). (Txor in the above evaluation
then corresponds to the time to compute cp.) The evaluation of the reduction from RSA-REACT to
RSA problem when £%™ is employed becomes a little more complicated (see [8]). Here for the sake of
simplicity, we adopted XOR . operation.

4 Evaluation of the efficiency of reduction

Now we evaluate the efficiency of reduction in each security proof introduced in the preceding section.

4.1 Basic strategy of evaluation

Let T = ﬁ be the computational complexity of the adversary A attacking each cryptosystem with
(t,€)-CCA. Let T' = ﬁ:— be the computational complexity of B solving the RSA problem (or computing
the factorization) within time ¢’ and with success probability /. By finding relation between 7 and
T, we can evaluate the efficiency of the reduction from each encryption scheme to RSA or factorization
problem. Before doing this, we give several remarks.

In the evaluations below, we let Thash, Tksa, TRabin a0d Tc(k, d) denote the computation time for hash
operation, RSA encryption, Rabin encryption, and Coppersmith algorithm, respectively, for k bits data.
Precisely speaking, Thash depends also on the output length. But here we assume that it depends only
on the input length. These are respectively 3, »

Thash = O(k), Trsa = O(k?), Trabin = O(k?), Tc(N,d) = O(k%).

3Translator’s note: ‘The RSA encryption key e is assumed to be short following the practical setting.
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Here d = 2,4, and k is of size N. We also denote by Tpe. the decryption time. This is
Toec = O(k?)

common to all the schemes. These are employed to find the ratio of the computation time. In the sequel
we assume that

Thash =k, Txor =k, Trsa =k,
TRabin = kza TC(Na d) = k37 Tpec = k3, Ty = k3.

The oracles employed in the random oracle model all return answers instantaneously. In practice,
however, there is no such oracle, as practical random oracles are realized by hash functions such as SHA.
Thus we consider that

Te =Ty = Ty = THash-

On the other hand, we understand that the decryption oracle is realized through the decryption by the
decryptor with the secret key. Hence, the computation time Tp of the decryption oracle is considered to
be

Tp = Tpec-

In the evaluation of efficiency, we take the worst case computation time of reduction from each
encryption scheme to RSA or factorization problem. This means that each evaluation formula for t’ is
the worst. For example, for RSA-OAEDP, it means that t’ < 2t + 2gcquTrsa + 2(¢c + gz + qp)k + ¢4 k>
becomes biggest, that is, the term g%k which influences #' most, becomes biggest. Since this is the case
when g becomes biggest, this amounts to assuming that the adversary A continuously queries the H
oracle during the time ¢. On the other hand, we assume that the query to G oracle is minimal, that is,
only once. Namely, in RSA-OAEP, we assume that

t = qgTH = qaTHash-

Thus we can evaluate as

qg = ) (JG=1-

THash
Discussing similarly for the other encryption schemes, we can obtain the following estimates:

t
RSA-OAEP+ g =qg = 2TH h, qy’ = 1’
: as

t

Rabin-SAEP : ¢qg = ,

THash
RSA-SAEP+ : g = , ge =1,

THash
Rabin-SAEP+ : ¢y = , gqe =1,

’ THash
RSA-REACT : g¢o=qu = ——.
2THash

On the other hand, we may assume that .A can continuously query the decryption oracle during the
time t: hence, t= qDTD = qDTDeC:« that iSﬁ

t
TDec )

qD =

The values of the parameters ko, ki, ko are assumed to be sufficiently bigger than log, ¢pgq etc., hence
4B5ia | for example, is small enough to be neglected. Also, the terms of O(k) such as (96 + qu + ap)k
in the evaluation of reduction time from the encryption schemes to RSA or factorization problems, are
small enough in comparison with terms of O(k?) or of O(k?) like ggTrsa or quTc(k,2). Hence they are
neglected in the evaluation below.
Following these strategies, we now actually seek relations between T = ﬁ and TV = -:i, for each
encryption scheme.
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4.2 Evaluation of efficiency of reduction for RSA-OAEP

T < 2f+2quHTR5A+2(qG+qH+qD)k+q%{k,3
26(2§D§('+QD+QQ + 2g9p + o 2}4])

‘2k1

= ?{27‘, +2gcqaTren + g5k}

t A 2,
Trsa + < ) K3
THash RoA THash }

2 Trsa K8 5
= - T
€ <1 N THaSh)T M T}%ash

=—13{2t+2-1-
[

2
= g(1+k)T+kT2 =kT? + §(1+k,)T.

4.3 Evaluation of efficiency of reduction of RSA-OAEP+

t +qcquaTrsa + (96 + qu +qmr + QD)k
T'= ¢ _smtap _ (ap+Deg ~ (t + geqaTRrsa)
2 2Fk1 2F0

2 t t- Trsa Trsa o
=2y T } =2 T = 2T T
a{ + (QTHash) RSA T -+ QTﬁash -+ 2T525h5

=97 —T2=_ 24+ oT.
+2s 2e—:T—I—

4.4 Evaluation of efficiency of reduction of Rabin—-SAEP

Since we assumed that Tc(k, d) = O(k%) = k® irrespective of the value of d, we shall write T¢ for both
Tc(k,2) and Tc(k, 4).

T < t+(qp+1)qHTc(A 2)+gpTc(k,4)+(ga+qp)k

(142 - 22)
12
= ?{t + (¢p + 1)quTc + qpTc} = ?{t +agpgaTc + (ga + qp)Tc}
12 t t

t t
= —3t+ : Tc+ ( + )T }
€ TDec THash ¢ THash TDec ¢

- 12{1 + TDetc' I;Hash N <THlash TDec)TC}T

= 12{+ (e + ) T T+ g

=12(1 + k? +1)T+B T2 = 125T2+12(k2+2)T.

k k

eT?

4.5 Evaluation of efficiency of reduction of RSA-SAEP+
e 2 2qGTR5A +2(g6 + qH +gp)k + ¢4 K>

- (zkn 2‘»1 '2—"127;)-)

4
= g{zt +2¢6Trsa + ¢4k}

- %{2,54-2- 1-Tksa + (T:ash)2k3}

.3 8k2
8T+ — Trsa + 4; 72 =874 %kz +4kT? = 4kT? + T+ —
THash € €
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4.6 Evaluation of efficiency of reduction of Rabin—-SAEP+
7 < b+ 46T Rabin + quTc(k,2) + (96 + g + qp)k

£ _ 49D __ 49D
12 2kn 2k1

12
= —E(t + QGTRabin + QHTC)

12 t ¢ 12
== (t + 1+ TRabin + ———Tc) = 12(1 + —g——)T + —TRabin
€ Thash THash €
12 k2
12(1+ kAT + ?kz =12(k* + )T + 125 )

4.7 Evaluation of efficiency of reduction of RSA-REACT

<t qcTxor + (96 +qu)Trsa + (qc+qu+ap)k
< P

) 1 " TRsa
= ={t =—{¢ -

2t (g amTron) = 2 (64 7—Tisa) = (1+ 722)7
=(1+kT=(k+1T.

5 Evaluation of key length

In this section, under the setting that all encryption schemes have the same level of security, we

evaluate their key lengths, that is, the size of the RSA or factorization problems to which they are
reduced.

5.1 Fundamental strategy for evaluation

If the computation time T of the adversary A defined in §4 is practically intractable, the encryption
scheme will be secure. We evaluate the length of the secure key under this hypothesis. Here we choose as
this computation time T the one corresponding to the factorization of 1024 or 2048 bits integers, which
are now admitted as practically infeasible. The computation time necessary to factorize the integer N

of the public key of RSA cryptosystem by the general number field sieve method, now thought to be the
fastest, is

exp { (%) 1/3(log N)Y3(loglog N)?/3 }

Thus we apply this to N = 21024 22048 354 let the computation time T represent this.

By substituting this 7' to the evaluation formulas deduced in §4, we find the computation time 7"
to solve the RSA or factorization problem reduced from each encryption scheme, and then consider the
intractability of the computation time T thus obtained. Here we are assuming that there is no means
other than factorization to solve the RSA problem, and seek the bit length of the integer of which the
computation time for the factorization is equivalent with 7".

The size k thus obtained is the key length minimum necessary for each encryption scheme to have
the same level of security as the factorization of 1024 or 2048 bits integers (that is, the computation time
T). In fact, if k* > k, then assuming the existence of the adversary A who breaks the encryption scheme
of key length k* by computation time 7T'. it would break the k* bits RSA problem by computation time
T’. Then by the assumption that there is no other way than factorization to solve the RSA problem,
it would follow that A succeeds in factoring k* bits integer with computation time 7”. Since, however,
T’ is the computation time for the factorization of size k integers, the factorization of size k* > k would
need computation time bigger than 7”. This is a contradiction. Thus if k* > k, the existence of such

. adversary A is disproven, and the security of the encryption scheme is proven.

5.2 Results

We computed the necessary key length of the RSA or factorization problem reduced from each
encryption scheme to have the same security as the 1024, 2048 bits integer factorization, according to
the evaluation of the efficiency of the reduction made in §4. These are listed respectively in table 1 or 2.
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f value of H 1 l 260 | 280 I 2—120 | 2~ 160 I
RSA-OAEP 6221 | 6221 | 6223 | 9443 | 14285
RSA-OAEP+ || 5179 | 1874 | 1190 | 1052 | 1052
Rabin—-SAEP 4647 | 1857 | 1856 | 1856 1856
RSA-SAEP-+ || 6387 | 6387 | 6477 | 15568 | 30000
Rabin-SAEP+ || 1856 | 1856 | 1856 | 3536 | 6447
RSA-REACT || 1330 | 1330 | 1330 | 1330 1330

Table 1: Key length necessary to have security equivalent to 1024 bits factorization, with respect to our
reduction estimation.

| valueofe 1 260 [ 2-80 [ 9=120 [ 9-160

RSA-OAEP 12452 | 12452 | 12452 | 12985 | 18761
RSA-OAEP+ || 10725 | 5196 | 3867 | 2092 | 2090
Rabin-SAEP 9773 | 4663 | 3470 | 3351 | 3351
RSA-SAEP+ || 12704 | 12704 | 12704 | 15568 | 30000
Rabin-SAEP+ || 3351 | 3351 | 3351 | 3545 | 6447
RSA-REACT || 2547 | 2547 | 2547 | 2547 | 2547

Table 2: Key length necessary to have security equivalent to 2048 bits factorization, with respect to our
reduction estimation.

6 dependency of the key length on ¢

In §5, for preassigned complexity T. we found the key length for each encryption scheme against
which there is no adversary A breaking its semantic security with (t,£)-CCA. But the evaluated key
length varies with . Here we consider this problem.

As is seen from table 1, table 2, we can classify the dependency of the key length on the value of €
needed by each encryption scheme. The first group consists of those which need longer key as € becomes
smaller, like RSA-OAEP, RSA-SAEP—+, Rabin—-SAEP+. The second group, on the contrary, consists of
those for which the necessary key length becomes shorter as € becomes smaller, such as RSA-OAEP+,
Rabin—-SAEP. The third group consists of those for which the necessary key length does not depend on ¢,
like RSA-REACT. Here we consider the first two groups in which the key length varies depending on €.

6.1 The case where necessary key length decreases with ¢

We first consider RSA-OAEP+, Rabin-SAEP to which the key length assuring the security becomes
shorter as & becomes smaller. Note that in general, the transformation of (¢,£)-CCA to (%, £)-CCA is not
necessarily guaranteed. In fact, if we transform an adversary A which breaks the semantic security with
(t,€)-CCA to (%,e*)-CCA by Gimply stopping with execution time I, then by the assumption that A is a
blackbox, it may be possible that e* < £. Now that the tran%formatmn from (t,e)-CCA to (£, £)-CCA s
unexpectable, in order to assure the non-existence of the adversary who breaks with all (¢, €)- CCA by the
computation time T = £, we need to adopt the key length in case it is the longest (¢ = 1). For example,
for RSA-OAEP+ in table 1 with the key length 1190 we can assure the non-existence of the adversary
who breaks the semantic security with (s5v, 7 )-CCA, but cannot with (5%, z4)-CCA or with (T, 1)-CCA.
On the other hand, with the 5179 bits key length we can assure the non-existence of the adversary who
breaks all (£,1)- CCA (¢ > 1) with the same computation time T'.

6.2 The case where the key length increases as € becomes smaller

We next consider those encryption schemes, such as RSA-OAEP, RSA-SAEP+, Rabin—-SAEP+,
for which the key length assuring the security increases when ¢ becomes smaller. Note that the ¢ times
repetition of (£, £)-CCA adversary obviously gives rise to (¢,&)-CCA adversary. Thus, for these encryption
schemes, when ¢ is small, we may give better (shorter) estimate for the key length to disprove the existence
of an adversary breaking semantic security with ( £)-CCA, by repeating the reduction of each encryption
scheme to the RSA problem ¢ times, than the dlrectly evaluated key length necessary to dlqprove the
existence of an adversary who breaks the semantic security with (¢, g)-CCA.
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6.2.1 Examples

Now we explain the above principle by the example of RSA-OAEP. First, let € <« 1, and consider
an adversary who repeats ¢ times (¢ > 1) the reduction from RSA-OAEP to the set S containing the
solution of the partial one-wayness of the RSA problem. We shall show that in this case, repeating c
times the reduction from (£,£)-CCA is really more efficient than doing the reduction only once from
(t,e)-CCA.

The reduction from RSA-OAEP to the RSA problem, as mentioned in §3.2, is executed as follows:
First, using the adversary A who breaks (¢, €)-CCAwith success probability €/, and time t,. we reduce the
problem to the one finding the set S containing the solution s* of the partial one-wayness of the RSA
problem (where che = (s* ||t*)¢), and then using the property of RSA function (random reducibility), we
end up by finding the solution of the RSA problem (s*||#*). Here,

_ 29pgec+qp +49c 29D

!
g€ 2ko ki’

te < t+qeqaTrsa + (4c.+ qu + qp)k-

As mentioned in §4, we assume that 432 etc. are small enough compared to €, hence can be neglected.

Also, (g + gz + qp)k = O(k) is small enough compared to ggqrTrsa = O(k?), and negligible. Then,
we can write as

es >, te<t+qeqaTrsa-
From this, we see that if the adversary .A breaks the semantic security of RSA-OAEP with (£, £)-CCA,
then the success probability e;“] and the time t;m with which B finds the set S [1], is evaluated as

£ t
et > o #l < ‘c“"qG(IHTRSA-

Then, B, by repeating ¢ times the reduction to this set S, will obtain the set S'9 with success probability

2 and the computation time £ [ as follows:

ed=c el >e, #M=c-t)<ttc goquTrea

Here, too, we are assuming the worst case of the reduction, hence, the adversary A adopvts the strategy
with which the reduction time to B becomes the worst. In order to make t;[c] the biggest (that is, to
make gaqm the biggest), A is assumed to make as many queries as possible to the oracles G, H within
time . Thus in view of £ = q¢T¢ + quTr = (q¢ + qi)THash We assume that g¢ = qg = me—as: Then
the time £.19 can be written as
t*  Trsa

2
Troa =t + — -
) RSA +4c T|-2|

t
tld=t4ec. (
2cTHash

ash

On the other hand, the success probability ¢’s and the computation time ¥'s of B who, employing the
adversary A of (f,&)-CCA, finds the set S, are evaluated by

Es=¢, Us<t+qequTrsa

As before, the adversary A of (t,£)-CCA, in order to make the reduction time 575 biggest, takes, the
strategy t = ¢eT¢ + quTH = (9c + 91 )THash- Namely, we assume that gg = gy = ETTQ Therefore, this
time 7' s can be written as

,

2T Hash

2 t*  Trsa
) Trop =t + — - .
4 Tl-zlash

%75=t+(

Let now Red!9 denote the c-times repetition of the reduction of finding the set containing the solution
of the partial one-wayness employing (E, £)-CCA. and Red the same with only one reduction employing
(t,€)-CCA. If we compare the reduction efficiency of Red ] with @, we have s;[c] = s, but t;[c] <t
Hence Red!d is more efficient than Red in reduction. Since the efficiency of reduction from the set

containing the solution of partial one-wayness to the solution of RSA problem is the same, Red! has
better efficiency for B to solve the RSA problem. Thus the key length necessary to theoretically assure
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[ valueofe | 1 | 2750 | 2-80 2120 [ 9-1607]
| RSA-OAEP || 6221 [ <6221 | <6221 | 6221 | 6221 |

Table 3: Key length necessary to assure the same security as the 1024 bits integer factorization with
respect to our reduction estimation, in case of repetition of reduction.

L ” 1024 bits l 2048 bits ]
RSA-OAEP 6221 12452
RSA-OAEP+ 5179 10725
Rabin-SAEP 4647 9773
RSA-SAEP+ 6387 12704
Rabin-SAEP+ 1856 3351 -
RSA-REACT 1330 2547
Case where reduction is ideal 1024 2048

Table 4: recommended key length to assure the same security as 1024/2048 bits integer factorization,
with respect to our reduction estiamtion

the security of RSA—~OAEP, can be made shorter in the case of ¢ times repetition of the reduction to the
set containing solution of partial one-wayness employing (£, £)-CCA, than in the case of once reduction
employing (t,e)-CCA. Therefore the key length of RSA~OAEP in table 1 can be transformed as in the
table 3. ‘

As is seen from table 3, the key length needed to assure the security of RSA-OAEP is the longest
when € = 1. By the same argument as in the case of §6.1 where the key length becomes shorter as e
becomes smaller, this implies that in order to guarantee the non-existence of any adversary who breaks
the semantic security of RSA-OAEP of computational complexity T with (¢, €)-CCA, we should adopt the

longest key length corresponding to € = 1. The same argument applies to RSA-SAEP+, Rabin—-SAEP+,
to conclude that we can adopt the key length for the case e = 1.

Remark 6.1 Here in order to let t;["], #'< have the worst values, we discussed assuming that qg =g =
2—&—%': (a = ¢, 1, respectively). Comparing with gy = aTiash , g = 1 given in §4, however, the reduction
time differs by at most a small constant multiplier, and the key length by at most several bits.

From the above discussion, we conclude that in order to disprove the existence, for any complexity

T = % and with any (t,e)-CCA, of an adversary A who breaks the semantic security, the necessary key
length can be estimated from the case € = 1 for any scheme.

7 The key length which assures security

From the discussion of §6, we deduce the following table 4 of recommended key length which assures
the same strength of security as the 1024/2048 bits integer factorization for each encryption scheme.

The value of key length given here is the minimum necessary assured length for each encryption
scheme to have the same strength of security as the 1024/2048 bits integer factorization. Therefore one
may adopt keys longer than those values given in table 4.

Also, if the reduction of the encryption scheme proven secure is ideal, the computational complexity
T of the adversary who breaks the semantic security of the original encryption scheme, is equal to the
computational complexity 7" of solving the reduced RSA problem.

Furthermore, by using the evaluation of reduction efficiency found in §4, we can conversely evaluate
the security level of each encryption scheme when the 1024/2048 bits key length is employed. Then
by setting the computational complexity of the k bits RSA problems 7" to that of the factorization of
1024/2048 bits integers, and by finding T" from there, we can see the difficulty of breaking each encryption
scheme measured by the bit length of the integer factorization equivalent to it. Table 5 shows this result.
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| adopted key length || 1024 bits | 2048 &> + |

RSA-OAEP 169 338
RSA-OAEP+ 225 428
Rabin—-SAEP 256 481
RSA-SAEP+ 160 324
Rabin—-SAEP+ 499 1152
RSA-REACT 774 1625
case of ideal reduction 1024 2048

Table 5: Bit length of integer factorization equivalent to the complexity of encryption scheme with
1024/2048 bits key, with respect to our reduction estimation.

8 conclusion

As can be seen from table 4, among the RSA-based encryption schemes proven secure, the key lengths
necessary to supply theoretically assured security much differ depending on its efficiency of reduction.
Especially, RSA-OAEP has worst efficiency, and far from its naming “optimal”. 'On the other hand,
RSA-REACT has the most efficient reduction and assures the same security with the minimum key
length.

Our evaluation of security of each encryption scheme is very natural, so will not be able to be improved
drastically.

We remark that when we use e = 3 in RSA function, the efficiency of the reduction becomes much
better compared to the case of general e. For example, RSA-SAEP+ has bad efficiency of reduction for
general e, but for e = 3 it has the same efficiency with Rabin—-SAEP+, hence, security is assured with
the same short key length. Also, according to [9], RSA-OAEP+ allows very efficient reduction for e = 3.
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Appendix
A (%,£)-CCA and (t,£)-CCA

When ¢ is small, simple c times (¢ > 1) repetition of the adversary A of (%, £)-CCA never gives (t,)-
CCA. This is the reason why we evaluated in detail the ¢ times repetition of the reduction of (%, £)-CCA
to the partial one-wayness in §6.2. In this section, we evaluate the advantage of the c-times repetition of -
(%,£)-CCA for comparison. )

An adversary A of (%, £)-CCA, breaks the semantic security of the encryption scheme within time
£ and advantage at least Advi™(A) = £, that is, she can succeed to correctly answer the problem of
determining which of myg, m; is the plaintext for ¢ with success probability Succ™(A) as follows:

nd, 1 AV(A) 1 e
Succ (A).-2+ 5 =5+5
If we repeat this ¢ times, we understand that the final answer is the majority of the ¢ answers
v'¢ € {0,1}¢ given by A of (£,£)-CCA. In case the frequency of b’ =0 and b’ =1 is the same (§ each),

we determine the final answer to be 0 or 1, each with probability 3. Let Succ™(A¢) be the success
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probability of this. It can be written as

Succ™(A°) _sz () . (%4__26_6)2 (_;_ _ i)c_i.

»L—.G

1 =¢
w; = { 2 (l %;
1 (i#3
Assume now that ¢ is small enough and c is even. Set § = £ for brevity, and assume that it is also small
enough. Then, we can write as

sweda = (§)-(5+3) (-5 =T (9) O3 E0

i=%

Here w; denotes

sz () (1 +i6){1 - (c—1) 5}~—Zw, (§)~{1+(2i—-c)5}.

1'—_c

In view of

we deduce from this that
a4y o LIS~ () oS (€) . (2 —
Succ™(A%) 20{;101 i +;1UZ ; (24 c)(5}
= 1 &< c .
—1—21111 <) (21—c)6}-§+§ w; - (z) (2t - c).

i=£

Here, we have

(5)‘(2i—c)=2i de=1)- z.<°"+1>_c.(;?)=z.0<0‘1>(;_'<f)!‘”1>—c.(;‘)
() e (e () ()

whence, we can rewrite the above as

it gey o L 0 c=1) _(e\y_ 1, @8~ (TN 5w ()L
Succ™(A%) 2—0—2C.ng1 @2- i1 i)—2+2c{22u}1 i1 zwz ; }
1,_-.:2 . 7,=2 ’I.=2

Now we have

and also,

Thus we obtain

swem 321 (5 +50) -5} =348 ()
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In view of the asymptotic valiie given in §B below, the success probability of A€, the ¢ times repetition
of A of (£,£)-CCA, in the infer in semantic security, Succ™ (A), is finally given by

1 06 2¢=1 1 €
S ind A¢ - .2 _ _ = =
w3t m T vk
Thus the advantage Advi™(A¢) of A€ thereby is
1 5
Ad ind ¢ 2. =
VA = ( 2V/c ) 1 Ve

Since the whole execution time is equal to ¢- £ = ¢, the c times repetition of A of (f, £)-CCA is translated
at most into (¢, %)-CCA.

B Approximate value of (7:11)
2

In this section, we deduce the asymptotic form of (” 1) used in §A. In view of Stirling’s formula

- 1
nl ~ V2w e "2,

and of the fact (1 - 1)* ~ 1 we have

(n— 1) _ (fn=1) Ver e”("”l)(n 1)»=%
5-1 (-3 _\/2—7re‘%+1( 1)—_ V2T e 3(125)%+%
_ 2 (-1  jn=-2 2" (1- ;)n o n—2
Var (n—-2)%n3*3 Vn-1" vom (1-2)% Vn-1
omn 1 gn-—1 gn—1 '

Y Ve ez vm - Jm
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