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Pell Equation. I. Systematic classification of the solutions of
the Pell equation

Haruo Hosoya and Noriko Asamoto
(Received April 10, 2006)

Abstract Let the smallest non-trivial solution of Pell equation, > — D 3* = 1, be denoted by (x;, y1). The Pell
equations for D were systematically classified into several types with respect to the form of the polynomial relations
(PR’s) among (D, xy, y;). The key strategies for this analysis are the value of y, and form of the continued fraction
expansion of Jl_) . Among the solutions of Pell equation with D below 100 only four D’s were found to have no
other D below ten thousand connected through a PR. All the PR’s were shown to be derived from a pair of the
“master equations”. The results obtained in this paper show an effectiveness of the proposed strategies for the

systematic analysis of the chaotic behavior of the solutions of Pell equation.

1. Introduction

In this series of papers Eqns. (1.1) and (1.2) will simply be called, respectively, Pell and Llep.
¥-Dy*=1 (1.D)
¥-Dy*=-1 1.2)

where only non-negative integer solutions (x, y) are to be sought for square-free DIV Pell has an infinite
number of solutions for any D besides the trivial solution (x=1, y=0), whereas Llep has solutions only for
a limited number of D. The smallest pairs of non-trivial solutions of Pell and Llep (if ever) will be
denoted, respectively, as (x, y1) and (r, 51).

Several algorithms for solving both equations have been known, and the solutions of the Pell-like
equation,

¥ -Dy =N, | (13)

are involved in these processes, where N is either a positive or negative integer. Here let us call (1.3) G-
Pell, meaning a generalized Pell’s equation, or Pell-N. The continued fraction expansion (CFE) of the
square root of any D,JB, is known to be periodic, and has an important role in solving (1.1-1 .3).6’10)

Once (x;, y1) and/or (ry, sy) are obtained for a given D, all the larger solutions can be derived by standard
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Fig.1. Chaotic behavior of y, value against D of Pell equation. All the points except for the four stars

were found to belong to some polynomial group as shown by a few smooth curves.
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recipes. Although the essence of the charm of Pell and Llep lies in the chaotic behavior of their solutions
as shown in Fig. 1, where logarithms of the values of y;’s are plotted against smaller D, no systematic
survey for the polynomial relation (PR) among the solutions of Pell and Llep seems to have been
reported.'” Namely, there have sporadically been documented the PR’s only for very small y;’s and s,’s
or for special groups of D’s.%: 7+ 10 12-19)

The purpose of the present series of paper is to find global mathematical structure of the solutions
of the families of Pell and Llep by scrutinizing the lists of (x;, y1)’s, (#1, 81)’s, and CFE of JD . In this
paper the solutions of Pell and Llep for D’s below 100 were found to belong to a group or groups
characterized by some PR, except for the four cases (D=73, 91, 94, and 97). All these PR’s obtained here
were found to be derived from a pair of the “master equations”. Although the existence of more global

master equations is anticipated, the method developed and results obtained here are believed to have

paved an artery for global understanding of the mathematical structure of the solutions of Pell and Llep.

2, Analysis and results

2.1. Observation and setting up of strategy
By a standard recipe CFE’s of JD for D<1 0,000 were computed and sorted according to the
length p of their periods. The values of (x;, y;) or (r;, s1) can be obtained through the internet'® if
necessary. There are many different groups of D’s with their common y,’s contrary to the case with x;.
Thus we first propose
(Strategy 1) Find such a group of D’s whose y,’s are in common or related by a
relatively simple polynomial.
The simplest PR has long been recognized'>' as
W —(n*—1)12=1, Q@1
which can be transformed into
(m+1P - +2m)=1. (22)
This expression is a special case of
nd=1Y-(d=2nd=1 (2.3)
reported by Speckmann'® and Ricalde.'
Here we propose to name (2.3) as the master equation which derives a number of PR’s of Pell.

(Master Equation) (B m=1Y-FEm*=2m)=1. (Mz)
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The CFE’s of JD of C1 group (Table 2) with m=2 are found to be expressed by a common
formula with p=2.

Jm2+2m=m+—1_ 1 ._L 1 _1_

1+ 2m+ 1+ 2m+ 1+
=[m;1,2m] (m=1)

.4)
Also for N1+ group (Table 3) which is derived by putting /=m and m=1 into M+ as
M =1 —m* (m® £2)=1, 2.5)
their CFE is given by a simple form as
V' +2 =[mim2m) (), 26)

Then we propose
(Strategy 2) Select those D’s whose CFE’s have as similar forms as possible.
Further it is helpful for us to propose »
(Strategy 3) Take a plot of (D, y) or (logD, y) for the candidates to the members
of the same group selected by Strategies 1 and 2 to check if those
points are fit into a smooth curve.
After consecutive numbering with m to the set of (D, x, y) ’s which are thought to form a group, we
proceed to ‘
(Strategy 4) Try to formulate a PR satisfying these (D, x, y) ’s in a form as
Bea(m)* — D(m) Dr(m)* = 1. @7
2.2. C-and N-types
By applying the above strategies to our list of (D, x, ¥) ’s, a number of new PR’s were obtained.
They were roughly classified into several types among which the simplest C-type with constant y,=c is

straightforwardly obtained as in Table 2. However, there are two subtypes which can be discriminated by

the form of D(m) as
C-type: Dm)y=KFm*+bm (2.8)
C’-type: Dm)=KFm’ xbm+c. 29

For the former C-type two general expressions can be obtained with respect to odd and even £ as given in
Table 2. Since the values of (x;, y;) and p for C’-type are generally larger than those for C-type, the
procedure for determining the PR of C’-type is a little more involved than C-type but still feasible.
Although a general expression has not yet been obtained for C’-type, all their PR’s are shown to be

derived from either of the master equations M+ and M- as given in Table 2.
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In this experimental analysis we have tentatively set D(m) to be quadratic as in (2.8) and (2.9).
Then the degree of polynomial expression of x;(m) is determined by that of y;(m), and accordingly the
type of PR is classified into C, N, S, T, Q, and X as shown in Table 3.

As the difference in the behavior between C- and C’-types, similar discrimination is observed
between the two types with linear y(m) as in

N-type: y(m)=am (2.10)
and S-type: y(m)=am+b. 2.11)

The obtained results for the former are given in Table 4, some of which have already been reported
by Speckmann'® and Ricalde'® but not systematically. The N-type groups are further subdivided into N
and N’ with a=1 and >1, respectively. The general expressions for them are given in Table 4.

As evident in Table 1, almost two thirds of D’s below 100 are grouped into at least C- and/or N-
types. Note that the largest y;value for them is as small as 66 for D=54.
2.3. Step up from Llep to Pell

In general the procedure for obtaining (74, 5;) of Llep is easier than the case with Pell of the same D.
It is known that Llep has solutions only for D of odd p, and such D is expressed by the sum of a pair of
square numbers. However, this is not a necessary but a sufficient condition. Anyway those numbers which
are expressed by the sum of a pair of square numbers are printed in bold in Table 1.

By applying the relation between (x;, ¥;) and (7, 51) to the PR of Llep for D with larger (x;, y1) the
desired RP of Pell with the same D can be obtained. Given a PR of Llep for a group of D as in the
following form,

A-DB=-1, 2.12)
where 4, B, and D are polynomials in terms of an integer variable m or a set of variables. In this paper,
however, only the former case is assumed. Then square (2.12) followed by some manipulation the
following equation can be obtained,

A +DB»Y-D(Q2AB’=1, . (2.13)
which is the PR of Pell corresponding to the given Llep. Note that if (4, B) are (x1, y1), (4> + D B?, 2 A B)
give (xz, y;). Anyway one can use this discussion as

(Strategy 5) From the set of (4, B, D) for a PR of Llep one can obtain the PR of
the corresponding Pell as (4> + D B>y~ D (2 A B)* =1.
24. S-Type

In Table 1 one can see three D’s, i.e., 13, 41, and 74, whose syis 5. By searching larger D’s two
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groups of Llep solutions with s,=5 were found as in Table 5 , from which it is not so difficult to find a pair
of PR’s for the groups S5z as given in Table 6.

By following similar procedures a variety of PR’s of the groups of S-type were found as assembled
in Table 6, which also shows that all the PR’s obtained can be derived either from the pair of master
equations Mx. Now almost 90 per cent of D’s in Table 1 belongs to any one group of C-, N-, or S-type.

As already seen in Fig. 1 the transition region of the value of y; from “small” to “large” seems to be
around ten or twenty. Then the y; values less than a few scores are plotted against D smaller than 160 and
their grouping was shown by the smooth curves as in Fig. 2. Although the C-type groups are not explicitly
assigned to avoid confusion in the figure, it is to be noted that all the points are shown to belong to at least
a group of either C-, N-, or S-type, except for (D=135, y,=21), which belongs to T9 (See Table 7). Since
the function y,(m) for N- and S-type groups is linear and D(m) is assumed to be quadratic (See Table 3),
all their curves are parabolic. However, from the bottom left to the top half of Fig, 2 a straight line can be
seen connecting the several terminal points of C-, N-, or S-type. This is T2 group as will be explained in
the next section.

Another important feature in Fig. 2 is the group of vertical parabola-like curves which are
overlapping with each other and continuously growing up systematically. Some curves are densely
populated by points, i.e., solutions of Pell, while some are not, possibly due to some in-phase and out-of-
phase behavior caused by the crossing of horizontal parabolic curves of C- and N-types. Although these
curves were drawn tentatively without any rigorous analysis and by throwing out larger y; values,
existence of some unknown and hidden mathematical structure is anticipated.

2.5. T-, Q-, and X-Types
From the straight line in Fig. 2 one can select out those D’s as 5, 21, 45, and 77, which eventually
form the sequence (2m+1)*-4. Then it is quite easy to derive the group T2 as given in Table 7. This group
was already found by Ramasamy" but in a different form. Namely, he proved the following PR,
(4P +18F+241+9Y— (AP+120+5) (2P +61+H4)% = 1,

which can be transformed into a more elegant expression by putting #=m—1 as
[(@m-2)(m+ 1)1~ [mr+1Y-4]2m(m+ D= 1,

showing that it can be derived from M+ by putting k=m+1 and m=4m-2.

This group was classified into T-type as its x;(m) is cubic, and two more T-type groups were found
as in Table 7. On the other hand, only one quartic Q-type group was found in the present analysis.

The highest degree of x,(m) polynomial discovered so far is six for the two groups, X2 and X10 as
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Fig.2 y;~D plot for smaller y,values. Note that the curve T2 in Fig. 1 is a straight line here.
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given in Table 7. Their PR’s have very peculiar forms.

There are only six D’s below 100 whose p is 5. They are 13, 29, 53, 74, 85, and 89. Although 13
and 74 are already shown to form S5- group, 13, 29, 53, and 85, which can be expressed as (2m+1)2+4
and whose CFE have similar forms, were found to form another group. It is not difficult to derive the PR
| of their Llep as,

Qm* Hm 1Y T+ 1)+ 4] [+ 1= -1,
Then by applying Strategy 5 to this formula the PR of Pell as shown in Table 7 was obtained.

In as early as 1901 Ricalde reported the result of the same PR of Pell for X2 group without any
discussion but erroneously. Namely, in his paper x,(m) is given as 8[m>-+H(m+1)’]+1 with the square sign to
the square bracket missing. Later in 1912 Whitford” introduced the Ricalde’s PR just in this erroneous
form. To the present authors’ awareness this result has never been cited by any other authors. Although
Ricalde must have derived the correct PR, the present authors believe that the correct expression is first
published in this paper.

1t can be shown that the PR’s of both X2 and X10 are derived from M+, and close resemblance
between their forms is observed. It is further interesting to know that D=61, which has the largest (x;, ¥1)
below D<100 as large as ten digit numbers, has its youngest elder brother, D=317, with two-digit larger

(xl’yl)'

3. Problems to be studied

Although we have checked the CFE’s of D’s below ten thousand, four D’s (73, 91, 94, 98) below one
hundred have no other D connected through any PR. It is an open question if it is possible or not to find
any group for them by expanding the upper limit of exploration. An affirmative anticipation is based on

the observation that for S53+ group the next larger member of D=89 is as large as 3898.

Ramasamy"® obtained a PR with three parameters as

(mP+nf+1)— ¢ (m* - 2mnt+n*f+2mt+2n) = 1.

However, the merit of this sophisticated master equation is not yet clarified.
Anyway the results obtained in this paper have shown an effectiveness of the proposed strategies
for the systematic analysis of the chaotic behavior of the solutions of Pell and Llep. However,

mathematical meaning of the interesting group of parabola-like curves in Fig. 2 need to be clarified.
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Table 1. Solutions and classification of Pell and Llep of D<100.

D x i P r sl Group
2 2 1 1 1 Ni1- N2 S3-
3 2 2 C1 N1+ N3- N’2—-
5 9 4 1 2 1 C4+ N2 N’6- S’5

T2 X2 X10+

6 5 2 2 C2 N1+ N’6- C20+
7 8 3 4 C3- NI1-
8 3 1 2 C1 N2+ N4- S12—

10 19 6 1 3 1 C6+ N2

11 10 3 2 -C3+ NI+ s1

i2 7 2 2 C2 N2~ N’6+

13 649 180 5 18 5 S5- T6- X2

14 15 4 4 C4-  Ni1-

15 4 1 2 c1 N3+ N5-

17 33 1 4 1 C8+ N2

18 17 4 2 C4+  Ni+ S’9

19 170 39 6 C’39-  S3+

20 9 2 2 C2 N2+ N’10-

21 55 12 6 cC12- 8’3 T2

22 197 42 6 S3-

23 24 5 4 C5- NI~

24 5 1 2 C1 N4+ N6~

26 51 10 1 5 1 Cl10+ N2

27 26 5 2 C5+ N1+

28 127 24 4 S6- C’24+

29 9801 1820 5 70 13 S13+ X2 ‘

30 11 2 2 C2 N3- N’10+

31 1520 273 8 S7-

32 17 4 C3-  N2-

33 23 4 4 C4- N6~

34 35 4 C6-  NI1-
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C1
Cl12+
Co+
Ca+
C3+
S5+

S9-
S6+
C24-

S23-

C1
Cl4+

S$’10-
S53~
C’66-
C12+
C2
S’3
S13-
S3-
C4-
X10-
C8-
C1
Cl6+
C8+
S27-.
C4+
T6+
C’30-
S7+

N5+
N2
N1+
N°6+
N2+

N3+

C’30+
S15+

N1~
N6+
N2
Ni+

X2
S3+
S’5
N4-
C20-

N2-
N1-
N7+
N2
N1+
N2+

S15-

N7-

N’14-

T2

N8-

N’14+

N9-

67



68

72
73
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78
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82
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88
89
90
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2281249
3699

26
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267000
430

6630

©c o 8

ey

18

30996
1122

21
53000

165

120
1260
221064
4

5
6377352
10

1

2 C2 N4+
7 1068 125 *
5 43 5 S5-
8 C3- N3~
12 Q12
6 T2 Q2
4 C6- N’6-
4 C9- N1-
2 C1 N8+
1 9 1 Ci8+ N2
2 C9+ NI+
2 C6+ N6+
5 378 41 X2
10 S11- |
2 C3+ N3+
6 C21- Si12-
5 500 53  S53-
2 C2 N5-
8 *
8 $10-
10 T6-
16 *
C4 N’10-
C5- N2-
11 5604 569 ¢
4 C10- NI-
C1 N9+
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N’18-

N10-

N’18+

N11-

xlz""Dy12=1, rlz—Ds12=—1,

p: length of periodic continued fraction of JD .

Those D’s which are expressed by the sum of a pair of square numbers are printed in boldface.

¥¢: “Lonely star” which does not have any other D below 10,000 connected by a polynomial expression.
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Table 2. Polynomial relations of C-type Pell. Italic means the 2nd solution.

C1*®  m+1Y-m*+2m) - 1°=1 (y=1) [M+: &=1]
m 1 2 3 4 5 6 1 8 9
D 3 8 15 24 35 48 63 8 99
x 2 3 4 5 6 7 8 9 10

p=2, YD=[m;1,2m] (m>2)

2?2 Cm+ 1Y +m) - 2°=1 (y=2) [M+: k=1, m=2m]
m 1 2 3 4 5 6 71 8 9 10
D 2 6 12 20 30 42 56 72 90 110
x 305 7 9 11 13 15 17 19 21
p=2, YD=[m;2,2m] (m=2)
C3t (Om=1Y-O9m*+2m)+3>=1 (y=3) [M: £k=3]
m 1 2 3 4 5 1 2 3 4 5
® D 11 40 87 152 235 (O 7 32 75 136 215
x 10 19 28 37 46 8 17 26 35 44
p=2, yD=[3m; 3, 6m} p=4, dD=[3m—-1;1,1,1,6m-2] (m>1)
C4t® Bmt1Y—@m*+m) - 4=1 (=4) [Mz: k=2, m=2m)
m 1 2 3 4 5 1 2 3 4 5
# D 5 18 39 68 105 () 3 14 33 60 95
x 9 17 25 33 41 7 15 23 31 39
p=2, D =[2m; 4, 4m) p=4 D=Pm-1;1,2,1,4m-2] (m22)
C5+  (25m+1Y—-(25m*+2m) + 5°=1 (y=35) [M: £=5]
m 1 2 3 4 5 1 2 3 4 5
# D 27 104 231 408 635 () 23 96 219 392 615
X 26 51 76 101 126 24 49 74 99 124
p=2, yD=[5m;5, 10m] p=4, JD=[5m-1;1,3,1,10m~2] (m>1)
C6t (18m=1’—(9m*+m)-6*=1 (y=6) [M=: k=3, m=2m]
m 1 2 3 4 5 1 2 3 4 5
® D 10 38 84 148 230 () 8 34 78 140 220
x 19 37 55 73 91 17 35 53 71 89

p=2, yD=[3m; 6, 6m] p=4, yD=[3m-1;1,4,1,6m-2] (m=2)
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C7+

(49m + 1Y— (49m* £2m) * 7" =1

»=7 [M£: £=7]

m 1 2 3
+ D 51 200 447
x 50 99 148

1 2 3 4
- 47 192 435 776
48 97 146 195

NSR. O., Vol. 57

p=2, JD=[Tm;7, 14m] p=4, IdD=[Tm-1;1,5,1,14m-2] (m=1)
C8+ (2mx1Y-(6m’+tm)-8=1 (y=8) [Mz: k=4, m=2m]
m 1 2 3 1 2 3 4
@ D 17 66 147 @ 15 6 14 252
x 33 65 97 31 63 95 127
=2, YD =[4m; 8, 8m] p=4,yD=[4m—1;1,6,1,8m-2] (m>2)
9+ (Blm=1Y-@lm’+2m) - 9°=1 (y=9) [M:: £=9]
m 1 2 3 1 2 3 4
() D 8 328 735 1304 () 79 320 723 1288
x 82 163 244 80 161 242 323
=2, YD=[9m; 9, 18m] p=4, yD=[9m-1;1,7,1,18m~-2] (m>1)
Clox  (50m=1Y>-(Q5m*+tm) - 10°=1 (y=10) [Mz: k=5, m=2m]
m 1 2 3 1 2 3 4
¢ D 26 102 228 ) 24 98 222 39
x 51 101 151 49 99 149 199
p=2, yD=[5m; 10, 10m] p=4, dD=[5m—-1;1,8,1,10m-2] (m>2)
Cl2+ Cla+ Cl6+ C18+ C20+
m=1 D 37 50 65 82 101
x 73 99 129 163 201
m=2 D 146 198 258 326 402
x 145 197 257 325 401
C@j+1)+ [M: k=2j + 1]
[+ 1Pm+1]2-[@j+1)Pm* £2m] - Qj+1P=1 (j=0)
+: p=2, D@+ 1) m; @+ 1), (4 +2)m]
—: p=4,D=[Qj+)m-1;1,2i-1),1,@+2)m-2] (m>1)

C2H+

[M=: k=, m=2m]

tzfmillz—[izm‘*ivml-(2J)2=1 G=1)
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+: p=2, yD=[jm;2j,2jm]
—: p=4,ID=[jm-1;1,2/-2,1,2im-2] (m>2)

Cl12x (Mm=17-@B6m*£1Tm+2)+122=1  (y=12)  [M= k=3, m=8m=2]

m 1 2 3 4 1 2 3 4
+ D 55 180 377 646 - 21 112 275 510
X 89 161 233 305 55 127 199 27

) p=4, J5=[6m+1;2,2,2, 12m + 2] (m=1)

© p=6 ¥D =[6m-2;1,1,2,1,1,12m-4]  (m>1)

C20+  (200m £ 49)— (100m” + 49m + 6) * 20 =1 v =20) [M—: k=5, m=8m=2]

m 0 1 2 3 1 2 3 4
) D 6 155 504 1802 (- S7 308 759 1410
x 49 249 449 649 151 351 551 751

# p=4, ¥D =[10m+2;2,4,2,20m+4] (m=>1)

O p=6, YD =[10m-3;1,1,4,1,1,20m-6]  (m>1)

C21:  (441m+244)°— (441m> + 488m + 135) » 21> =1 w=21) [M+: k=3, m=49m+27]

m 0 1 2 3 1 2 3 4
) D 135 1064 2875 5568 (-) 88 923 2640 5239
x 244 685 1126 1567 197 638 1079 1520
@ p=8, YD =PRim+11;1,1,1,1,1,1,1,42m+22] (m>0)
© p=6, ¥D =[21m—12;2,1,1,1,2, 42m —24] (m>1)
C24+  (288m + 127 (144m £ 127Tm +28) - 24° =1 =24) [M+: k=3, m=32m=14]
m 0 1 2 3 1 2 3 4
+ D 28 299 858 1705 (O 45 350 943 1824
x 127 415 703 991 161 449 737 1025
@ p=4, ¥D =[12m+5;3,2,3,24m + 10] (m=>0)
O p=6, ¥D =[21m-6;1,2,2,2,1,24m - 12] (m=1)
C30+  (450m £ 199Y— (225m> £ 199m + 44) - 30> =1 »=30) [M-: k=5, m=18m=8]
m 0 1 2 3 1 2 3 4
® D 44 468 1342 2666 () 70 546 1472 2848

x 199 649 1099 1549 251 701 1151 1601
) p=8, YD =[15m+6;1,1,1,2,1,1,1,30m+12] (m>0)
O p=6, ¥D =[15m-7;2,1,2, 1,2, 30m— 14] (m>1)
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C39  (1521m+ 1351)%— (1521m® £2702m + 1200) - 39°=1 (y=39) [M+: k=3, m=169m+150]

m 0 1 2 1 2 3
*+ D 1200 5423 12688 © 19 1880 6783
x 1351 2872 4393 170 1691 3212
) p=8, ¥D =[39m+34;1,1,1,3,1,1,1,78m+68] (m>0)
O p=6, ¥D =[39m-35;2,1,3,1,2, 78m—70] m=1)

C66+ (2178m + 1693)*— (1089m> £ 1693m + 658) - 66°=1 (y=66) [M+: k=3, m=242m=188]

m 0 1 2 1 2 3
* D 658 3440 8400 ) 54 1628 5380
x 1693 3871 6049 485 2663 4841

) p=8, YD =[33m+251,1,1,6,1,1,1,66m+50] (m>0)
@ p=6, YD =[33m-26;2,1,6, 1,2, 66m— 52] (m=1)
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Table 3. Types of the solutions of Pell according to the degree of PR.

[x,(m)F — D(m) [y,(m)F = 1

yi(m) x,(m) - Type
m° m' C
m' m’ Nand S
m* m T
m’ m* Q

> m? >m® X

Tasble 5. Two groups of D’s whose s, is 5. Their CFE’s are also shown.

D r JD D n JvD

13 18 [3;1,1,1,1,6] 41 32 [6;2,2,12]

74 43 [8;1,1,1,1,16] 130 57  [11;2,2,22]
185 68 [13;1,1,1,1,26] 269 82  [16;2,2,32]

346 93 [18;1,1,1,1,36] 458 107 [21;2,2,42]
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Table 4. Polynomial relations of N-type Pell.
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N1+? N1-? N2+ N2-12
m, y, D X, D x, D x; D X,
1 3 -1 0 8 0 —
2 5 2 3 20 9 12 7
3 11 10 7 8 40 19 32 17
4 18 17 14 15 68 33 60 31
5 27 26 23 24 104 51 96 49
6 38 37 34 35 148 73 140 71
7 51 50 47 48 200 99 192 97
8 66 65 62 63
9 83 82 79 80
10 102 101 98 99

Nlz: (m?£ 1) = (m?=2) » m*=1
(+): p=2, JD =[m; m,2m]  (m>1)
: p=4, D =[m-1; 1, m-2, 1, 2m-2] (m>3)
[M=x: k=m, m=1] — N1+

N2x: 2P+ 1)2—(4m*x 4) - m*=1
(+): p=2, JD =[2m; m, 4m] (m=1)
):p=4, SdD=P2m-1;1,m=2,1,4m-2] (m>3)
[M=: k=m, m=2] — N2+

N3+ N3- N4+ N4~
m,y, D X D x; D Xy D X
1 15 4 3 2 24 5 8 3
2 42 13 30 11 72 17 56 15
3 87 28 75 26 152 37 136 35
4 150 49 138 47 264 65 248 63

N3x: 3m?+ 1)~ (9P 6) * m?=1

+): p=2, YD =[3m; m, 6m] (m>1)

): p=4, D =[3m-1;1,m-2,1,6m=2] (m>3)
[Mz: k=m, m=3] — N3z

N4x: @m?+1)2 - (16m*+8) * m*=1
(+): p=2, JD =[4m; m, 8m] (m=1)
): p=4, ¥D=[4m-1; 1, m-2, 1, 8m-2]
[Mz: k=m, m=4] — N4=

(m>3)

N5+ N5- N6+ Né6-
m,y, D x D b D x D X
1 35 6 15 4 48 7 24 5
2 110 21 90 19 156 25 132 23
3 235 46 215 4 336 55 312 53

N5£: (5n?x 1> - (25m?£ 10) * m*=1
): p=2, YD =[5m; m, 10m] (m=1)

N6z: (6m* £ 1Y - (36m*+ 12) » m*=1
) p=2, yD=[6m; m, 12m] (m>1)
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(): p=4, YD =[5m-1; 1, m2, 1, 10m-2] (m>3) (9): p=4, YD=[6m-1;1,m-2,1,12m-2] (m>3)

[M=: &=m, m=5] — N5z

Classification of the solutions of Pell equation

[M=: kI=m, m=6] — N6

N7+ N7 N8+ N8-
m,y, D Xy D X, D x; D X,
1 63 8 35 6 80 9 48 7
2 210 29 182 27 272 33 240 31
3 455 64 427 62 592 73 560 71

N7:: (Tm? £ 1) — (49 = 14) » =1
@) p=2, YD =[Tm; m, 14m] (m>1)

): p=4, ID=[Tm-1;1,m-2, 1, 14m-2] (m=>3) (=) p=4, YD =[8m-1;1,m-2, 1,16m-2] (m>3)

[Mz: k=m, m=7] — N7x

N8+: (8m* = 1)* - (64m* £ 16) * m*=1
) p=2, YD =[8m; m, 16m] (m>1)

[Mx: k=m, m=8] — N8

NO+ NO- N10+ N10-

m, y, D X D X D X, D X
1 99 10 63 8 120 11 80 9
2 342 37 306 35 420 41 380 39

NO=: (92 = 17 — (81mP = 18) » mP=1
): p=2, YD=[9m; m, 18m] (m=1)

(: p=4, ¥D=[9m-1; 1, m-2, 1, 18m-2] (m>3)

[M=%: ki=m, m=9] — N9z

N10%: (10m>% 1)2 — (100m? £ 20) * m?= 1
+): p=2, YD =[10m; m,20m] (m=1)

[Mz: ki=m, m=10] — N10x

N+ N11- [Ms: k=m, m=11] — N11=+
m, y, D X D X

1 143 12 99 10  Nllx: (lmP= 1)? - (121mP£22) - m=1

2 506 45 462 43 (#):p=2, ND=[1lm;m, 22m] (m>1)

3 1111 100 1067 98 (9:p=4, YD =[lim—1;1,m2,1,22m-2] (m>3)

N°2'83 [M+: k=m, m=2] — N2

m Y1 D X1 m N D X1

1 2 2 3 7 14 50 99

2 5 9 8 16 65 129

3 6 10 19 18 82 163

4 8 17 33 10 20 101 201

5 10 26 51 11 22 122 243

6 12 37 73 12 24 289

145

N°2: 2+ 1 — (m?+ 1) @m)*= 1

): p=4, yD=[10m-1;1,m-2,1,20m-2] (m>3)
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Nj+ [M=: k=m, m=j] - [Mzx: k=m, m=4j+2]
(G M1y — (P mP=2)) m*=1 [(23))
@:p=2, ID=[jm;m2jm] (m>1)
:p=4, ID=[fm-1;1,m2,1,2jm=2] (m>1)

N’(4j+2)= [Mzx: k=m, m=4j+2]
[(4742) m*£1 P — [2j+1 mP2(2j+ 1)] 2m)*= 1 =)
) p=2, YD =[2j+1) m; 2m, 4j+2m]  (m=1)
): p=4, VD =[Qj+1) m-151,2m-2, 1, (4j+2m]  (m21)

N6+ N’6- N’10+ . N'10-

m Vi D x, D X, D X D X,
1 2 12 7 6 5 30 11 20 9
2 4 39 25 33 23 105 41 95 39
3 6 84 55 78 53 230 91 220 89
4 8 147 97 141 95 405 161 395 159
5 10 228 151 222 149 630 251 620 249

N’6x: (6rm? = 1)> — (9m* = 3) Cm)*=1 N’10x: (10m? £ 1)* - (25m* = 5) 2m)*= 1

(+): p=2, JD =[3m; 2m, 6m] (m=1) (+): p=2, JD =[5m; 2m, 10m] (m>1)

: p=4, yD=[3m-1;1,2m-2,1,6m-2] (9: p=4, ¥D=[5Sm-1;1,2m-2, 1, 10m-2]

[Mz: k=m, m=6] — N’6% m>2)  [Mz: k=m, m=10] — N’10x (m=2)

N’14+ N’14- N’18+ N’18-

m % D x D x D x D x
1 2 56 15 42 13 90 19 72 17
2 4 203 57 189 55 333 73 315 71
3 6 48 127 434 125 738 163 720 161
4 8 791 225 777 223 1305 289 1287 287

N’14x: (14m* £ 1)* - (49m>+ 7) m)*>=1 N’18=x: (18m*«1)? — (81m?£9) (2m)*= 1

@) p=2, D =[Tm; 2m, 14m] (m=1) ): p=2, YD =[9m; 2m, 18m] (m>1)

: p=4, ND=[Tm-1;1,2m-2,1,14m=2]  (-): p=4, ¥D=[9m—1; 1, 2m-2, 1, 18m-2]
Mz: k=m, m=14] — N’14= (m=2) [M=: kI=m, m=18] — N’18= (m=2)
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Table 6. Polynomial relations of S-type Pell. Italic means the 2nd solution.

S3x  [(OmzAP+1TP— (9m*£8m+2) [3(9m=4)P= 1 [M+: k=9m=4, m=1]

m=1 2 3 4 5
1) D 19 54 107 178 267
x 170 485 962 1601 2402
y 39 66 93 120 147
=6, ND=[3m+1;2,1,3m, 1,2, 6m+2] (m>1)
&) D 3 22 59 114 187
x 26 197 530 1025 1682
y 15 42 69 96 123
p=6, ND=[3m-2;1,2, 3m-2,2, 1, 6m—4] (m=1)

S°3  [6Q2m+1)+1T— (9m*+9m+3) [4(2m+1)F=1 [M+: k=2m+1, m=6]

D 21 57 111 183 273
x 55 151 295 487 727
y 12 20 28 36 a4

p=6, VD =[3m+1;1,1,2m, 1,1, 6m+2] (m>1)

S5x  [225m=7Y+11- (25m*£14m4+2)[10(25m=7)P=1  [M+: k=25m=x7, m=2]

) D 41 130 269 458 697
X 2049 6499 13449 22899 34849
y 320 570 820 1070 1320

p=3, JD=[5m+1;2,2,10m+2]  (m>1)
© D 13 74 185 346 557
x 649 3699 9249 17299 27849
y 180 430 680 930 1180

p=5, YD=[5m2;1,1,1,1,10m4] (m=>1)

$'5  [102m+1-1P- [5(3m*+5Sm+D))[42m+1)P=1 [M—: k=2m+1, m=10]

m=0 1 2 3 4
D 5 55 155 - 305 - 505
x 9 89 249 439 809
y 4 12 20 28 . 36

=4, D=[5m+2;2,2m,2, 10m+4] (m>1)
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S6+  [2(9m=1)-11~ (36m*:8m) [3(9m=1)P= 1 [M—: k=9m=1, m=2]
‘ m=1 2 3 4 5
+) D 44 160 348 608 940
x 199 721 1567 2737 4231
y 30 57 84 111 138
p=8 D=[6m;1,1,1,3m-1,1,1,1,12m]  (m>1)
&) D 28 128 300 544 860
x 127 577 1351 2449 3871
y 24 51 78 105 132

p=4 JD=[6m-1;3,3m-1,3,12m-2] (m>1)

S7+  [(49mx10)-1]— (49m*+£20m+2) [7(49m=10)F= 1 [M-: k=49m=+10, m=1]

0 D 71 238 503 866 1327
x 3480 11663 24648 42435 65024
y 413 756 1099 1442 1785
p=8 D=[Tm+1;2,2,1,7m,1,2,2, 14m+2] (m>1)
&) D 31 158 383 706 1127
x 1520 7743 18768 34595 55224
y 273 616 959 1302 1645

p=8 D=[Tm-2;1,1,3,7m-2,3,1,1, 14m-4] (m>1)

S9+  [(81m=22)*+1]*- (81m*+44m+6) [9(81m=22)F= 1 [M+: k=81m=22, m=1]

) D 131 418 867 1478 2251
x 10610 33857 70226 119717 182330
y 927 1656 2385 3114 3843
p=6 D =[9m+2;2, 4, 9m+2, 4 2, 18m+4] (m>1)
&) D 43 242 603 1126 1811
x 3482 19601 48842 91205 = 146690
y 531 1260 1989 2718 3447

p=10 YD=[9m-3;1,1,3,1,9m4,1,3,1,1,18m-6]  (m=1)

S’9 [18@2m+1Y—1P- [99m*+9m+2)] [42m+1)F=1 [M— k=2m+1, m=18]

m=0 1 2 3 4
D 18 180 504 990 1638
x 17 161 449 881 1457
y 4 12 20 28 36

p=4 D=[9m+4;2,2m,2,18m+8] (m>1)
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$10+  [2(25me1P-1P~ (100n?s8m) [5Q25me1)P=1  [M-: k=25ms1, m=2]
m=1 2 3 4 5
) D 108 416 924 1632 2540
x 1352 5201 11551 20401 31751
y 130 255 380 505 630
p=8 ~D=[10m;2,1,1,5m-1,1,1,2,20m]  (m>1)
) D 92 384 876 1568 2460
x 1151 4801 10951 19601 30751
120 245 370 495 620

p=8 ~D=[10m-1;1,1,2, 5m-1,2,1,1,20m=2] (m>1)

S$’10x  [2(25m=7)*+11%— (100m*£56m+8) [5(25m=T)F=1

[M+: k=25m=7, m=2]

+) D 164 520 1076 1832 2788
X 2049 6499 13449 22899 34849
y 160 285 410 535 660
p=6 D =[10m+2; 1,4, 5m+1,4,1,20m+4]  (m=1)
) D 52 296 740 1384 2228
x 649 3699 9249 17299 27849
y 90 215 340 465 590
p=6 JD=[10m-3;4,1,5m-3, 1,4,20m=6]  (m>1)

Sllx [(121mx19%+11- (121m*+38m+3)[11(121m=19) =1

[M+: k=121m=19, m=1]

C))] D 162 563 1206 2091 3218
x 19601 68122 145925 253010 389377
y 1540 2871 4202 - 5533 6864

p=10 J-5=[11m+1; 1,2,1,2,11m+1,2, 1,2, 1, 22m+2] (m=1)
) D 86 411 978 1787 2838
x 10405 49730 118337 216226 343397
y 1122 2453 3784 5115 6446

p=10 JB:[llm—Z; 3,1,1,1,11m-3,1,1, 1, 3, 22m-4] (m=1)

S12x [4(9m=2)*+1]— [8(18m*+8m+1)][3(9m+2)P= 1

[M+: k=9m+2, m=4]

) D 216 712 1496 2568
x 485 1601 3365 5777
y 33 60 87 114

3928
8837
141

p=6 ~D=[12m+2; 1,2, 3m,2, 1, 24m+4]

(m=1)
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m=0 1 2 3 4
&) D 88 456 1112 2056
x 17 197 1025 2501 4625
y 6 21 48 75 102

p=6 D=[12m-3;2,1,3m-2,1,2,24m-6]  (m>1)

S13x  [2(169m=70)>+1 1~ (169m>+140m+29)[26(169m=70)= 1

m=1 2 3 4 5

) D 29 338 985 1970 3293
x 9801 114243 332929 665859 1113033
y 1820 6214 10608 15002 19396
p=5 ~D=[13m+5;2,1, 1,2, 26m+10] (m=1)

O D 58 425 1130 2173 3554
x 19603 143649 381939 734473 1201251
y 2574 6968 11362 15756 20150
p=7 D={13m-6;1,1,1,1, 1, 1, 26m-12] (m=1)

S15+  [10(9m=4)*+11- [5(45m*+40m+9)][6(Imz4)F= 1

NSR. O,, Vol. 57

[M+: k=169m=70, m=2]

[M+: k=9m=4, m=1]

m=0 1 2 3 4
e, D 45 470 1345 2670 4445
x 161 1691 4841 961l 16001

y 24 78 132 186 240

p=6 D=[15m+6;1,2, 6m+2,2,1,30m+12]  (m>0)

m=1 2 3 4 5

&) D 70 545 1470 2845 4670
x 251 1961 5291 10241 16811

y 30 84 138 192 246

p=6 ID=[15m-7;2,1,6m4,1,2,30m-14]  (m>1)

S23x  [(529m=373)*-1P— (529m*+746m+263)[23(529m+373)F=1

[M—: k=529m=373, m=1]

m=0 1 2 3 4

€D D 263 1538 3871 7262 11711
x 139128 813603 2047760 3841599 6195120

y 8579 20746 32913 45080 57247

p=12 D=[23m+16;4,1,1,1,1,23m+15, 1,1, 1, 1, 4, 46m+32]

(m=0)
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m=1 2 3 4 5
) D 46 887 2786 5743 9758
x 24335 469224 1473795 3038048 5161983

y 3588 15755 27922 40089 52256

p=12 JD=[23m-17;1,3,1,1,2,23m-17,2, 1, 1,3, 1, 46m—34]

S27+  [(729m=508)*+1F~ (729m*+1016m+354)[27(729m+508)F=1

[M+: k=729m=508, m=1]

(m=1)

m=0 1 2 3
+) D 354 2099 5302 9963
x 258065 1530170 3865157 7263026
y 13716 33399 53082 72765
p=10 JD =[27m+18; 1,4,2,2,27m+18,2,2, 4, 1, 54m+36] (m=0)
m=1 2 3 4
) D 67 1238 3867 7954
x 48842 902501 2819042 5798465
y 5967 25650 45333 65016
p=10 JB=[27m—19; 5,2,1,1,27m-20,1, 1,2, 5, 54m-38] (m=1)

S53  [2(2809m+500)*+11*— (2809m*+1000m+89)[106(2809m+500) P=1
m=0 1 2
D 89 3898 13325
x 500001 21898963 74859849
y 53000 350754 648508

p=5 D=[53m+9;2,3,3,2,106m+18]

(m=0)

81

[M+: k=2809m+500, m=2]
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Table 7. Polynomial relations of T-, Q-, and X-type Pell. Italic means the 2nd solution.

T2  [@m-2)(m+12+1 P~ @m*+4m-3)2m(m+ 1) = 1 [M+: k=m+1, m= 4m-2]
m=1 2 3 4 5
D 5 21 45 77 117
x 9 55 161 351 649
y 4 12 24 40 60

=6, ND=[2m; 1, m-1,2,m-1,1,4m]  (m>2)

T6 [(18m=7)(162m*+126m+23)]*— [(2m=1)(18m=5)][18(3m=1)(9m=4))*= 1 [Mz: k=27m=9, m=4m=2]

- D 69 205 - 413 693 1045
x 7775 39689 113399 246401 456191
y 936 2772 5580 9360 14112

p=8, YD =[6m+2;3,3m, 1,4,1,3m, 3, 12m+4]  (m>1)
© D 13 93 245 469 765
x 649 12151 51841 137215 285769
y 180 1260 3312 6336 10332

=10, ¥D=[6m-3;1,1,1,3m-2, 6,3m-2,1,1,1, 12m-6]  (m>2)

T9 [27m Cm+1)+1P- RTmGBm+2)|[2m+1)6m+1)]*= 1 [M+: k=2m+1, m=27m]

D 135 432 891 1512 2295
b 244 1351 3970 8749 16336
y 21 65 133 225 341

p=8, yD=[9m+2;1,2m+1,1,1,1,2m+1, 1, 18m+4]  (m>1)

Q12  [18(18m—5)*(36m*—20m+3)+1T — [4(36m*~20m+3)1[6(18m~5)(162m>~90m+13)J= 1
[M+: k=18m-5, m=18 (36m*-20m+3)]

m= 1 2 3 4
D 76 428 1068 1996
x 57799 1850887 11539207 40320199
y 6630 89466 353094 902490

=12, yD=[12m—4;1,2,3m-2, 1,5, 6m-2, 5,1, 3m-2,2, 1,24m-8]  (m=1)
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X2 {8[m*+(m+1YP+1 Y- [Cm+1 P+ 41{dmP+(m+ 1] [mP+(m+1)]Y= 1 [M+: k= m*+(m+1)°, m=8]

m= 0 1 2 3 4 5
D 5 13 29 53 85 125
x 9 649 9801 66249 285769 930249
y 4 180 1820 9100 30996 83204
p=5, ID=[2m+1;m, 1, 1, m, 4m+2] (m=1)

X10+  {8[(25m=5)*+H(25m6)°P+1¥2~ (100m>+44m+5)
x{20[(25m:5)+25mE6)°|[(25m+5Y+(25m6) ] F= 1 [M+: k=2[(25mE5) +(25m+6)*], m=2]
£2025mE5) +25mE6)*] Y~ 100m*+44m+5 ) {5 [(25mES P +H25m=6)*] Y= ~1

m D r s x y
- 1 61 29718 3805 1766319049 226153980
2 317 352618 19805 248678907849 13967198980
3 773 1343018 48305 3607394696649 129748968980
4 1429 3375918 89305 22793644685449 602972713980
p=11, J5=[10m——3; 1,4,5m-2,1,2,2,1,5m-2,4,1,20m—-6] (m=>1)
#* 0 5 682 305 930249 416020
1 149 113582 9305 25801741449 2113761020
2 493 683982 30805 935662752649 42140131020
3 1037 2086882 64805 8710152963849 270480776020

=9, yD=[10m+2;4,1,5m,3,3,5m, 1,4,20m+4]  (m>1)



