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On the distribution of linear codes
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Abstract In this paper, we exarine the distribution of binary linear codes in the sense of Manin. For this
purpose, we introduce the notions of isolated ratius and complete isolatedness. As a typical example, we calculate
the isolated radius of the (7,4, 3]-Hamming code, and show that it is completely isolated. Using the program in
the appendix, we also give a list of isolated radii of some binary linear codes.

1 Introduction

Let Fy be a finite field with ¢ elements (g = p™, p : a prime number, m : a positive integer). A linear
code C C F7 is called an [n, k, d]-linear code if dimp, C = k and the minimum distance of C is equal to
d. For an [n, k,d]-linear code C, the relative distance d/n and the information rate k/n are important
numerical values which reflect properties of the code C. In this paper, we introduce a new invariant,
using these two values, which shows how different the linear code is from other linear codes.

We denote by LC, the set of all linear codes over the finite field F;. We consider the mapping:

P LC, — [0,1)?
[n,k,d]-code C > (d/n,k/n).

The set Uy of the limit points of Im ¢ was investigated by Yu. I. Manin, and for the shape of Uy he
showed the following:

Theorem 1.1 (Manin [3]) There ezists a continuous function
Qg : [0’ 1] — {0, 1]
such that
Ug={(8, R) | 0 < R < 0y(0)}
and that
0g(0) = 1, ag(6) < max{1 — (g/ (a— 1))5,0}.

As is well-known, the function og4(d) is strictly decreasing for § € [0,(q — 1)/q] (cf. Tsfasman and
Viadut [4]), and is estimated from below by the Varshamov-Gilbert bound.

The objects of our interest here are linear codes C such that ¢(C) ¢ U,. For such a code C, the point
¢(C) is an isolated point in ©(LC,) and the following two questions arise.

Question 1 Is there any linear code C’ such that ¢(C’) = ¢(C) which is different from C7

Question 2 What are the linear codes C’ such that the points ¢(C’) are closest to ¢(C)? What is the
distance between ¢(C’) and ¢(C)?

The codes C’ in Question 2 are called the closest codes to C, and the distance between ¢(C"’) and ¢(C)
is called the isolated radius of C (for the precise definitions, see Section 3) . We will give answers to
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these two questions for some typical binary linear codes (cf. List in Section 4). In particular, we will
show that for the [7, 4, 3]-binary Hamming code C there exists no linear code C’ such that ¢(C") = ¢(C)
and C’ # C. We also show that the [5,3,2]-linear code is the closest code to C, and so the isolated
radius of the (7,4, 3]-Hamming code is equal to +/2/5 - 7.

2 Some bounds

In this section, we recall some bounds for linear codes, and give a new bound which we will use later.
To begin with, we give the precise definition of Ug:

3 linear code C; of type [ng, ks, d;]
such that
Ug=<(6R)€[0,1] x [0,1]| n; — 00 as i— o0
and
(di/ni, ki/n;) — (0,R) as i— o0

We are mainly interested in points which are not contained in U,. Denoting by d(C) (resp. k(C))
the the minimum distance of the code C (resp. dimg, C), we regard, in this paper, two linear codes
C,C’ C Fy as the same codes if d(C) = d(C’) and k(C) = k(C'). We need the following well-known
lemma (cf. Manin (3], Tsfasman and V1idut [4]).

Lemma 2.1 (Spoiling lemma) If there exists an [n, k, d]-linear code, then an [n — 1,k — 1, d]-linear
code and an [n—1,k,d — 1]-linear code also exist.

From here on, we assume ¢ = 2, unless otherwise mentioned.

Lemma 2.2 (Plotkin bound for g = 2) If there ezists an [n, k, d|-linear code, then d/n < 2k1/(2F—
1) holds.

Using these two lemmas, we have the following bound.

Theorem 2.3 (Linear bound) Assume that there exists an [n, k, d)-linear code with k > 4. Then, the
following bound holds:
k/n+(15/8)(d/n) < 1+ 4/n.

Proof Using the spoiling lemma k — 4 times, we have an [n — k + 4,4, d]-linear code. Therefore, using
the Plotkin bound, we have
d/(n—k+4) <23/(2* 1),

which gives our inequality. u

Remark 2.4 We fiz a positive integer a. Then, we can generalize Theorem 2.3 as Sollows:
Assume that there exists an [n, k, d]-linear code with k > .. Then, the following bound holds:

k/n+(2—=1/2*"1)(d/n) < 1+a/n.

For our purpose, the case o =4 is most efficient. Note that this inequality contains only linear terms
for k, d and n like the Singleton bound.

We will also use the following two famous bounds (cf. Tsfasman and Vladut (4], for instance).

Theorem 2.5 If there exists an [n, k, d]-tinear code, then the following bounds hold:

n> " 1d/2¥] (Griesmer bound),
22z Zii/oz ] () (Hamming bound).

Here, for a real number v, [r] means the least integer which is greater than or equal to r, and [r] means
the greatest integer which is less than or equal to 7.
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3 Isolated codes

In this section, we introduce the notion of complete isolatedness for linear codes and give some examples
of completely isolated linear codes.

Definition 3.1 Forr € R and (a,b) € [0,1]2, we set
B,((a,b)) = {[n, k, d)-linear code | (d/n — a)? + (k/n —b)*> < r?}.

Definition 3.2 Let C be an [n,k,d]-linear code. If there exists a positive real number r such that
©(C") = ¢(C) for C' € B.((d/n,k/n)), then C is said to be isolated. An isolated linear code is said to
be completely isolated if there exists no linear code C' (C' # C) such that p(C') = ¢(C).

Example 3.3 Let C be a linear code such that o(C) € U,. Then, by the definition of Uy, C is not
isolated.

Example 3.4 Let C be the [8,4, 4]-extended binary Hamming code. Then, <p(C~J’) is mot contained in Us.
Therefore, C is isolated. We set
C' =F,(1,0) C F.

Then, it is clear that C' is a [2,1,1]-linear code. Since we have

#(0) = p(C") = (1/2,1/2),
the (8,4, 4]-eztended binary Hamming code is not completely isolated.
Using the Plotkin bound, we have a criterion of complete isolatedness:

Lemma 3.5 Let C be an isolated [n, k,d)-binary linear code. Assume that n is prime to either k or d.
Moreover, we assume 3d > 2n — 2k + 2. Then, C is completely isolated.

Proof Suppose there exists an [n, k', d']-linear code C’ such that ¢(C’) = ¢(C). Since n is prime to
either k or d, there exists a positive integer £ such that

n' =fn, k¥ =Lk, d = Ld.

Using the spoiling lemma (k — 1){ times, we have a [(n —k + 1), £, d{]-linear code. Applying the Plotkin
bound to this code, we have an inequality

df/(n—k+1)£ <251 /(25 - 1).
Suppose £ > 2. Then, we have
df(n—k+1) <2/(4— (1/2°%) < 2/3,

which contradicts the inequality 3d > 2n — 2k + 2. Therefore, we have £ = 1. Hence, the type of the
code C' coincides with the one of C. [ ]

Corollary 3.6 The (7,4, 3]-Hamming code and the (7,3, 4]-binary linear code are completely isolated.

Proof Let C be the (7,4, 3|-binary linear code. By Manin’s theorem, it is clear that the point ¢(C) =
(3/7,4/7) is not contained in the set Us. Therefore, the code C is isolated. Hence, using Lemma 3.5,
we see that the [7,4, 3]-Hamming code C is completely isolated. We can prove the latter part in the

same way. n
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Lemma 3.7 Let C be an isolated [n, k,d]-binary linear code. Assume 15d > 8(n — k+ 1). Then, there
exist no [nf, ki, dl]-binary linear codes with positive integer £ > 4.

Proof The proof is similar to the one in Lemma 3.5. Let £ be an integer > 4. Suppose there exists an
[nf, k£, dl]-binary linear code. Then, using the spoiling lemma (k—1)£ times, we have a [(n—k+1)¢, ¢, d]-
linear code. Applying the Plotkin bound to this code, we have an inequality

de/(n—k+1)¢ <2¢1/(28 — 1).
Since £ > 4, we have
d/(n—k+1) <8/15,
which contradicts the inequality 15d > 8(n — k + 1). ]

Theorem 3.8 The binary linear codes of types [23,12,7], [15,5,7], (15,7, 5], [32,11,12], [31,25,4] and
(15,4, 8] are all completely isolated.

Proof Suppose there exists an [n',k’,d']-linear code C’ such that d'/n' = 7/23 and k'/n' = 12/23.
Then, as in Lemma 3.5, there exists a positive integer ¢ such that n' = 23¢, k' = 124, d' = 7£. Suppose
2 < £ < 4. Then, by A. E. Brouwer [1] we have no binary linear code of type (23¢,12¢, 7(]. Hence, by
Lemma 3.7, the [23, 12, 7]-binary linear code is completely isolated. We can prove the rest in the same
way. |

Remark 3.9 Neither the [8,4,4]-eztended Hamming code nor the (24,12, 8]-Golay code is not completely
isolated. This result follows from the fact that there exzist the [2,1,1] and the [6,3,2] linear codes (cf.
Ezample 3.4 and A. E. Brouwer [1]).

Finally, we give a figure of the position in [0, 1]2 of the linear codes which we treated in this section.

1-2*x
1-1.875*X ---=mnn
"data" +
+[7,4,3]
§ o5} , +[8,4,4]
[15.,7, H7.3.4]
\ [32,11,12]
*15,5,7]
*[15,4,8]
\‘ ,
0 0.5 1
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4 Isolated radius
The following definition holds in any characteristic.

Definition 4.1 Let C be an [n,k,d]-linear code. If there exists the greatest positive real number T such
that o(C') = ¢(C) for C' € B.({d/n,k/n)), then r is called the isolated radius of C. The linear codes
C' such that the points ©(C") are closest to ¢(C) = (d/n, k/n) with p(C") # ¢(C) are called the closest
codes to C.

Now, we again assume ¢ = 2. We look for the closest linear codes to the (7,4,3]-Hamming code C
and calculate the isolated radius of C. For this purpose, we consider the extended linear code C of
C. As is well-known (or by an easy calculatlon) C is an [8,4,4]-linear code. Since p(C) = (1/2,1/ 2)
the distance between ¢(C) and ¢(C) is equal to 1/4/98. We examine the codes which are contamed in

B, vos((3/7,4/7)).
Suppose that an [, k, d|-code C" is contained in B, , 55((3/7,4/7)). Then, we have
(6/n—3)7)% + (k/n—4/7)* < 1/98.

If k < 3, then we have 4/7 — 1/4/98 < k/n < 3/n. Therefore, we have n < 7. Now, we assume k > 4.
Then, by Proposition 2.3 we have an inequality k/n + (15/8)(d/n) < 1 4 4/n. We consider the line L
and the circle Z defined as follows:

L: R+(15/8)6 = 1 +4/n,
Z: (6-8/7)%+(R-4/7)?>=1/98.

The point ¢(C’) = (d/n, k/n) exists in the circle Z and below the line L. Therefore, for the existence
of such a point, it is necessary that part of the circle exists below the line L. Considering the condition
that L and Z intersect each other, we conclude n < 24, which holds also in the case of k < 3. Thus, we
have only finitely many candidates of linear codes in B, 55((3/7,4/7)).

Using the program in the appendix, we can choose the cases which satisfy both the Griesmer bound
and the Hamming bound by computer search. Then, we have the following possibilities of the types of
linear codes in B, ;. 55((3/7,4/7)):

[53 3, 2]7 [77 4’ 3]’ [8747 3]’ [8? 5’ 3]’ [97 5, 3]’ [g) 5, 4]’ [1‘0’ 5’ 4], [10’ 67 4] ? []‘17 6’ 4]’
[11’ 7’ 4]’ [12’ 7’ 4]’ [167 8’ 6]’ [171 97 6]’ [189 107 6]’ [22$ 117 8]’ [23, 1‘2) 8]1 [24’ 13? 8]'

By the list of linear codes in A. E. Brouwer [1], we have the following.

Lemma 4.2 B, /55((3/7,4/7)) consists of the linear codes of the following types:
5,3,2],(7,4,3],[8,4,3],19,5,3],(10,5,4], (11, 6,4], [12,7,4].

Hence, we have the following.

Theorem 4.3 The closest linear code to the [7,4,3]-Hamming code is the [5,3,2]-linear code. The
isolated radius of the (7,4, 3]-Hamming code is equal to v/2/5 -7 = 0.0404061. ...

Using the same method as in Theorem 4.3 and the results in Section 3, we have the following list.
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Table. Closest codes, isolated radii and complete isolatedness

Toshiyuki Katsura and Motoko Qiu Kawakita

code

closest code

isolated radius

Hamming code (7,4, 3]

Extended Hamming code (8,4, 4]
Dual of Hamming code (7,3, 4]

Golay code {23,12,7]

Extended Golay code {24, 12, §]

BCH code (15,5, 7]
BCH code (15,7, 5]

Extended BCH code (32,11,12]

Cyclic code [31,25,4]
Simplex code [15, 4, §]

(5,3,2]

(9,4, 4]

(5,2, 3]
(17,9, 5]
[22,11,7]

(9,3,4),(18,6,8]
(24,11, 8]
27,9, 10]

[16,13,2],(32,26, 4]
[11,3,6]

Y2 = (.0404061. ..
22 =0.0785674. ..
YZ — 0.0404061 ...
175? = 0.0127877. ..
s = 0.0151515.. ..
s = 0.0222222...

a5 = 0.0083333...
% =0.0113991....
3 = 0.0072692. ..
75 =0.0135519...

+

|

+ +

+ + + ++

NSR. O, Vol. 55

Here, + means that the code is completely isolated, and — means that the code is not completely
isolated. The isolated radius of Golay code was also computed by a joint-work of the first author and
J. Katsuta.

5 Appendix

We show here the program which we used to list the possibilities of the types of binary linear codes

near our codes. The following program is for the (7,4, 3]-Hamming code. We used the algebraic system
KASH/KANT in [2].

Program.

# #
# Input: [n0,k0,d40],t

# Qutput: [n,k,d]

# 1.(d/n,k/n) is in the ball with centre (d0/n0,k0/n0) and radius t;
# 2.[n,k,d] satisfies linear, Singleton, Griesmer and Hamming bound.

3

no0:=7;
kO:=4;
d0:=3;

r0:=k0/no0;
deltal:=d0/n0;

t:=Sqrt((r0-4/8) “2+(deltald-4/8)"2);

kb:=Floor(32/(8*r0+15*delta0~8-17*t)); # linear bound for n

for n in

kmin:=Maximum(1,Ceil ((x0-t)*n));
kmax :=Minimum(n,Floor ((x0+t)*n));

[1..xb] do

for k in [kmin..kmax] do
r:=k/n;

dmin:=Maximum(1,Ceil((deltal-t)*n));

dmax :=Minimum(n-k+1,Floor ((deltal0+t)*n));
for d in [dmin..dmax] do
delta:=d/n;
# linear bound for (d/m,k/n) and region of ball #

if r+15/8+delta<=1+4/n and (delta-deltal) “2+(r-r0)~2<t"~2

# Griesmer bound #
g:=0;

H#
"

then
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for i in [0..(k-1)] do
g:=g+Ceil(d/2°1);
od;
if n>=g then
# Hamming bound #
h:=0;
for j in [0..Floor(d/2)] do
h:=h+Factorial (n)/(Factorial (u-j)*Factorial(j));
od;
if 2°n>=h then
Print( [n)k: d] ) H
£i;
fi;
fi;
od;
od;
od;
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