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Abstract

This short note is the summary of my Master’s thesis. We define some norms and cylindrical measures,
and investigate the relation between them and seven conditions. The detail will be appear elsewhere.

1 Introduction

The measure theory on infinite-dimensional spaces was established as a certain field of mathe-
matics by Prokhorov, Sazonov and Minlos. In 1962, Gross([5]) introduced the notion of measurable
norms. This gives a condition satisfying that the Gauss cylindrical measure extends to a measure. In
1971, Dudley-Feldman-LeCam([3]) defined another notion of measurable norms. If the norm is con-
tinuous, then this is a necessary and sufficient condition satisfying that a general cylindrical measure -
extends to a measure. These two notions are very close, but subtly different. Badrikian-Chevet([1])
presented a Conjecture that the above are equivalent for all cylindrical measures. This was denied
by Maeda([9]) in 1984. Also Maeda([10]) showed that these two measurabilities coincide with each
other for every generalized rotationally quasi-invariant cylindrical measure. On the other hand there
are some conditions around these two notions of measurable norms, and we research into them. In

this paper, we study the relation among seven conditions for norms and cylindrical measures made in
some examples.

2 Preliminaries

Throughout this paper, let X be a Banach space, X its topological dual, (-,+) the natural
pairing between X "and X , and 2(X) Borel c—algebra of X. Let H be a real Hilbert space, < -, >
the inner product on H, FD(H) the family of finite-dimensional subspaces of H, £ the partially
ordered set of finite-dimensional orthogonal projections of H and I the identity map.

Let {¢1,£2,...,&} be a finite system of elements of X . Then by = we denote the operator from X
into R mapping z onto the vector ((&1,2),...,(én,z)). A set Z C X is said to be a cylindrical set
if there are £1,&2,...,6n € X and B € #B(R") such that Z = E~1(B). Let e, ta,...£, denote the
o-algebra of all cylindrical sets by a fixed {£1,£2,...,6n} and Z the algebra UZ, ¢.,...¢..-

We can also denote a cylindrical set on Hilbert space Hby Z = {# € H;Pzx € F}(P € Z,F €
#(PH)).

Definition 2.1 A set function p is called a cylindrical measure if it satisfies the two following condi-
tions:

(4) p: 2 —[0,1]
(#) The restriction to e, ¢,,.... Of 1 is a probability measure.
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Definition 2.2 The canonical Gauss cylindrical measure on H is the cylindrical measure v : £ —
[0,1] defined as follows :
If Z={xz € H; Px € F}, then

1" Iz}
Z) = (— e 2 dz ,
12 =) [
where n = dim PH and dz is the Lebesgue measure on PH.

Remark 1 If H is an infinite-dimensional space, then vy is finitely additive, but is not o—additive. In

— (=)

vV 27t F . L
v1 is the caonical Gauss cylindrical measure. In this paper, we denote the canonical Gauss cynlindrical
measure by 7.

=12 . . .
general, we denote by v.(Z) e~ % dzx the Gauss cylindrical measure with parametert.

We define rotationally invariant and rotationally quasi-invariant cylindrical measures.

Definition 2.3 Let u be a cylindrical measure on H. Then p is called a rotationally invariant cylin-
drical measure if u(C) = u(u(C)) whenever C is a cylindrical set of H and u is a unitary operator of
H.

Definition 2.4 Let u be a cylindrz'cdl measure on H. Then p is called a rotationally quasi-invariant
cylindrical measure if u ~. u(u) whenever u is a unitary operator of H. "~.” means to be cylindrically
equivarent and u(u) is the image of u under u.

Now we present the definitions of measurable norms which are main in this paper. They are
introduced by Gross and D.F.L. , i.e. Dudley, Feldman and LeCam.

Definition 2.5 Let || - || be a norm defined on H, then || - || is called a p-measurable(Gross) norm
if for every € > 0, there exists Py € F such that u({z € H;||Pz| > €}) < € whenever P € & and
PlPA.

In other words, || - || is u-measurable(Gross) if for every € > 0, there exists G € FD(H) such that
p({N.NF + F+}) > 1 — ¢ whenever F € FD(H) and F LG, where N, = {z € H;||z|| <¢} and F*
is the orthogonal complement of F.

Definition 2.6 (Abstract Wiener space) Let v be the canonical Gauss cylindrical measure on H,B be
the Banach space which is the completion of H with respect to || - || that is -y-measurable(Gross) and
i the inclusion map of H into B. Then the triple (i, H, B) is called an abstract Wiener space.

After Gross defined a measurable norm, Dudley-Feldman-LeCam defined another measurable
norm.

Definition 2.7 ||-|| is called a u-measurable(D.F.L.) norm if for everye > 0, there exists G € FD(H)
such that u({z € H; ||z — F|| < €}) > 1 — ¢ whenever F € FD(H) and F1G.

In other wards, || - || is u-measurable(D.F.L.) if for every € > 0, there exists G € FD(H) such that
w({Pp(Ne) + F+}) > 1 — & whenever F € FD(H) and F1G, where Pr is the orthogonal projection
of H onto F'.

Therefore we know that the condition of measurable(Gross) norms is stronger than that of (D.F.L.).

3 Measurable norms -and related conditions

In this section, we introduce several conditions approximating to measurable norms.
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Theorem 3.1 Let H be a real Hilbert space, u be a cylindrical measure on H, || - || be a continuous
norm defined on H and B be the completion of H with respect to || - ||. Moreover, letY be the bidual
B" of B with weak*-topology o(B"”,B’) and j be the inclusion map from H into Y. Then the seven
conditions satisfy the following relations:

(2) = (i) = (%) = (), (2) = (i7) = (v) & (vi) = (vit)

If u is continuous ( this means that the charateristic function of u is continuous on H ), then the
following conditions satisfy the relations:

(#%) = (vi) and (iv) = (vii)

(%) For any € > 0 there exists N € N, where N is the set of all natural numbers, such thatn >m > N
implies
u({z € H; || Pz — Pnz|| >€}) <e

for every sequence {P,} C F such that P, converges strongly to the identity map I, write it P, /' I.
(%) || - || 4s a p—measurable(Gross) norm.

(#91) There exists a sequence {P,} C & such that P, /I, which has the property that for any e >0
there exists N € N such that n > m > N implies

u({z € H; ||Prz — Pnz| > €}) <e.

(iv) There exists a sequence {P,} C & such that P, /' I, which has the property that for any e > 0
there exist N € N and n. € N such that N > N, and n > n, implies

p({z € H; sup ||Pez| > N}) <e.
1<k<n

() || - | is @ u—measurable(D.F.L.) norm.
(vi) i(u) (i.e. poi™?t) is extensible to a measure.
(vit) j(u) is extensible to a measure.

Proof. First we proof that (i) implies (). Suppose not. Then there exists €9 > 0 such that for
all P € &, there exists Q perpendicular to P such that

u({z € H; ||Qx|| > eo}) 2 €0, Q € £.

Define a sequence P, which strongly converges to I inductively. Let {ei},_; , be an orthonomal
basis in H. Let Py = 0. Suppose we have Py, Py, ..., Ps,. Then there exists (), perpendicular to Py,
such that u({z € H; ||Qnz|| > €0}) > €0 and Q. € Z. Let Pony1 = Pon +Qr and Pa, 2 = orthogonal
projection onto lin sp {Pan+1H,en+1}. Then P, strongly converges to I, so there exists N > 0 such
that n > m > N implies p({z € H; ||Poz — Ppz|| > €0}) < €9. Choose n = 2k + 1, m = 2k for some
k> % Then P, — Py, = Pogy1 — Par = Qr and we reach a contradiction.

Secondly we proof that (i) implies (ii4). Define a sequence P, which strongly converges
to I inductively. Let {e;}i=1,2,.. be an orthonormal basis in H. Let P, = 0. Suppose now
that Py, P1,...,Pp_1 are defined. There exists @, € & such that P perpendicular to @, implies
p({z € H;||Pz| > 1}) < 1. Define P, to be the orthogonal projection onto lin sp {QnH, P,—1H, €, }.
Then P, strongly converges to I. We show that {P,} satisfies (i4i). Given € > 0 , we choose N such
that % < ¢. Then n > m > N implies that P, — P, is perpendicular to @y so that

1 1
p({z € H;||Pox — Prz|| > €}) < p({z € H; || Poz — Pzl > N}) <y <e

Third we proof that (#i7) implies (iv). By (#it), there exsists a monotone increasing sequence
{Pr} which strongly converges to I in £ satisfying that for an arbitrary € > 0, there exsits ng such that
n,m > no implies p({||Pr. — Pn| > €}) < €. ( For simplification, we denote {z € H;||P, — Pn|| > €}
by {||P. — Pn|| > €}. ) By the triangle inequality, we have ||Pyz|| < || Pnoz|| + ||[Pe% — Pooz||- So we
have

sup || Pex|| < ||Pro|| + sup ||Piz — Pooz.
no<k<n no<k<n



Keiko Harai NSR. O., Vol. 54

N
Let N be an arbitrary natural number, then sup ||Pyz|| > N means ||Ppoz|| > = or sup ||Puz—
no<k<n 2 no<k<n
Pzl > —J%[_ Therefore it follows that
{ sup ||Pezl| >N} < { sup ||Pezf|>N}U{ sup [Pl >N}
1<k<n 1<k<no no<k<n
N
C { sup [Pzl > N}U{[|Prozll > 5}
1<k<no

U { su

N
D ||Pez = Pagsll > 5.
no<k<n

We have
N
p{ sup ||Pzll>N}) < p({_ sup [|Pez| > N}) + p({llPaozll > 1)
1<k<n 1<kLno

N
+ w({ sup [Pz — Fuozl > 5})
no<k<n

IA

N N
p({ sup |[|Pszll > 2 1) + p({l|Prozll > 57})
1<k<ng 2 2
N
+ p({ sup [Pz — Puoz| > 5})-
no<k<n

For each k , there exists My > 0 such that (uo Py~ V) (Jte] > M) < since (o P ') is a

€
576_’
measure on the finite dimensional space. Let 1\—2{ > max{M;,Ma,...,Mp,} and N > M, then
N N
,u,({Ks;]g | Prz| > ?}) < £ and p({||Proz|| > _E}) < &. We can choose N satisfying § > e. By
SRRSO

(%), we have
N
#({ sup |[|Pez — Puozl| > 5}) < u({_sup ||[Psz — Pooz|| > €}) <e.
no<k<n no<k<n

Therefore for an arbitrary ¢ > 0, there exsist natural number M and ng satisfying that u({ sup ||Prz||
1<k<n

> N}) < 3¢ for N > M and n > no.
For (v) & (vi), see Dudley-Feldman-LeCam|[3]. For (iv) = (vi), see Yan[13].For (iv) = (vii),
see Yan[13] and Gongl4]. o

Theorem 3.2 ([12]) Let u be a rotationally gquasi-invariant cylindrical measure on H. Then the
conditions (1), (i), (%), (v) and (vi) in Theorem 3.1 are equivalent.

Corollary 1 Let v be the canonical Gauss cylindrical measure on H. Then the conditions (i), (ii),
(3i2), (v) and (vi) in Theorem 3.1 are equivalent.

Corollary 2 Let p be a rotationally invariant cylindrical measure on H. Then the conditions (i),
(1), (44%), (v) and (vi) in Theorem 3.1 are equivalent.
4 Some examples on {2

In this section, suppose H = £2. We construct some cylindrical measures and norms and we
study the relation to the conditions of Theorem 3.1.
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Let (£2)* be the algebraic dual of £2, equipped with its weak topology o ((¢2)”, £2) and Z be an algebraic
basis of £2 including {en}n=12,., Where e, = (0,0,...,0,1,0,...), 1 appears in the n-th place. Let
(-,-) be a natural pairing between (£2)" and £2.

Construction of cylindrical measures
On (£2)", we take a and b as follows;

a€ () st(aen) =1, n=12,... (a,ea)=0, ea € I\{€n} 12, .
be (£2) st (a,en)=n, n=L2,... (a,ea) =0, €x € I\{€n}p_1z .

Let 8., 0, denote the Dirac measures at the fixed point a, b respectively in (£2)". Then the induced
cylindrical measures p,, up on £2 are follows,
[,l,a({ﬂ? € 82;(< -73,51 >, < ‘7”:‘52 >,"‘,< m,fm >) € D})
=da({z € ()" ((2,&1), (2, &), - -, (z,€m)) € D}),

Mb({$e£27(< xagl >,<$,£2 >,...,<$,§m >) ED})

= 6b({’1: € (‘82)*a ((fL‘, 51), (x: 52), ceey (iE, £m)) € D})’
where £1,82,...,&n € €2 and D € B(R™).

Construcution of norms

We define open, convex, absorbing and circled sets Ui, Uz and Us as follows.
Let {8,} be an increasing sequence of non-negative real numbers such that 8, — oo as n — oo, and
{A\n} be the sequence of non-negative real numbers such that Agm = 0 for m = 1,2,..., {A2m—-1} be
an increasing sequence and Agp—1 — 00 as m — 0o.
We define

I'; = the convex hull of the set {£f8,(e; +e2+...+ex);n=1,2,...},

I’y = the convex hull of the set {£An(e1 +e2+...+en);n=1,2,...},

I's = the convex hull of the set {+A,(e1 + 2e2 —I— .+ nex);n=1,2,...}.

Denote by B; the open unit ball of £2 and by B, the open set{z = (zn) € £3;4/ > 0, ( ) < 1}

Let Uy =T+ By, Uy =T34+ B; and U3 = F3+B2 Then we define || - ||, || - ||, || - |l and ]] I, as a
gauge of Uy, Uz, Us and Bs, respectively.

In 1984, the couple of y, and || - ||, was made as an example which is measurable in the sense of D.F.L.
but is not measurable in the sense of Gross. In 1999, this was proved that it satisfies the conditions of
(4%) and (iv) but dosen’t (¢) and (i) in Theorem 3.1. In 1998, the couple of up and || - ||; was made as
an example which is y-measurable and p,-measurable(D.F.L.) but is not p,-measurable(Gross). We
research the relation between an example in 1984 and the Gauss cylindrical measure -y, and between
an example in 1998 and the conditions of Theorem 3.1.

Theorem 4.1 ([11]) || - ||, is not y-measurable.
Theorem 4.2 || - || satisfies the condition (iit) for usy.

Proof. Let P, be the orthogonal projection from £2 onto the finite dimensional subspace which is

the linear span of {ej,es,...,e2n+1}. Clearly P, converges to I strongly for n — oo. For n > m,
(Pn — Pp,) is the orthogonal projection onto the linear span of {€2mt2, €2m+3; - - -, €2n+1}-
Put k = —3—————5—, then we have

A2m41 A2n41
k{(2m + 2)62m+2 +. (271, + l)egn_l.]}
—k{el +2e2+...+ (2n +.1)eant1} — k{er +2e2+ ...+ (2m+ 1)ezmyi}

[)\2,”_1{61 +2e2+ ...+ (2n+ 1)eont }]

A2n+1
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+j\‘2£;[_)\2m+1{31 +2e2+...+ (2m + 1)eamt1})-

k__ =1, we have

)\2m+1

By A2f+1 +
k{(2m =+ 2)62m+2 +...+ (2n + 1)62n+1} ey C Us.
Therefore

1 1
Aom+41  A2ngl

1
”(2771. + 2)62m+2 + ...+ (2n + 1)62n+1“3 S E =
Since Agn41 — 00 (n — 00), it follows that for an arbitray € > 0 there exists IV satisfying

“(21TL+ 2)62m+2 +...+2n+ 1)62n+1”3 <E€ (n >m > N)

Since pp is the Dirac measure 8(2m+2)ezmsz-+...+(2n+1)eznsas 00 the linear span of {eam+2,---,e2n+1},
we have li_n_} po({x € £2;||Pox — Pnzll; < €}) =1 for every € > 0. O
n,M—>00

Therefore we know that || - ||; does not satisfy (i), (44) , but satisfies (i44), (i), (v), (vi) for ps .
Theorem 4.3 ([12]) || - ||, is not pp-measurable(D.F.L.).
Theorem 4.4 ({12]) || - ||, satisfies (i) for pa.

Theorem 4.5 ([12]) || - ||5 end || - ||, satisfies (iii) for pa.

5 Remarks

‘We have the table of a previous chapter. The sign O means the norm satisfies the condition
with respect to the cylindrical measure, the sign X means it does not satisfy and the blank space
means indefiniteness.

norm | cylindrical measure | () | (i) | (i33) | (v) | (v) | (vi) | (vid)
-1y Y
La O O
T y X T X [ X <X
la X X @) O |]O}| O @)
Il 1ls ¥ OB EC) @) O | O] O O
La O O
Lib X X O O | O] O O
-1l v OO O] O[O[O] O
lha O O
Lo X | X | X X | X

After this it is a subject that we fill up the blank spaces by studying whether || - ||, is y-measurable
or not, and || - ||s, || - ||, are po-measurable in the sense of Gross or not. In this paper we treat only
three cylindrical measures, but <, p, and up have entirely different properties. We hope that more
universal things are found out among conditions of from (¢) to (vi¢). ( For instance, the equivalence
of the condtions (z) and (ii), and the equivalence of the conditions from (74), (v) and (v).) To the
contrary there are a possibility that we make the opposite example.
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