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Abstract

An experiment for an explosion of natural gas pipeline is planned. A pipe of 20m long is placed in a
8m x 8m x 40m facility and exploded to investigate the extension of the crack on the pipe. In the
experiment, the blast waves travel in the box and interact with the walls. In the present study, the
behavior of the blast wave in a closed space, which is a simplified model of this experimental facility, is
examined. Two-dimensional simulations show that the maximum pressure is observed at the bottom
corner of the box by the second attack of the blast wave. Also shown is the effectiveness of the holes
placed at the bottom corner. Three-dimensional simulations are also performed and strong
two-dimensionality of the flow around the middle of the pipe is concluded.

1. Introduction

Natural gas is a promising alternative to oil in
this century. Nowadays, there are projects to
construct natural gas pipelines that transport
gases in higher pressure than conventional ones.
The pressure inside is so high that an accidental
eruption of gas due to a crack in the pipe may
cause serious damage on the whole pipeline
system. An experiment is planned where a pipe of
20m long containing high-pressure gas is
exploded in a 40m x 8m X 8m box. Figure 1
illustrates the experimental facility. The pipe is
filled with 350atm, 10 percent air and 90 percent
water. The length of pipe is 20m. Although the
main purpose of this experiment is to observe the
travel of the crack, the behavior of the blast
waves in the box is another interest because the
estimation of the blast wave strength at s
practically important for the construction of the
experimental facility. In the present study, the
blast wave behavior is only focused on. The pipe
is simplified to be an energy core. The
interactions of blast waves and walls are mainly

discussed with - a variety of the box
configurations.
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Fig.1 Experimental facility

2. Two-dimensional model
Figure 2 illustrates the two-dimensional

model. To simplify the problem, the pipe is
assumed to be filled with 35atm, 100 percent air.
In this condition, the internal energy in the pipe
is almost the same as that in the experiment. The
standard air is set outside of the pipe. The radius
of the pipe is 1.2m and the pipe is placed 1.2m
above the ground and in the center of two
sidewalls. The pipe is infinitely thin. The box is
an 8m x8m cross section. Initial velocities are
zero. Temperature is 288[K] as the standard
condition. All walls are treated as slip walls. The
governing equations are the Euler equations,
which are discretized with Harten-Yee's upwind
TVD scheme.? A regular spacing Cartesian grid
is used in order to wuniformly capture the
traveling blast waves.

As the Cartesian grid is used, the boundary of
the pipe does not fit with the grid lines. When the

-grid points are not sufficient around the pipe, the

initial energy given in the pipe might be
inaccurate and the strength of the blast wave
might differ with the grid spacing. In order to
overcome this problem. the initial pressure
around the boundary of the pipe is modified so
that the amount of the energy be close enough to
the ideal value. Figure 3 illustrates the procedure.
The grid cells on the boundary of the pipe are
subdivided into 16 subcells. The number of the
subcells, which are located in the pipe, is counted
and this is used as a weight factor. For example,
the filled circles in the grid cell A are 12, then the
initial pressure at A is calculated as
12/16 x 35+4/16 x 1[atm]. ,

At the beginning of the simulation, the
infinitely thin pipe tube disappears instantly.
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Fig.3 Initial pressure value
near the edge of the pipe
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Fig.4 Flowfield in the closed space

The grid convergence test is executed with a
series of grids. The number of grid points ranges
from 41x41 to 601 x601. From these results,
201 x 201 grid points are concluded to be
necessary to resolve this particular flowfield
3.The result of two-dimensional simulations

Figure 4 shows the time sequence of the
flowfield. The lines are pressure contour lines.
The number of grid points is 201 x201. After the
pipe tube disappears, the blast wave reaches at
the ground first, then reflects, reaches at the
sidewalls and reflects. Our interest is the
pressure rise on the walls (side or top) and not on
the ground. Hence the pressure on the three
walls is recorded and it is found that the
maximum pressure rise is observed at the bottom
corner of the sidewalls. Some periodical pressure
rises are observed at this corner. Figure 5 is the
time history of the pressure at the bottom corner.
The first pressure peak was recorded about
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10[latm] at 0.006[sec]l. The second one was
recorded about 12[atm] at 0.03[sec]. The second
peak pressure is a result of two waves interaction,
i.e. one reflecting the opposite side wall and the
other reflecting the top of the wall. Due to this
concentration of energy, the second pressure peak
is stronger than the first one.

In order to relieve the pressure on the wall, the
silencers are planned to be placed on the wall in
the experiment. Instead of the silencers, small
holes are placed in the present simulation. The
locations of the holes are determined to be the
bottom corners where the maximum pressure
value is observed. The height of the holes is 0.2m.
In this case, one more grid shown in Fig. 6 as
Grid2 is prepared for the hole and the outer
region. The curve of top boundary in Grid2 is
given as a sine curve. From the previous results.
the flow symmetry is assumed and computational
domain is a half of the box. The two zones (the
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half of the box and the outer region) are solved by
Fortified Solution Algorithm (FSA) approach.?
The interface procedure using FSA is explained
as follows. In Fig. 7 the points @ of Gridl is
given the value which is solved on Grid2 in
previous time step. Then, the points A of Grid2
1s given the value which is solved on Gridl in
previous time step. The linear interpolation is
used at the grid points that do not coincide with
the point of the other grid. In Grid1, all walls and
the ground are treated as slip walls. In the region
of Grid2, the walls of top and ground are slip
walls and all variables are extrapolated at the
boundary of opposite side from Gridl. Initial
conditions are the same as the case without a
hole. The maximum pressure is recorded on the
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Fig.5 Time history of pressure at
the maximum pressure point
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sidewall just above the hole. Figure 8 is the time
history of the pressure at the point. The value of
the first pressure peak is almost the same as the
case without the holes, but the second peak is
reduced by half. Figure 9 shows two snapshots of
the flowfield with small holes. The lines are
pressure contour lines. The pressure
distributions at the moments of the first peak
and of the second peak are depicted in Fig. 9(a)
and Fig. 9(b). The gas spouts out from the box in
both moments. However, due to the concentration
of the blast waves at the bottom corner, the gas
spouts out more effectively in the latter moment.
This practically prevents the fatigue of the wall
against the repeating blast wave attacks.
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Fig.8 Time histories of pressure
with and without holes
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Fig.9 Flowfield in the closed space with holes
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4. Three-dimensional models
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Fig.10 Three-dimensional model

In the experiment, the length of the pipe is
half of the box and it may cause the
three-dimensional effect. The three-dimensional
flowfield is now simulated for the estimation of
the three-dimensional effect. The
three-dimensional model is illustrated in Fig. 10.
The cross section is the same as the
two-dimensional case. The pipe is placed in the
middle of the box in the longitudinal direction.
Initial and boundary conditions are the same as
the two-dimensional case. From the
two-dimensional results, flow symmetry is
assumed and the computational domain is a
quarter of the box. The grid points in the cross
section is 53 x 101 and in the longitudinal
direction is 53 points for this quarter area. Thus,
this grid corresponds to the grid which has 101 x
101X 101 grid points for full domain. Firstly, the
three-dimensional flow field in a closed space is
simulated. Figure 11 shows the initial condition
of pressure in the half domain in the longitudinal
direction. The maximum pressure rise is
observed at the bottom corner of the sidewalls in

the middle of the box in the longitudinal direction.

The corner is labeled as point A in Fig. 11 and the
intervals from A to F are constant. Figure 12
shows the pressure distribution at the moment
when the first peak of pressure is observed. The
pressure isosurfaces are plotted. Figure 13 shows
the time histories of at A to F. Due to the
insufficiency of the grid points in the cross
section, compared with two-dimensional cases,
the second peak of pressure is rather hebetated.

Fig.11 Initial condition
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Thus we limit the following discussions within
the qualitative aspects. The time histories of the
pressure on the A, B and C are almost the same.
In Fig. 14, the time history of pressure at A and
the one of the two-dimensional flowfield with
101x 101 grid points are plotted. The two time
histories of pressure are almost the same. This
result shows that the flowfield around the middle
of the box in longitudinal direction is almost
two-dimensional. This two-dimensionality 1is
explained by the observation that the blast wave,
which is reflected at the end wall in longitudinal
direction, does not come until the blast waves in
the middle region of the box decay, because the
end wall in the longitudinal direction is rather
far.

The second case is a closed space with seven
discrete holes (Fig. 15). The intervals of the seven
holes are constant. The size of these holes is
0.2m x 0.48m. Figure 16 is the pressure
distribution at the moment when the maximum
pressure rise is observed. Figure 17 is also the
pressure distribution on the sidewall at the same
moment. The black areas correspond to the holes.
The pressure load between the holes is high.
Figure 18 is the time history of pressure at the
maximum pressure point in the cross section (i)
and (i), which are indicated by the line () and (i)
in Fig. 17 respectively. While the second peak in
the cross section (ii) is reduced, the pressure in
the cross section () is not reduced. Figure 19 is
the time history of pressure in the cross section
(@ together with the two-dimensional case
without holes. Both the time histories in Fig. 19
are almost the same. Actually, comparing the
time sequences of pressure distribution in the
cross section () with two-dimensional case
without holes, both of them are almost the same.
The influence of placing the several discrete holes
does not reach to the cross section (). The
influence of the holes is limited because of the
strong two-dimensionality of the flowfield.
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Fig.12 Pressure distribution in a closed space
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5. Conclusions

The behavior of blast waves in the closed space
is investigated in this study. The followings are
concluded.

In two-dimensional flow simulations,

* The blast waves cause the strong pressure rise
at the bottom corner of the box by repeating the
reflection at the walls, and the ground. The
pressure rise repeats several times.

®* The maximum pressure rise is observed at the
second peak at the bottom corner of the box.

® This second peak of pressure is reduced by half
by placing the holes at the bottom corner of the
box.
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Fig.13 Time history of pressure at from A to F
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In three-dimensional flow simulations,

® The behavior of the blast waves in the box has
strong two-dimensional nature, especially around
the middle of the box in longitudinal direction.

* The influence caused by placing discrete holes
is limated.
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Fig.14 Time history of the pressure compared
with the two-dimensional case

Fig.15 With discrete holes

Fig.16 Pressure distribution in a closed space
with discrete holes
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" Fig.17 Pressure distribution on the sidewall
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Fig.18 Time history of pressure

Fig.19 Time history of pressure in the cross section (ii)
in the cross section (i) and Gi)

compared with the two-dimensional case without holes



