CBEOKKRTFAFEABERE $535 H1% v
Natural Science Report, Ochanomizu University, Vol. 53, No. 1 (2002) 85

An Efficient OLAP Cube Generation and Storage Scheme

Myung Kim, Yoonsun Lim, Ji Suk Song

Department of Computer Science and Engineering
Ewha Womans University
11-1 Daehyun-Dong, SeoDaeMun-Ku, Seoul 120-750, Korea
E-mail: mkim@ewha.ac.kr '

Abstract:

multidimensional data analysis that is essential to extract

OLAP is a process and methodology for a

desired data and to derive value-added information from an
enterprise data warehouse. In order to speed up OLAP
query processing, most OLAP systems pre-compute and
store analysis results into arrays or tables, called “cube’. In
this paper, we present a fast and scalable cube generation
algorithm and propose a cube storage scheme for fast query
processing. Our cube generation algorithm has high
memory utilization and our cube storage scheme uses the

Z-indexing technique to cluster data for queries.

1. Introduction

OLAP(On-line Analytical Processing) is a process and
methodology that analyzes and queries data stored in a
data warehouse [7, 14]. With data mining [3] and
XML/HTML document processing technologies, OLAP is
one of the fundamental technologies for today’s business
Recently, IT
shown a great deal of interests in OLAP, and a lot of

intelligence infrastructure. industry has
research activities are going on in this field. Various OLAP
systems have been developed and are already on the
market [2, 4, 5, 8, 9, 11].

Multidimensional data analysis frequently requires to
scan the entire data set to answer queries. Thus, most
OLAP systems generate a cube in advance in order to meet
the performance requirement of the applications. For large
data sets, cube generation is a very time consuming process,
and tremendous amount of data is produced in this stage.
Recently, there have been a lot of efforts [1, 15] to increase
cube generation speed. [1]'s cube generation algorithms are
for the data stored in relation tables (ROLAP cube
generation). [15]’s algorithm is for the data stored in arrays
(MOLAP cube generation). For relatively dense data sets,
MOLAP style cube generation is much faster than that of
ROLAP.

In this paper, we present a fast and scalable ROLAP cube
generation algorithm. High performance and scalability is

This work was supported by grant No. R04-2001-00191 from
the Korea Science & Engineering Foundation.

achieved by slicing the input fact table along one or more
dimensions before generating the cube and by increasing
memory reusability.

We also present a MOLAP cube storage scheme for fast
query processing. MOLAP systems store their cubes in
compressed arrays [15]. Depending on the mapping scheme
of a multidimensional array onto disk, the speed of MOLAP
operations, such as slice and dice, varies significantly. [12,
15] presented an efficient MOLAP cube storage scheme
which divides a cube into small chunks with equal side
length, compresses sparse chunks, and stores the chunks in
row major order of their chunk indexes. This gives a fair
chance to all dimensions. We have developed a variant of
this by placing chunks in a different order, which results in
a significant reduction in disk I/O time. The purpose of
rearranging the chunks is to align them to disk block
boundaries and to cluster neighboring chunks so as to
reduce disk I/O time for slice and dice operations.

This paper is organized as follows. Section 2 gives a
ROLAP cube generation algorithm. Section 3 gives a cube

storage scheme. In section 4, we draw conclusions.

2. AROLAP cube generation algorithm
Suppose we are given a 3 dimensional fact table. Assume
that the table has four attributes, product (P, store (9,
time (7) and sales data (). Sales data D in each tuple
represents the dollar amount of the product Psold in store S
attime 7. For analysis, sales data can be grouped by Pand S.
It can also be grouped by Sand 7" The cube generation is to
compute group-bys to all possible combinations of the three
attributes, P, S and T It is easily seen that the number of
group-bys in a cube is 27 for an n dimensional fact table.
We now present our cube generation scheme. Assume
that we are given a 3 dimensional fact table ABC as in
Figure 1. Let us focus on the computation of AC from ABC.
Our objective is to compute ACby scanning ABC only once.
In case ABC is not sorted, the entire 2 dimensional array
AC should be in memory. However, suppose that ABC is
partitioned along C, meaning that all the tuples (or cells) in

a partition have the same value of C. In this case, we only

86 Myung Kim, Yoonsun Lim and Ji Suk Song

need a 1 dimensional array A to compute AC. Each time a
slice of ABC'is read, a slice of ACis computed and moved to
disk as in Figure 1(b). This is how we reduce the space
requirement for the cube generation.

All three 2-dimensional group-bys can be computed
simultaneously. Memory for computing ACand BCis A and
B, respectively. Each time a slice of ABC is scanned, the
corresponding slices of AC'and BC are computed and moved
to the disk. However, computation of AB requires space for
the entire AB. Note that a group-by whose name does not
have the dimension name along which the fact table is
sliced needs space for the entire group-by.

ABC AC

ABC

computation

R R SR . ABC
e T !
ﬂ ﬂ AC
T
% E Disk

............

(b) Memory requirement for computing AC.

Figure 1. Computation of AC from ABC.

After a slice of AC is computed, it can be used to
compute the corresponding slice of C. Thus, the group-bys
in the dotted area marked with ‘step 1’ in Figure 2 can be
computed with one scan of ABC. And the space needed for
this step is AB, A, B, and all. Before saving AB to disk, it
can be used to do step 2. Since ABis in memory, A, B and all
in step 2 can be computed together. Note that space needed
for step 1 is the same as that for step 2.

NSR. O., Vol. 53
ABC
Slice |
Slice 2
Slice 3
Sliced base cube °
ABC
. O
A B> «@hcCc .-
Step2: | s T
\\\~a“ (:‘
IAl < IBI < [CI

Figure 2. Cube generation lfrom ABC.

Let us now consider a 4 dimensional fact table as in Figure
3. The cube can be computed similarly in two steps. Here
the memory requirement for the cube generation is equal to
the size of the cube for ABC.If | A| < | Bl <| C|<| D|
is the case, the algorithm guarantees that all group-bys are
computed from their smallest parents. Memory space
needed for the cube computationis (| A{ +1)(| B| +1)
(1 Cl+1).

ABCD
T R e
"""" A—B"'m"éi:"""-;{c“:;‘ AD BD CD
T vl
i A .8 ¢ " @np AN

Step 2

Figure 3. 4 dimensional cube generation

In case there is not enough memory space for the cube
géneration, we use more than one dimension for
partitioning the fact table as in Figure 4. The above idea
can be recursively applied. And the space requirement gets
reduced significantly. For example, in case of Figure 4, fact
table ABCD is sliced along CD. And the memory
requirement for the cube computation is what is needed for
the group-bys in the dotted area of Figure 4(a). Here, they
are AB, AB, A, B, and all.

When two dimensions are used for fact table slicing, the
cube computation is carried out in four steps, as in Figure
4(b). We compared our scheme with the fastest known
MOLAP cube generation algorithm in terms of the space
and time complexities. It showed that our scheme is faster

and more scalable.

June 2002
ABCD
. A/N»
_..heE ABD BCD ACD
EET~ A |
',' AB N BC AC AD BD cD
A B> (al)D

(«) memory requirement for cube computation with the

fact table sliced along CD.

ABCD
e Uapo | aco L TBGB
:, //’1\ “. 5{}&__ \l ‘,\
“AB_ . BC AC ! JAD BD: iCD} Step1
. B iC Step3 “@no .-’
bl /! Step 2
@l stepa

(b) memory requirement for cube computation

Figure 4. 4 dimensional cube computation steps
(fact table is sliced along CD).

3. A Z index based cube storage scheme

MOLAP with proper data compression is in general faster
than ROLAP in the process of cube generation as well as
OLAP operations [15]. MOLAP cube generation can be done
so fast that a direct ROLAP cube generation is slower than
converting a fact table to a MOLAP base cube, generating a
MOLAP cube, and then transforming the resulting cube
back to a ROLAP cube. Here, we analyze existing MOLAP
cube structures, and design a new cube storage structure
which is more efficient with respect to space and time
complexities.

Let us first examine [15]'s MOLAP cube storage scheme.
An example of a 3 dimensional base cube (or fact table) is
shown in Figure 5. The base cube is divided into chunks.
They are numbered in linear order and are stored in
sequence in the data file. The chunk size is normally chosen
as the disk block size so that each chunk can be read into

memory independently [12].

An efficient OLAP cube generation and storage scheme 87

Dense chunks:
Store it in an array

offset value
0 304

/ 2 20

3 33

10 40

S 15 5

parse
chunks — 30 o 100
2 bytes 4 bytes

Figure 5. Chunk based MOLAP cube .

Dense chunks, whose density is above 40%, are stored as
is. Sparse chunks are stored differently. Only the valid cells
are taken and are stored with their offsets inside the chunk.
The offset of a cell is the linear number of the cell inside the
chunk. Due to such data compression, chunks became
different in shapes and sizes. Thus, their sizes and
positions in the file are stored separately as meta data.

We made the following observations. First, dense chunks
are not aligned to disk block boundaries. This means that
two disk block reads are needed to bring one dense block to
memory in average. This can be avoided by reordering the
chunks in the file.

Second, it is common that the base cube density is
0.1%~1%. In such cases, hundreds of very sparse chunks
can be packed and stored into a disk block. These chunks
are also along a particular dimension since they are stored
in linear order. This would cause excessive disk I/0’s when
slice/dice operations are applied along other dimensions.
This situation can also be avoided by reordering the chunks
in the data file.

We now propose a new cube storage scheme that solves
these problems. As with [15]'s method, the cube is divided
into chunks. What makes our scheme different from [15]’s
method is that chunks are stored in different order, called
the Z-index order. We begin our discussion with describing
the Z-index order. The details of the proposed scheme will

follow.

(@) The Z indexing scheme
The Z indexing scheme is a popularly used method of

88 Myung Kim, Yoonsun Lim and Ji Suk Song

numbering pixels of a 2 dimensional image (or a 3
dimensional image) [13]. It numbers neighbor pixels before
numbering far apart ones so that image component
identifications can be easily made. Let us first explain how
to apply the method to a 2-dimensional array. Consider an 8
x 8 array in Figure 6. The array cells in Figure 6(a) are
numbered with the row-major order (or linear order), the
array cells in Figure 6(b) are numbered with the
shuffled-row-major order (or Z index order).

01 2 3 45 6 7 01 2 3 465 6 7
0{0 1 2 3 4 5 86 7 1] 722
118 9 10 11 12 13 14 15 1 19 2 23
2{16 17 18 13 20 21 2 23 2 25 28 29
3|24 25 26 27 28 29 30 3 3] 27 30 31
4132 33 3 ¥ 36 37 38 39 4|32 33 36 37|48 43 52 53
5140 41 42 43 44 45 46 47 5134 35 38 39|50 61 54 55
648 43 50 51 52 53 54 55 6|40 41 44 45|56 57 60 6l
7|5 57 58 53 60 61 62 63 7 (42 43 46 4758 59 62 63

(b) Z index order

0
1
N
3 M
432 33 % 37 48 49
5
6
7

40 41 44 45 56 57 60 6t
42 43 46 47 58 53 62 63

(c) recursive decomposition
Figure 6. A Z indexed 2 dimensional array.

Consider a 2 dimensional array with 22x 22, 1 < ncells. It
is divided into 4 square blocks, each with 271 x 271 cells.
These blocks are called NW, NE, SW, and SE blocks. In
order to assign Z-indices to array cells, we first number all
the cells in the NW block, followed by all the cells in the NE
block, followed by all the cells in the SW block, and followed
by all the cells in the SE block. If the block has only one
cell, the next available number is assigned to the cell,
otherwise the block is recursively decomposed, and a
similar method is applied. Figure 6(c) shows how to assign
Z-indices to the cells in the NW block.

The Z indexing scheme can be extended to higher
dimensional arrays. The first level decomposition of a d
dimensional array produces 29 blocks. For a 3 dimensional
array, 8 cubic blocks are produced as in Figure 7. Each
block is recursively decomposed in a similar fashion.

NSR. O., Vol. 53

z
£ . T
“J/ o 71 7 73
2 3
X
| ;
6 7 4 5
6 7
Row-major indexing Z-indexing
X1 XoY1Yoz12Zo X1Yy121 XoYoZn

Figure 7. A Z indexed 3 dimensional array.

(b) A new MOLAP cube storage scheme

We propose a MOLAP cube storage structure that uses the
Z-indexing scheme. We explain how to store a sub-cube (or
a summary table). The entire cube can be stored similarly. A
sub-cube is decomposed into chunks as [15]’s cube. Chunks
are numbered with the Z indexing order. And they are
classified into 2 groups (D group and S group) as in Figure
8. A chunk belongs to the D group if it is dense. A chunk
belongs to the S group if it is sparse. D group chunks are
stored at the beginning of the file. They are followed by the
chunks in the S group. In each group, chunks are stored in
increasing order of their Z indices. ‘

The main purpose of classifying chunks of a sub-cube into
two groups, and storing them separately is to solve the
problems that were brought up in the previous section. By
having the D group, we make all the dense blocks aligned
with the disk block boundaries. It solves the problem of
reading two disk blocks in order to read one dense chunk.

Disk block
o

Z order

—
b group S group
(a) (b)

L]

Z order

[T

File

Figure 8. Storage structure of a sub-cube

By having the S group, we solved the second problem
that is actually a suggestion to cluster nearby sparse
chunks into a disk block as much as possible. Suppose that
8 3 dimensional chunks can be stored in a disk block. This
means that what can be stored in a disk block is a “virtual”
big chunk whose side length of each dimension is two times
that of the original chunk. We call this virtual big chunk
effect.
1/O’s for slice or dice operations. We showed the new scheme

Virtual big chunk effect can be used to reduce disk

June 2002

reduces disk I/0 time through experiments.

4. Conclusions

In this paper, we presented a fast and scalable cube
generation algorithm and a cube storage scheme that
supports fast OLAP query processing. Our cube generation
algorithm is fast and highly scalable. It works well
especially for relatively dense data. The proposed cube
storage scheme reduces disk I/O time significantly for slice
and dice operations. However, the sizes of sparse chunks
are very small so that the scheme needs relatively large
indexes. This situation can be avoided by having one index
for a group of sparse chunks. This can be done since sparse
chunks are stored in Z index order. We also developed such

an indexing scheme and the results will be published soon.

References

[11 Agarwal, S, R.Agrawal, P. M. Deshpande, A. Gupta, J.
F. Naughton, R. Ramakrishnan, S. Sarawagi, “On the
Computation of Multidimensional Aggregates,” Proc.
22nd VLDB, Mumbai (Bombay), India, 1996.

{2] Arbor Software Corporation, "Method and Apparatus for
Storing and Retrieving Multi-dimensional Data in
Computer Memory," United States Patent 5,359, 724,
Oct. 25, 1994.

[3] Berry, M. and G. Linoff, "Data Mining Techniques for
Marketing, Sales and Customer Support," Wiley, New
York, 1997. '

[4] Mitsubishi Electric Corp, "DIAPRISM: An Accelerator
for Data Warehouse/Data Mart, and Business
Intelligence Solutions," White Paper,

http://www.melco.co.jp/service/

diaprism/index-e.htm.

{5] Hyperion Corp. “Large-Scale Data Warehousing Using
Hyperion Essbase OLAP technology,”
http!//www.hyperion.com/
downloads/teraplex.pdf, Jan 2000.

[6] Information Advantage, "OLAP-Scaling to the Masses",
White Paper, Information Advantage,
http://www.infoadvan.com/

[7] Kim, W. and M. Kim, "Performance and Scalability in
Knowledge Engineering: Issues and Solutions," Journal
of Object-Oriented Programming, Vol. 12, No. 7, pp.
39-43, Nov/Dec. 1999.

[8] Microsoft Co. "Overview of Microsoft SQL Server 7.0
OLAP Services,"
http:/msdn.microsoft.com/library/backgrnd/html/olapo

ver.htm
[9] Micro Strategy Incorporated, “A Case for
ROLAP, http://www.microstrategy.com/files/whitepaper

An efficient OLAP cube generation and storage scheme : _ 89

s/wp_rolap.pdf.
[10] http://www.olapreport.com/Database

Explosion.htm.
[11] Oracle Corporation.”Oracle Express Server: Delivering
OLAP to the Enterprise,”

http://www.oracle.com/datawarehouse/products/servers

/express/documents/oe olap.pdf

[12] Sarawagi, S. and M. Stonebraker, "Efficient
Orgartization of Large Multidimensional Arrays," Proc.
of 10th Data Engineering Conference, Feb. 1994,

[13] Samet, H., "Application of Spatial Data Structures -
Computer Graphics, Image Processing, and GIS,"
Addison Wesley, 1990.

[14] Thomsen, E. "OLAP Solutions: Building
Multidimensional Information Systems," John Wiley &
Sons, New York, 1997.

[15] Zhao, Y., P. Deshpande, J. Naughton, "An Array-Based
Algorithm for Simultaneous Multidimensional
Aggregates," Proc. ACM SIGMOD 97, pp. 159-170.

