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Abstract

The concept of #-congruent numbers was first- introduced by myself as a generalization of classical
congruent numbers. Since then, several interesting properties have been found. This paper gives still
further theorems related to #-congruent numbers.

1 Introduction

A natural number n is called a congruent number if it is the area of a right triangle with rational sides. A
lot of studies have been made on congruent numbers. Particularly, the recent approach through elliptic
curves brought about some beautiful results ([4], [5], [7]).

Of special interest is the fact that square free natural numbers n congruent to 5, 6 or 7 modulo 8 are
always congruent numbers, provided that the weak Birch and Swinnerton-Dyer conjecture is true.

The concept of congruent numbers was first generalized to 8-congruent numbers connected to arbitrary
triangles with rational sides in [1].

Let us review the definition of #-congruent numbers. Suppose that there is a triangle with rational

sides X, Y, Z. Denote by 6 the angle between X and Y. cos# is necessarily rational. Thus cosf = ;
(r > 0,(r,s) = 1). Then sinf = 9;76— where ap = v/r2 — 52 is uniquely determined by 6. We now define
#-congruent numbers as follows:
Definition 1 A natural number n is a 8-congruent number if there exists a triangle such that

1. three sides are rational

2. one angle is 6

3. the area is noy

T
A 6-congruent number for 6 = 5 is nothing but an ordinary congruent number, since az = 1. Thus
6is a -;E-congruent number, since 6 is the area of the right triangle with X =3,Y =4, Z =5. lis a

%—congruent number since az = V/3 and V/3 is the area of the equilateral triangle with X =Y = Z = 2.

2
As a little more complicated example, 19 is ~£-congruent since azp = v/3 and 19+/3 is the area of the

. ' 544 1995 254659
triangle with X = 105 Y= 136’ Z = 14280 °

Obviously n is #-congruent if and only if nk?2, for some integer k, is #-congruent. Therefore, henceforth
we assume 71 square free and also assume that 8 has rational cosine unless otherwise stated.
We introduced the following elliptic curve attached to n and 6 ([1]):

Enp : v =z(z+ (r+s)n)(z — (r — s)n).

Several theorems on #-congruent numbers have been proved by way of this E, ¢. To mention a few, for
any 6 and n(# 1,2,3,6), n is f-congruent if and only if E, ¢(Q) has a positive rank ([1]). A prime p is
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o
not %—congruent (resp. not —?)—W—congruent) if pis 5, 7 or 19 (resp. 7, 11 or 13) modulo 24 ([1], [2]), and

2
is both g— and —;r—-congruent if p = 23 (mod 24) ([2], [3]).

In the following, E(Q)ior denotes the group of points of finite order in E(Q). Our main results in
the present paper are as follows, where Theorem 1 is a version of a theorem due to my student Miss M.
Otsuka.

Theorem 1 Let E be an elliptic curve defined by
E : y? =g(z+ A)(z + B)
where A, B are integers with B <0 < A. Then

(I) E(Q)tor =~ Z2 & Zs if and only if there exist integers a,b,k > 0 such that a and b are coprime, of
opposite parity, and satisfy either of the following:

(i) —B = k?(a® - b%)*, A— B =16k%%*, (1+V2)b>a>b
(ii) —B = 16k2%a%b?, A— B =k2(a2 - b?)%, a> (1 +V2)b

(II) E(Q)sor = Z2 & Zg if and only if there exist integers u,v,k > 0 such that
(w,v) =1, u>2v and A=1*(u—2v)k?, B =13(v—2u)k?

(III) E(Q)tor =~ Zo @ Z4 if and only if —B and A — B are squares but not satisfy (I)
(IV) E(Q)tor =~ Zg & Za, otherwise.

Applying the above theorem to our E, g, we have

Theorem 2 (I) Ep ¢(Q)tor =2 Zo & Zsg if and only if there exist integers a,b > 0 such that a and b are
coprime, of opposzte parity, and satisfy either of the following:

(i) n=1, r=8a%? r—s=(a?-0%)?% (1+V2)b>a>b
(i) n=2, r=(a®-b?)?*, r—s=32a%"% a>(1+V2)b

(I1) En,o{Q)tor ~ Za & Zg if and only if there exist integers u,v > 0 such that (u,v) =1, u > 2v and
satisfy either of the following:

Q) n=1 r= %(u~v)3(u+v), r+ s = ud(u— 2v)
() n=2, r=(u-v)3(u+v), r+3=2ud(u—2v)
(i) n=3, r= %(u v (u+v), r+s= %u3(u — 2v)
(iv) n=6, r= %(u v (u+v), r+s= §u3(u - 2v)
(1) Eno(Q)ior = Z2 ® Zy if and only if either of the following folds:

(i) n=1, 2r and r — s are squares but not satisfy (i) of (I)

(ii) n =2, r and 2(r — s) are squares but not satisfy (ii) of (I)
(IV) En0(Q)tor = Zz ® Zy, otherwise.
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This theorem naturally gives rise to the following corollary that supplements Theorem 1 of [1].

Corollary For those n =1, 2, 3, 6 and 8 prescrived in (1), (II), (II1) of Th.2, n is 8-congruent. For all
the other n and 6, n is 8-congruent if and only if E, o(Q) has a positive rank.

The following theorem is'a generalization of Theorem 2 in [1] and signifies abundance of §-congruent
numbers.

Theorem 3 For any 0, there exist infinitely many 6-congruent numbers in any arithmetic progression.

The f-congruent numbers in Theorem 3 can not always be square free, since, for example, integers
congruent to 4 mod 8 are divisible by 4. The following theorem gives Diophantine approximation to
arbitrary angle 6 by 6, , for which given n, not necessarily square free, is 8, s-congruent.

Theorem 4 For any integer n > 0 and any 8 € (0, ), there exist infinitely many integers r and s such
that

r>0, (r,s)=1, r>]|s|, n is 0,s;— congruent and |0, s —

s 9
where cos Oy, = o c(6) = v

9|<C(T—9)

Corollary For any integer n > 0, {6 € (0, 7);n is 6-congruent} is dense in (0,7).

2 Proofs of Theorem 1 and Theorem 2

We first give two preliminary lemmas necessary to prove Theorem 1.

Lemma 1 (well-known {4], [5]) Let E be an elliptic curve defined by

E: ¢’ =(z-a)z—pF)(z~-7)
with o, 8,7 € Q. Let P = (xo,y0) be a point in E(Q). Then P € 2E(Q) if and only if to —a, zo — B, To —
7€ Q%

Lemma 2 Let E be an elliptic curve in Theorem 1 and P = (zo,yo) be a poini in E(Q). Then

. 1, % Yo Yo \2
- t 2P = - -
(I) z-coordinate of 4(m0+A + 2ot B xo)

. . Yol Yol |yol 2
(IT) Suppose (A, B) square free, then P € 2E(Q)sor if and only if 20’ o1 A moiB €Z".

Proof of lemma 2. Note first that

2 2 2

Yo Yo Yo
= y + A = —, + B = —— k
0= @o+ A)(zo + B *° zo(zo+ B)' 0 Zo(zo + A) ()
(I) By addition formula, z-coordinate of 2P = (—3—%)20 — (A+ B) — 2xp. It is easy to show
dy, _ 1. Yo Yo
(dm)mo o 2(11:0 + A + zo + B + $0)'
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Taking () into account, straightforward computation leads to the formula in (I).
(II) If P € 2E(Q)+or, then by lemma 1 and Lutz-Nagell theorem, z,z¢ + A, o + B € Z2. Therefore —ZZQ,

Zo
Yo , Yo A
zo+ A zo+ B
Remark that these three integers are pairwise coprime; in fact, suppose there exists a prime p dividing

—z—%, moyi A). Then from (*), p divides zo, To + A, zo + B. It follows that p? divides zq, 2o + A, zo + B
and therefore p? divides A and B, contradicting (4, B) being square free. Similarly, (—;‘3—2—, ;oy—i_B) =
( Yo , i——) =1, as claimed.

zo+ A 290+ B

Therefore, by (*) again, we have the desired conclusion. We can follow the above argument backwards
to prove the converse.

Proof of Theorem 1. Owing to Mazur’s theorem on the structure of torsion group ([6]), F(Q)tor is
isomorphic to either Zy @ Zg, Zo ® Zy4, Za ® Zg or Zy @ Zsg, since E(Q)4or obviously contains Zg & Zs..
(I)<=) We have only to show existence of a point of order 8 in E(Q). Put v (resp. w in case (ii))= a® — b2
and w (resp. v in case (ii))= 2ab. Then in both (i) and (ii), v? + w? = »? for some integer u and
A = k?(w? —v?), B = —k%v%t. Put P = (k*u®v?,k%u?v?w?). Then direct computation shows that
P € E(Q). Moreover

zo + A = k*u?0? 4+ k2 (w? — v?) = K2w?u?, o+ B = k2u®0? — k%t = kto?u?.

Therefore by lemma 1,

Yo 2 Yo 2 Yo 2
Pe?2F d = = kw?, = kv*, = ku”.
(@ an To v o+ A v zo+ B u

By (I) of lemma 2, z coordinate of 2P = —1—(kv2 +ku? — kw?)? = k?v* = —B. Consequently 2P = (—B, 0)

4
and order of P is 4. 4 B
=) Let E* be an elliptic curve defined by 3% = z(z + ﬁ)(z + F) where k2 is the square part of (A, B).
Since E(Q) ~ E*(Q), there exists a point P = (zo,y0) in 2E*(Q) of order 4 and yo > 0. As 2P has

order 2 and B < 0 < A, due to lemma 1, we obtain 2P = (~-3,0). By (II) of lemma 2, putting

Yo _ 2 Y _ 2,09 Y0 .

’
Zo To+ £ To+ iz

k2’
= u? for some positive integers u, v, w,

2,2 2,2

l(1)2 + u? — w?) = z-coordinate of 2P = — — = xq — (xo + %) = vy’ — wve.

4 k2
It follows that (v? + w? — u2?)? = 0 and therefore u? = v? + w?. This in turn implies that

B
Z = w0 = —t,
k2

Consequently (v, w) = 1. Thus, v,w and u are Pythagorean triple and therefore v = a? — b? (resp. 2ab)
and w = 2ab (resp. a? — b?) for some integers a,b with (a,b) = 1, a > b > 0, of opposite parity. Here

2,,.2 2

= u?w? —u?v? = u?(w? —v?) and = w2 (w? —v?) +v? (u? —w?) = wt.

k2 k2

A>0>B & w>v>0
& 2ab > a® —b? > 0 (resp. a? — b2 > 2ab)
& (14+V2)b>a>b (resp. a > (1+V2)b),
as mentioned in (i) and (ii) of (I).
(I)<=) Put P = (u?v?k?, u?v?(u—v)2k3). We have only to prove that P is of order 3. It is straightforward,

by using A = u3(u — 2v)k? and B = v3(v — 2u)k?, that P is on E(Q). On the other hand, zo + 4 =
u?v?k? + ud(u — 20)k? = u?(u — v)?k? and similarly zo + B = v?(u — v)2k?. It follows that

Yo, Yo _ oo Yo _ .2
xo—(u v)“k, P v’k and p— u‘k.
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Using (I) of lemma 2,
x — coordinate of 2P = i—(qu + 0%k — (u — v)%k)? = u?v?k? = zo.

Thus, order of P = 3. 4
B
=) Let E* be an elliptic curve defined by E* : y® = z(z + ﬁ)(z + ﬁ) where k? is the square part

of (A, B). Since E(Q) ~ E*(Q), there exists a point P = (zo,y0) € 2E*(Q) of order 3 and yp > 0. By

(II) of lemma 2, 37_0 = w?, “ﬂT —? and —2
0

To + iz To + oz

= u? for some positive integers u, v, w. Because z-

1
coordinate of 2P is zq, by (I) of lemma 2, Z(v2 +u? —w?)? = 15 = u?v?. Therefore u? + 1% —w? = £2uwv.

Thus (u Fv)? = w?.

Since == (zo + Eg)—% = v?w? —u?v? = v3(vF2u) and B < 0, (u—v)? = w? and 55 = v3(v—2u).
% = u?w? — u?v? = u®(u — 2v). Note that u > 2v since B < 0 < A. Since (%, g) is square free,
(u,v) = 1.

(IIT) There exists a point of order 4 in E(Q) if and only if (—B,0) € 2E(Q), since (0,0) and (—A,0) can
not belong to 2E(Q) owing to lemma 1. This in turn is equivalent to —B, A — B € Z?2, owing again to
lemma 1. Taking (I) into account, the proof of (III) is finished. (q.e.d.)

Proof of Theorem 2. We apply Th.1 to our curve E, ¢ where A = (r + s)n and B = —(r — s)n. We first
remark that > |s| if and only if 4 > 0 > B. We also note here that, for our E, g, (I) or (III) in Th.1
takes place only when n = 1 or 2; in fact, since —B = (r — s)n and A — B = 2rn are squares, we can
write (r — 8)n = t2, 2rn = m? for some integers r,m. Suppose an odd prime p divides n, then p divides
both ¢ and m. Consequently, n being square free, p divides r and s. This impliesn =1 or 2.

(I) In both (i) and (ii) of (I) in Th.1, there exist positive integers u, v, w, k such that —B = (r—s)n = k?v*,
A— B =2rn =Kkt v +w? =42 (v,w) =1.

subcase n = 1. We have

~B=r—s=k* A-B=2r=Fkuw! v?+w?=1

Here k has to be equal to 1 since, if a prime p divides k, p divides r and s. Since w is clearly even, (i) of
(I) in Th.1 must occur and obtain (i) in Th.2.
- subcase n = 2. We have

—B=2(r—s)=kv* A-B=d4r==FEFuw! ?+uw?=1u? (v,w)=1,

in both (i) and (ii) of (I). If an odd prime p (resp. 4) divides k, then p (resp. 2) divides r and s. Therefore
k must be 1 or 2. If k = 1, then 2 divides v and w, which contradicts (v,w) = 1. It follows that k = 2
and we have

—B=2(r—s)=4*, A— B = 4r = 4w, v? + w? =%

Hence, w.must be odd and (ii) of (I) in Th.1 must occur, leading to (ii) of (I) in Th.2.
(III) —B = (r - s)n and A — B = 2rn are squares but not satisfy (I). Since n is 1 or 2 as was mentioned
in the beginning of the proof of Th.2, we have either

n=1, —B=r—~s and A- B =2r, or
n =2, —B =2(r—3s) and A— B =dr,

corresponding respectively to (i) or (ii) of (I) in Th.2.
(IT) From (II) of Th.1, there are integers u, v, k > 0 such that

A= (r+s)n=ud(u—20)k% B = —(r—s)n =03(v — 2u)k?, (u,v) = 1, u > 2v > 0.

Subtraction leads to 2rn = k%(u - v)®(u + v). Since k? divides (r + s)n and 2rn, n being square free and
(r,s) =1, we conclude that k =1 or 2.
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subcase k = 1. W have
(r+s)n=v*(u—2v), —(r—s)n=v3v—-2u) and 2rn= (u—v)%(u+v), (L,v)=1, u>2v>0.

We claim here that n = 1 or 3 in our case. In fact, let p be a prime dividing u, then p does not divide n.
That is, (u,n) = 1. This implies u> divides r + s. Similarly we can show that (v,n) = 1 and v® divides
r — s. It follows that n divides both v — 2v and v — 2u, hence divides 3(u — v). It is easy to see that n
does not divides u — v. Therefore n = 1 or 3 as claimed.

Consequently we have

en=1 r+s=ud(u—2), 2r=(u-v)3(u+v) or
o n=3, 3(r+s)=ud(u—2v), 6r=(u—2v)3u+v).

These respectively correspond to (i) or (iii) of (II) in Th.2.
subcase k = 2. We have

(r +s)n =4ud(u—2v), —(r —s)n =403 —2u), 2rn=4u—-v)*(u+v), (wv)=1, u>2v>0.

We claim here that n = 2 or 6 in our case. In fact, let p be an odd prime dividing u, then p does not

divide n. Namely, (u,n) = 1 or 2. Similarly (v,n) =1 or 2. n must be even since, otherwise 2 divides r

and s. Putting n = 2m, m is obviously odd. m divides both u — 2v and v — 2u, thus dividing 3(u — v).

It is easy to see that m does not divide u — v. Consequently m = 1 or 3 and n = 2 or 6 as claimed.
Therefore we have

en=2 r+s=2uu—-2v), r=w—-v)3(u+v) or
e n =6, r+s=§u3(u—20), r=—;-(u—v)3(u+v).

These respectively correspond to (ii) or (iv) of (II) in Th.2. (q.e.d.)

3 Proofs of Theorem 3 and Theorem 4

We need the following lemma of Kan for the proofs.

Lemma 3 ({1}, [2]) A square free natural number n is 6-congruent if and only if there exzist natural
numbers (p, q) with (p,q) = 1 such that n =square free part of pg(p + q)(2rq + p(r — s)).

{Remark) It turns out, by examining the proof of the lemma, that r and s need not be coprime, and p
and g neither, in lemma 3.

Proof of Theoremn 3. Let 6 be as in Th.3 and m be any natural number. As is usual, cos8 = f, r > |s|,
r

(r,8) = 1. Let c be an integer 0 < ¢ < m. Let ¢ be a positive integer defined by ¢ = cm?(r — s) and p be
a prime defined by p = 1 + tq, where t is to be determined later. We note that p and ¢ are coprime. Let
n be a natural number defined by

_ Pap+q)(2rg+p(r—s))

n
m2(r — §)?

By lemma 3, though n may not be square free, n is still a §-congruent number. Moreover, by substitution,
we can easily show that

n = c(1+tq)(1 +tq + em?(r — s))(2rem® + L +tg) = ¢ (mod m).

Owing to Dirichlet’s theorem on primes in arithmetic progressions, there exist infinitely many integers ¢
that make our p primes. Since these primes p, as long as p > 2r, obviously divide n, we have infinitely
many §-congruent numbers n such that n = ¢ (modm). This completes our proof. (q.e.d.)
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Proof of Theorem 4. By Dirichlet’s pigeon hole principle, there exist infinitely many integers a,b > 0

3— 6 b
such that|ﬂ—-—]<——. Here we put r = ab + 1. Obviously r > 0 and
2n a  a?
3—cosd b2 3—cosf b b b? 1 b 1 2 1
e - L LA A e a8}
2n T 2n a a ab+1 " a alab+1) ab+1'a a

1 3—cosf+e¢

202 < o for all sufficiently large a. Therefore

b
Foranye>0,g+

3—cosf b? < 3—cosf+e

2n r nr

Now define s by s = 3r — 2nb%. Here we claim that r > |s| and n is 6, s-congruent. In fact, from above
inequality,
[7(3 — cos ) — 2nb?| < 2(3 — cosf +¢€) < 8.

Therefore, for large r, we have
—r <rcosf —8 < 3r—2nb> <rcosf+8 < r.
Hence r > |s|. Put p =7 and q¢ = nb® — r in lemma 3. Then it is easy to see that
pa(p + a)(2rg + p(r — s)) = dnp?q*b®.

Considering the remark after lemma 3, n is 6, s-congruent. On the other hand,

3r — 2nb? —cos® b2 3 —cosf 8
| cosby,s — cosf| = ]i —cosf| = |——T—n —cosf| = 2n]3& -—i< ogn2—Coslte < -.
r r 2n T nr r
Using mean value theorem, putting 8, , — 8 = « for brevity,
cos O, s — cos f = —asin(f + ta) for some 0 <t < 1. (%)

Again, by mean value theorem
sin(f + ta) = sin@ + tacos(d + t'ta) for some 0 < ¢’ < 1.

As r tends to oo, from the above inequality, cosd — cos 6, s tends to 0. This in turn implies 6, , — § =
a tends to 0. Thus [tacos(f + t'ta)| tends to O and therefore, for any ¢ > 0, we have for large r,
|sin(8 + ta)| > (1 — €') sin 8. Consequently by (*), |cosb,s —cos 8| > (1 - ¢)|6, s — 0| sin @ and hence, by

(%) again > |0, s — 0|. Therefore we obtained the inequality in Th.4.

r(l —¢€')sin
It only remains to prove (r,s) = 1. Let d be the greatest common divisor of r and s. Then obviously
d = (r,8) = (r,2n) by our choice of r and s. That is to say, d is a divisor of 2n. For those infinitely

many r and s chosen above, we put 7’ = 3 and s’ = 2. Then we have still infinitely many r’ and s’ with
(r',8") = 1 such that v’ and ¢’ satisfy all the conditions in Th.4. (q.e.d.)
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