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Abstract

Let X¥(t) be a fractional Brownian motion with index H (0 < H < 1/2), and let
D, (to,t1,...tn) (0 < to < t1 < --- < t,) denote the correlation matrix of {X (tx41) —
XH(t):k=1,...,n—1}. In this paper the asymptotic behaviour of (1/n)log det D, as

n tends to oo is studied.

1. INTRODUCTION

Let X (t) be a fractional Brownian motion with index H (0 < H < 1/2). That

is, X is a real-valued centered Gaussian process such that '

1) BXTOX(S) = 1+ e sPH), 620,
or equivalently,

(1.2) XH0)=0, E(XH@) -XH(s)?=|t-s]?H, st>0.
If H = 1/2, then X H is the ordinary Brownian motion.

Definition 1.1. Let 0 < ¢y < t; < --+ < t,. We denote by Cr(to,%1,...,tn) the

covariance matrix of
(1.3) (X (t1) — X" (t0), X (t2) — XH(t1),..., XH (ta) — XH (tn-1)),

and by D, (to,t1,...,tn) the covariance matrix of the standardized increments, i.e.,

XH(t:) - XH(t-0) XP(t5) - XH(tj—l))>

Dy (to,tis. - stn) = (COV( (t; — tim1)? ’ (t; —tj—1)H

In particular, if H = 1/2, then we have

“det Cp(to, 1, tn) = (1 — t0) X -+ X (tn — tn_1)
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and

det.Dn(tg,tl, cee ,tn) = 1.

In the general case where 0 < H < 1/2 we have the following inequality.

/1y det Cr(to,t1,.. . tn)

. ) < <
(1.4) (3) < G =)t — 1127 (6 — a2 = 1
or equivalently,

(1.5) (%)" < det Dn(to, t1, .- tn) < 1.

Here the lower bound of (1.4) is due to Csorgd, et al.([1]), and the upper one is an
easy consequence of the fact that for any positive definite matrix A = (ai;)1<i,j<n,

it holds that det A < a11a23 ... ann. Notice that (1.5) can be rewritten as follows:
1 ‘
—log2 < - log det D, (to,t1,---,tn) < 0.

The aim of the present paper is to show that the following limit exists in some sense

and that the limit is in fact a constant which depends only on H.
1.6 li ! logdet D, (to,t t
(-)‘ Jim_—logdet Da(to, b1, - - s tn)-

This problem was motivated in connection with evaluating the tail probabilities of

the local times at the origin, though we shall not go into details here and refer to

[3]-

Theorem 1.1. Assume that 0 < H < 1/2. Let &,&,...,&, be independent
random variables which are uniformly distributed on the interval [0,1], and let
€™ .. ey be its order statistic. Then there ezists a constant cy (—log2 <

cg < 0) such that

(1.7) o lim % logdet D,,(0,6M™,...,60) = cy

and

(1.8) Jim (—71; log det Cn (0,€™, ..., &) + 2H logn) =cy
in probability.

The proof will be given in the next section.
The authors believe that the condition 0 < H < 1/2 may be replaced by 0 <
H <1 with —co < cyg < 0.
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2. PrROOF OF THEOREM 1.1

We shall prove Theorem 1.1 by reducing it to the next theorem. However, since
the idea of the proof remains valid for more general Gaussian processes, we shall not
confine ourselves to fractional Brownian motions but consider a centered Gaussian
process Y (t) which has stationary increments with Y (0) = 0. We denote by ¢(t)
the incremental covariance function: i.e., E[(Y(t) = Y(5))?] = ¢(t —s)(0 < s < t),
and let Cp(tg,t1,...,tn)(0 < to < t; < --- < t,) denote the covariance matrix of
(Y(t1) ~Y(t0),Y(t2) = Y(t1),-..,Y (tn) ~ Y(tn—1)) as in Section 1.

Theorem 2.1. Assume that p(t) is concave and suppose

e o]
(2.1) / et log p(t)|dt < oo,
0

and let 0 =Ty < Ty < -+ < T, < ... be Poisson arrival times with intensity 1.

Then there exists a constant ¢ (—oo < ¢ < 00) satisfying
. 1
(2.2) 1}_1_)m°° - logdet Cp(0,T1,...,Tn) =¢, a.s.

We postpone the proof of Theorem 2.1, and we first see how Theorem 1.1 can
be reduced to Theorem 2.1. So we consider the case of Y (t) = X¥ (t), and hence

o(ty = t2H (0 < H < 1/2). Since X# is a self-similar process, we have
(23) det Dn(O, cti,y. .., Ctn) = det Dn(O, t‘l, “eay tn),

for every ¢ > 0. Since {{5"), ... ,§,(1")} and {T_,.T.I,.T’ cees %—1—} are equally distributed

(see e.g. page 221 of Gut ([2])), (2.3) implies
(2.4) det D, (0,6, ..., M) £ det DL (0, Ty, ..., To).
On the other hand, we have

logdet Dy (0, Ty, - ., Tn) = logdet Cn(0, T4, .., Tn) = Y _ log o(Ti = Tie—y).
k=1

Since {log@(Tk ~ Trk—-1)}r are i.i.d. random variables, keeping the law of large

numbers in mind we have from Theorem 2.1 that
(o]
(2.5) lim E logdet D, (0,Th,...,Tpy)=c— / e~ log p(t) dt,
n—oo T 0

where the right side of (2.5) is finite by the assumption (2.1). Combining (2.4) and
(2.5), we see that the first half of Theorem 1.1 can be reduced to Theorem 2.1. The

latter half can also be shown in a similar way by using

(2.6) det Cn(0,£™, ..., €0 £ T72H" det C (0, Th, .., To)
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and T, /n — 1.
We now return to the proof of Theorem 2.1. The proof is based on the following

subadditive ergodic theorem of Kingman ([5]).

Theorem A ([5]) . Let {Xm n}o<m<n be o family of random variables satisfying
(51) Xmn < X+ Xin, 0Sm<k<n, :
- c
(S2) {Xm+1,n41} ~ {Xmn}

. E[Xo,n}
R

Then the finite limit

(2.7) = lim 2on

n—oo n

erists with probability one and in mean.

Now put
(2.8) X =logdet Crpe (T, Trnt1, - - -, In), for 0 <m < n.

Then by an elementary property of positive definite matrices (see Proposition in

Appendix), we have

(2.9) detCrm(tm,.--,tn) < det Cr—m(tm,---,tk) - det Crnp (e, trg1,- -« tn)
which implies

(2.10) Xomn € Xmi + Xem, for0<m<k<n.

Thus we see that (S) is satisfied. Next, since Y has stationary increments, it holds

that

(2.11)  det Coem(tms tiagis - - - tn) = det Crom(0y tmt1 = ty- - - s tn — i)
Combining (2.8) and (2.11), we have

(2.12) Xmn =logdet Cnem (0, Trmt1 — Tony -+ o, T — Tm),

and hence it is easy to see that (S;) is satisfied. From (1.4), we have

(2.13) ————E[i"’"]

1
= HE[logdet Cn(0,T1,...,T%)]
L
2 ;E[—” log 2 +log (T1) + log (T2 — T1) + - - + log (T — Tpm1))]

= -10g2+/ e tlog p(t)dt.
0
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This combined with the assumption (2.1) implies

(2.14) inf ElXon]
neN n

> -

Thus, the condition (S3) is satisfied. Therefore, Theorem A is applicable and we
see that, under the assumptions of Theorem 2.1, there exists a real-valued random

variable ¢ satisfying
(2.15) Ji’rr;o%bgdet Cn(0,Th,...,Tn)=C( as.

For the proof of Theorem 2.1 it remains to show that the limiting random variable

¢ is non-random. To this end we prepare

Lemma 2.1. Let C,(to,:.-,tn) (0<to <t < -+ <ty) be as in Theorem 2.1 and
let 1 < k <n. Then,

(i)
(216) det Cn(to, t1,-.4, tn)
S (p(tl - to) e (p(t), - tk_]) det Cn_k(tk,tk+1, ‘o ,tn),
(ii)
(2.17) * det Cnlto,ts,. .., tn)
1\ k
> (—2-> w(t; — to) ... oty — tk—]) det Cr—p (t) ths1, - - - Jtn).

Proof. (i) is an easy consequence of Proposition in Appendix. For the proof of
(if) let X1 = X(tn) — X(tn-1)s..., Xn = X(t1) = X (to) and let V,, = (vi;) where
vij = E[X;X;]. Notice that detV,, = det Cp.(to,t1,...,ts). Since ¢ is concave, all
of the off diagonal elements of V,, are negative, and so we can check directly to
see that Z#k lvjr] € (1/2)vgy for every k = 1,...,n. Thus, V;, is a ‘matrix with
dominant principal diagonal’. Therefore, by applying Marcus’ result ([6], see also

[7]), we get the inequality of (ii). O
We are now ready to prove Theorem 2.1. Applying Lemma 2.1, we have
1
(2.18) —T;{—klogZ +logp(ty —to) +--- +logw(te — te—1)}
1
< i—logdetCn(to,tl,...,tn) =~ logdet Cooi(t, thsts 1)

1
< ~{logw(ts ~to) + -+ +log p(tk — ti-1)}-

17
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Hence, for every fixed k& > 1,
L1 .1
(2.19) nl_l_)néo - logdet C,(0,Th,...,T,) = nlgxéo - logdet Cro— i (Thy The1y - - -, Th):
Combining this with (2.15), we have
(2.20) ¢ € WB(Th4r — Tn, Tho — Tty -+ )

Therefore, applying Kolmogorov’s 0-1 law, we see that { is in fact constant, which

completes the proof of Theorem 2.1.

APPENDIX.

" The following fact miay be well-known, but we give the proof for the convenience *

of the reader.

Proposition. Let Q = (gi;) be an n x n symmetric positive definite matriz such

that
: A C
Q= ( ' ) ,
C B

where A is a kx k matriz and B is an (n—k) x(n—k) matriz for some k (1 < k < n).
Then,
det @ < det A - det B.

Proof. We first remark that in the special case where £ =.n — 1 the result is well-
known and it holds that det Q = (det A)(gnn —*CAC). < (det A)g,n = det A-det B.
(Notice that by mathematical induction it also holds that det @ < ¢11 ... ¢nn as we
mentioned before.) This idea is also applicable to the general case where k <n -1
but.we shall give another proof here. Since both matrices A and B are positive
definite, we can diagonalize them by orthogonal matrices U and V, respectively,
i.e.,

A A m

‘AU = , and 'VBV =

0 10

Ak . - o Hri— K

Consider the n x n matrix
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Then
A1

A
*RQR = " ,

K1

\ O Hn—k

and thus

detQ = det’RQR < Ap... Ak i1 ... fin_i = det A - det B.
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