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Abstract

Space-time patterns of cellular automata are studied by using the operator theory. We shall investigate
the existence of the limit set of cellular automata by considering the invarinat set of a map. Not only
linear transition rules but also non-linear ones are considered.

1. Introduction

A cellular automaton consists of d-dimensional lattice (Zd, d € N ), and each site takes a state, one of
a finite set of possible values. The value of each site evolves in discrete time steps and it is determined
by the previous values of a neighborhood of sites around it.

Let P? be the set of all conﬁguratmns : Z% — Z[p. A map L: P — P? is a transition rule if (1)
L(0) = 0; and (2) there exist vy, -+ ,vm € Z% and amap f:(Z/p)™ = Z/p such that

(La)(z) = f(a(z 4 v1), - ,a (T + vp)) forall z € Z% a e P (1.1)

To consider space-time patterns of cellular automata, we shall study the sequence a, La, L% =
L(La), L%a,.... If a is any finite nonzero configuration, for any k, putting a, La, La- Lka on (d+1)
dimensional lattlce in oder, contracting by 1/2*, one obtains G¥a as a subset of Rd x [0, 1]. S. Willson [1]
studied when L is linear modulo 2 and showed there exists a stable limit set of GEa as k — oo and the
limit set is independent of an initial configuration a, if a is finite and nonzero . '

When L is non-linear, their behavior becomes complicated. Based on a large sample of cellular au-
tomata, it suggests that many cellular automata fall into four basic behavior classes and S.Wolfram 2]
classified cellular automata with levels of prediction of the outcome of the evolution from particular initial
states. If Lis non-linear, the existence of the limit set may depend on the initial configuration or there
may exist no limit set for any initial configuration. We discussed the behavior of cellular automata in the
case of m = 3 in (1.1) [3]. In [1], it was discussed when p is 2 and a transition rule L is linear. When p is
2, the state of each site is a zero or a one and the set theory plays an important role. When p is greater
than 3, it is useful to consider a finite-valued function instead of the set theory and it may be helpful to
use the operator theory.

In this paper, we shall investigate the structure of cellular automata by using the operator theory. We
consider the space USC of all upper semi continuous functions g : R? x [0,1] =& Z/p and consider an
operator on USC. In section 2, we define the product space ] Ex, and the operator Fy, on it corresponding
to L. We investigate whether the limit set of F¥ as k — oo belongs to a certain subspace E and the
relation between lim G%a and lim Ffg [Theorem 1]. We consider a quotient space E =] Ex/ ~ and the
operator F ', on it and 1nvest1gate conditions that the F| ', —invariant set belongs to a certain subspace. In
section 3, we consider the case of linear rules. In section 4, we consider the case that L is non-linear. We
show some conditions for L and initial configurations such that there exists a F—invariant set when the
term of non-linear is only quadratic [Theorems 5 and 6] and when the rule L contains triadic non-linear
terms [Theorem 7).
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2. Operators on the space USC and their limit

We shall consider cellular automata taking the value Z/2. A configuration a on Z%is a map a :
Z% — Z/2 and P? is the set of all configurations on Z 4 A configuration a is finite provided a(v) =1
for only finitely many v. We define two kinds of addition: If a,b P4 we may define a + b € P4 by
(a + b)(v) = a(v) + b(v) mod 2 for v € Z%. If z,v € Z%, we may define the translate of a € P? by v as
afv where (aFv)(z) = a(z — v). For z € Z¢, we define §, € P9 as

6m(y)={(1) ﬁ:z .

P is the set of all maps w Z4x N— Z/2, and 'Pi‘f'kl is the set of w € P$! such that w(z,t) =0
fort 2 k.
Grk: P_‘f_j“zlk - Pf_'f’zl,,ﬂ is defined by

w(z,t) 0<t<2k—1
k
Griw(z,t) = L2k —1,1) 28<t <21 -1  forwe P2
0 2k+1 S t

Let USC(R? x [0,1]) be the set of all upper semi continuous functions g : R x[0,1] = {0,1}. The map
b : Pi"'zlk — USC(R? x [0,1]) is defined by

bi(w)(z,t) = inf {1(z,t)|y € USC(R? x [0,1]),9(z,¢t) > w([2¥x], [2%¢])}

for w € ’P:'_';},, where [2%z] = ([2%z1], [2F22),- - , [2¥24)) for z = (21,23, ,Ta) and [2¥z;] means the

Gauss’s symbol.

G% : P4 5 USC(R® x [0,1]) is defined by

k-1
G’Ea:q&k HGL'ja (2.1)
j=0
for a € P2
Remark 1. If Lis linear, then G% is also linear.

We define f > g for f,g € USC(R%x[0,1]), if f(x) > g(z) forallz € R?x0,1]. Then USC(R?x0,1])
is a complete lattice [4, chap. 2]. For any {f,} C USC(R? x [0,1]), the relation Aozi Visn fe 2
V=1 Aksn f holds. If they are equal we denote them both by limy, e f» in USC(R? x [0, 1]).

Remark 2. The existence of lim,—,, G}a depends on Land on the initial configuration a.

In order to investigate the existence of the limit set, we shall consider a product space. Let Ej

qbk(’Pij'zlk), then Ey C E; C By C+-- CUSC(R? x [0,1)). Fp i : Ex = Ejg41 is defined by

Fr1(9) = dr1Gr ity (9) for g € Ex.

Let ] Ex be the product space of {Ex} and E = {{g:} € 1 Ex|3lime o0 g in USC(R®x[0,1])}. The
following relation holds:

Frx
Ey, —— Ein

(ka T¢k+1

d+1 d+1
P+’2k _éj) P+,2k+1

Fp : ] Ex = [I Ex is defined by

Fr(g) = {Mx}izo for g={gs},
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where

{Ao = go
i1 = Frplgr) k207

The distance d(g, b) between § = {gi} and h = {h;} € [[ Ej. is defined by
R !
d(g.h) =) srdlgr ha);
k=0

where

1 h
d(gr, he) ={ 0 i:ih: :

For {g"}. C [] Ex withg" = {g?}x, we shall define limn g* in [[ Ex by h € [] Ex if limp o0 d(g™, h) =
0. The following theorem holds.
Theorem 1. The following statements hold :

(a) Fyp is a contraction on the metric space Hy 1= {g={gc} € [1 Ex|g0 = ¢o(a)} for any finite and
nonzero a € P2.

(b) There eists limy o0 F g in [ Ex for any g € 1 Ex.

(¢) limpeo Frgin [] B is Fp— invariant.

(d) The following (d-1) and (d-2) are equivalent for finite and nonzero a € P%:
(d-1) There ezists lim,o0 Gia in USC(R? x [0,1]).
(d-2) limy_o0 F7g in [] Ex belongs to Ex for g = {#0(a),0,0,---}.

Proof. Let g = {gs}, b = {m} € Ha. Fig = {#o(a), Fro$0(a), Fr,191, Fr,292,- -~ } and FLh
{d)o(a),FL,0¢0(a),FL,1h1,FL,2h2,---} hold. If there exists k = 2 such that gr = hi, then Fpxgr =
H§=0FL,khk- Thus

l

_ - 1 -
d(F1g, Foh) < 54(a. 1),

which means (a). (b) follows from (a) and (c) is obvious.
We show (d-1) implies (d-2). For k S n,

Ar = T\ Fp.go=FriFre-1-Fri9

Srrr Lty eGrp1658 861G L k29l 1GLady g0
¢k+1H’:___1GL,s¢o—lgO

= G'sz)o_lgo

G'E"'la.

Then lim, . F7g belongs to Ex. It can be proved in the same way as above that (d-2) implies (d-1). O

Since there isn’t a one-to-one correspondence between the set {lim, o Ga | a € P9} and the set
{h € Ex | § = {¢0(a),0,0,-- - } such that h = lim, o, F7§}, We consider a quotient space. We define
the following equivalence relation. The equivalence relation “n? for g = {ge}, b = {hx} € [1 Ex is
defined by

lim g = lim hy  in USC(R?x[0,1]),
_ k—o0 , k—roo
groh or | (2.2)
gk = hi for all k€{0,1,2,---}.
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Let E = HE;c / be a quotient space, 7 : [| B} = E be the canonical quotient map. Because § ~ k

implies F.g ~ Fph, we can define a map Fy, : E — E by .
HEk ——F-i—) H Ek

Fy(ng) = n(F13). al &
Fr,
3. Linear rules

In this section we show that there exists lim,_,o, GFa in USC(R! x [0,1]) for Land the limit set is
independent of an initial configuration a.

Theorem 2. Let L be a linear modulo 2 and d = 1. Then for a finite nonzero configuration a € P*
there exists a limit set lim,_,o GFa in USC(R! x [0,1]), which is independent of a.

Theorem 2 follows from Lemma 1. At first, we shall state Proposition 1 in order to prove Lemma 1.
Proposition 1 ( S. Willson [1] ). Let L be a linear transition rule. Then the following are true:
(a) For any positive integer q, LY is linear.
(b) « € L8, if and only if 29z € L*"6,.

(c) If a € P4, then La =Y, L(6pF2) C UpeaL(doF2).

z€a

Lemma 1. Suppose o map G% : P - USC(R! x [0,1)) is defined by the equation (2.1) and a € P! is
finite and nonzero. Then the following are true :

Proof. We first show that if A;Z; V5, G (d0) (2,9) = 1, then A2, Vi, Gh (a) (z,y) = 1. Assume
that for any % € N, € >0, there is k, > n, (z/,y') € R! x [0,1] such that |z —z|+ |y —y| < € and
GL (do) (z',y') = 1. We show that there is (z",y") € R x [0, 1] such that |z” — z| + |y" — y| < € and

Gy (a) (a",y") = 1.
Let (z/,y') € [51,;, e ] X [o2,&tl], then j, € L™"dp. Let |a| < 2°, where |a| is the diameter of a.

Since L is linear, 245, € L?"*"5, by Proposition 1 (b). We obtain L2"»8, ¢ L*ia, that is , 2°j, € L2"i"q,
since L2inq = ZLzbi"Jo—T-nj = L*"ing, +Ef:2(L2bi" o+n;) by Proposition 1(c) and n; < 2°. Thus there
s (a",y") € o, St x [ e, SR amd [ a4y —u] < o'~ Iy~ | +|a' sl +y"~y] <
2/2%» + ¢ . Let k,, > n for sufficiently large n, |z — z| + |y —y| < e, then for any ¢ > 0,n € N,
Gy (a) (a"y") = 1.
Conversely, assume that for n € N, € > 0, there is k, > n, (z/,y) such that |2’ —z| + |y —y| <
e and G¥ (a) (2',y') = 1. Let (z',y') € [5% lé"—,él] X [5-;?;_-, 5,:';1]. Since j, € L'"a c J(L'"8pFn;) by

Proposition 1 (c), there is nj such that j, € L"§yfn;. Let (z",y") € [l"z—:"ﬁ, J";k;j“] x [, fotl],

Since |z — 2’| + [y —¢/| < zk" i an, lz" —z| + |y —y| < €.
Thus, we obtain G%* (§y) (z”,3") = 1. So (a) holds.
(b) can be proved in a similar way to (a).
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It is clear that if V72, Aps, G % (%) (z,y) = 1, then AJZ, Visn, G% (50) (z,y) = 1. Assume that for
n€e N, € >0, thereis k > n, (z',y') € R x[0,1] such that |z’ —z|+|y' —y| < € and G (8p) (2',y') = 1.
We show that for any ¢ > 0, thereis m € N, (z”,y") € R! x [0,1] such that |z" —z|+ |y”—y| < ¢and
GE (8) (2",y") = 1 for all k 2 m.

N . . o . b,
Let (¢',¢) € {5&—1’?:#] x [Tl— ;,:i] . then jn, € Li"&,. Since L is linear, 2%j,, € L™, for

2 ™

b, b b b
any b€ Z. Let (z",y") € [ 2 omy 2 J"1+1] X [ 2iny 2 z"‘“], then

szkﬂl, 2b2k"1 2b2kn1’ 262"1&1

2" —a|+ |y —yl < |" 2|+l -y |+]z" — 2|+ ]y —yl
< 2 +6+ 2 +s
,2 92k

Thus, for sufficiently large n, |¢” — z| + |v" —y| < 2 €. Let k, = m, then G} (o) (z",y") = 1 for all
k = m. This implies that (c) holds. This completes the proof. O

The next theorem follows from Theorem 1(c) and Theorem 2.

Theorem 3. Let L be linear modulo 2 and d = 1 and g = {gi} € [] Ex. If go € USC(R' x [0, 1]) has a
compact support and nonzero, then there exists lim, oo F7g in [[ Ex and it belongs to Ey

The next theorem follows from Theorem 2 and Theorem 3.
Theorem 4. Let L be linear modulo 2 and d = 1.
(a) The F—invariant set in w(Ey) consists of one element h.

(b) For any g = {gx} € [ Ex, there ezists the limit set lim, o0 Fp(ng), which is equal to h in (a),
if go # 0 has a compact support.

4. Non-linear rules

Consider a transition rule L:P! — P! mod 2 as follows:

La(z) = Zakaz+vk +Zﬁ’wax+vz) a(z +vj)
k=1 i<j

+ Z 7i11i21i3a(z + v;,)a(z + vy, Ja(z + Vi)
i1 <iz<ig _

= Loa(z) + Lia(z) + Laa(z),

that is, Ly is linear and L; and L, are non-linear. Let A = {i|a; # 0}, B = {(i,5)|Bi; # O},
C = {(31,%2,%2) | i, ,is.is # 0}, then we can rewrite

La(z) = Z a(z +vi) + z a(z + vi)a(z + vj)
keA (i,7)€B
+ Z a(z + v;, )a(z + vy, )a(z + viy). (4.1)
(‘il,iz,is)ec

Let &y = {¢0(d0),0, 0, ..} € [1 Ex. We shall investigate conditions of L and an initial configuration go
such that limp, e F,"g in [] Ex belongs to Eo for g = {¢o gg) 0,0,---}. .
We define

k
Vo=14> Onglk 2 0,m0 = 0,m; 2 1,( 2 1),n511 > n;
=0 ‘
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k
m(b) =ny - q for b= Z%v €V, and
i=0

k
W= {Zajuc > 1}.
j=1

Proposition 2. The following statements hold.

(1) If L is linear, for n € N,a € P!

= Z Z Z d(m+v31+---+vsﬂ).

81 €A 82 €A 8n €A

(2) Suppose C =0 for C in (4.1). If there is ¢ = 2 such that
(i) k1,k2 € A implies q|(vk, — v,),
(ii) (2,5) € B implies 0 < |v; — vj| < g,

then
L"go(z) = Lygo(z) holds for any z € Z,n€ N, gy € V.

Proof. (1) It is clear that La(z) = ¥, ., a(z + v,,) for n = 1.
Suppose L"a(z) = 3, ca 20 ca " s, ea (T + vy, + -+ +v,,) holds. Then

L"*a(z) (L™a)(z) . '
= Z L"a(z +v,,,,)
8p+1€A
= Z Z"'Za(m+v81+"'+vsn+1)'
Sn+1€A 81 EA82€A 8, €A )

(2) For n = 1, we have
Li(go)(z) = > golz+vi)go(z +v;)
(i,5)eB
= go(® +vi,)90(z +vj,) + go(z + i, )go(z +vj,) +

NSR. 0.U., Vol. 48

Suppose L1(g0)(z) = 1, then there is (4, j5) € B such that go(z + v;,)go(z + v;,) = 1, and we have

Qolz+v;,) = 1
gz +v;,) = 1,

so that,

z+v, = kq
c+v;, = Kq

Thus v;, — vj, = g(k — k'), which contradicts the assumption, Therefore Ligo(z) = 0 which implies

Lgo(z) = Logo(z).
Suppose L'gy(z) = 0. It is enough to show Ly (L{go)(z) = 0, since
L) = L)) |
Lo(Lyg0)(w) + L1 (Ligo)(=)
= Lg"go(2) + L1 (Logo)(2)-
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Suppose

L, (Lﬂgo Z {Logo T + 'Ut)LOQD(w + vJ)} 1,
(i,5)€B

then there must exist (¢,j') € B such that Ligy(z + vir) = Ligo(z + vjr) = 1. Since Ligo(z) =

];]j;]'EAESZG}?'}I Ys,ca90(T + sy + -+ +v,,) by Proposition 2(1), there exist {s;}i_;, {si}i=;, for
, k' € Z such that ) ’ i

THv,, + v, +vp = kg
vy v oy = Kq.

We have v —v;» = q(k—k'— M) for some M € Z, which contradicts the assumption, and L; (L} go)(z) = 0
holds. O

Theorem 5. Suppose a transition rule L is defined by (4.1) and satisfies the following properties:
There is q 2 2 such that

(1) ki1,k2 € A implies q|(vk, — vk, );

(i) (¢,7) € B implies 0 < |v; — vj| < g;

(iii) C=0. - |
Then there exists h € n(Ex) such that im, o FP(rg) = h holds for any § = {¢o(g0),0,0,- -} with
% € V. ’

Proof. This follows from Propositibn 2 and Theorem 3. ‘ |

Lemma 2. Let L satisfy the following properties:

(a) There is ¢ 2 2 such that
ql(vjx+1 - vjl) (1 < l < M- 1)’

where A= {j1, -+ ,dm} (1 <+ <jm);
(b) B={(i,5)|vi=v;~1 for j € {j2,--- ,jm}} ;
(c) C=0.
Ifce W, then Lc = Lod, + 2:’;(20),5_%.” holds.
Pfoof. It is enough to show |

Le(@)=1{ 1 forz=—v;, +y with2 <y <mlc)
¢ Lo6y(z) otherwise ’

since

"‘z(c:)& 1 forz=-v; +y with2<y<m(c)
—vj,+(2 0 otherwise ‘

Lody(z) = 0 for T = —v;, +y with 1 <y < m(c).
(i) Suppose z = —v;, +y with 2 < y <'m(c).
Put e = the number of {k; € A | ¢c(z + vg,) = 1 }. Since

clotvn) = cl-vy+y+os)=cy)
‘ = 1 for 2 < ém()
there is vj; < --- < vjr_ such that ¢(z +vj) = 1for 1 S 1 S e—1. c(z+vi)e(z +vy) =

l
c(z +vj — )e(z +vy) = 1for 1 1 S e—1 by assumption (b), since z +vj, < z +v;; and
¢(z +vj,) = 1. Therefore

¢’ = the number of { (¢,7) € B | c(z + v;)c(z +v;) =1} =e—1,
and e +¢' = 2¢ — 1. We obtain Lc = 1.
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(ii) Suppose z # —v; +yfor2<y < m(c).
We can rewrite as follows:.

Le = Y clatoy)+ Y. e(z +vi)e(z +v;)

k€A (ij)€B
~mle).
= Y dletun)+ 3 Y bz o))+ Y. dile+v)di (o +vj)
kicA szA =2 (i.7)€B.
m(c)
+ Z 51$+Uz{25t$+’0]}+ Z (51$+’UJ 25,51:+v,
(4,5)€B (i,j)eB
m(e) m(c)
+ > A bz +u; }{Z 8:(z +v;)}
(i,j)€B t=2

Put ¢ = the number of {k; € A | 6i(z + v,) =1, 2 < ¢ < m(c)}. Then by assumption there is
v <<y such that

2824wy <<z +vj Smc) and vjr # vj,. (4.2)

First, we calculate the term J; = Yiesh(@+v; ){Z )8,z +v;)}. If 6, (z 4+ v;) = 1, then

t+v; S 1lsincez+uv; < z+ v;. Thus Z;’;z di(z + vl) = 0, that is, the term equals 0. If
61(z +v;) = 0, clearly the term equals 0. . ‘

Next, we calculate the term

m(e) m(c)
z 61w+v1{26tw+v1}+ Z {Z&tz+v, }{Zdtw+v3
(i,j)eB (i,j)€B t=2
We rewrite ©
= > {Zdt (z+v; }{z 8i(x +v,)}

(i,j)eB t=1

If there is (49, jo) € B such that  +v;, = 1, then YVj, = vj, + 1 by assumption . Thus v, = v;: and
T +vj, =2.

For (if,j) € Bwith I =1,--- ,e, "7 8,(x + v;) 1) 6,(x + vy;) =1 by (4.2). Thus

m(c) m(e)
the number of { (i,7) € B | z 0z + v;) Z Sz +vj)=1}=e.
t=1 t=2

If z +v; # 1 for any (3,) € B, then z +v;; > 2 and T + vy 2 2. Thus

m(c) m(c)
the number of { (¢,7) € B | Z 8¢z + v;) Z d(z+vj)=1}=e
t=2 o t=2
by (4.2). Finally,
m(c)
Le = 251(w+vk, Z 01 (z +vy) 51m+vj +Z{25t(z+vk,
kicA (i.j)€B kcA t=2
+ Jl + Js .
= Z o1(x + vg,) + Z 81 ( m+vz)81(w+v1)
ki€A (i.7)€B
= . L051

by > i yep 01 (z +vi)i (z + vj) = 0.
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This completes the proof. O

Proposition 3. Let L satisfy the same conditions as in Lemma 2. If gy = b+ (c+m(d)) for c € W,
beV,, then

L'go = Lgb + (cH(m(b) — nv;,)). (43)
Proof. We shall show (4.3) by induction. When n = 1, We have
Lgo = Lb+ (ctm(b))

= Y {b+(cEm®)} (= + )
kEA
+ Y {b+ (cFm(®)} (2 +v:) {b+ (cFm(B)} (2 +v;)
(i,5)€B
= Z b(z +ve) + Z(cfi—m(b))(m + ) + Z b(z + v;)b(z + v;)
k€A k€A (i,j)€B
+ Y (cFm(d))(z +vi)(cFm(b))(z + v;)
(3,9)€B
+ Y be+u)cEm®)@+v)+ Y. (cFm(d))(@ +vi)b(z +v;)
(i,7)€B (i,7)€B
= Lob(@) + L((cEm®)(@) + Y. bz +vi)(cFm(b))(z +v;)
(¢,7)€B
+ Y (cFm(b)(z +vi)b(z + v;) (by Y. bz +vi)b(z+v;) =0)
(4,5)€eB (3,7)€B
m(c)
= Lob(2) + Y (§-u;, 40 Fm(b))(z) + L(81Fm(b))(z)
t'=2
+ Y b+ u)eFm®) (@ +v)+ D (cFm(b)(@ + vi)b(z + v;)
(£,5)€B (¢,j)eB

by Lemma 2.

First, we show that 3, ,y p(c+m(b))(z + v;)b(z + v;) = 0. Suppose that there is (i,5) € B such
that b(z + v;) = (c+m(b))(z + v;) = 1, then 0 < z + v; < m(b),1 +m(b) < x4+ v; < m(b) + m(c). By
assumption, there is some k; € A such that

v, = 'Uk,-—l
Uj = 'Uk”

therefore, we must have
0<z+v,, <m(b) and 2+ m(b) <z +vr, <m(b) +m(c) + 1,

which is a contradiction. Thus 35,  c p(c+m(b))(z + v;)b(z + v;) = 0.
Let Ji(z) = L(&1+m(b))() + X (; jyep b(@ + vi) (c+m(b))(z + v;), then

m(c)
Lgy = Lob(z)+ z Oy, +¢+m(b))(z) + L(81+m(b))(z)
+ D b(@+vi)(cHm(b)) (e +v;)
(i,5)eB
m(c)

Lob(z) + Y (-u;, +eF+m(b))(z) + Ji (z).

t'=2
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Furthermore, we have

~ 1 forz=m(b)+1—vy, ki€ A\{v;,
S bz +vi)(cFm(B))(@ + ;) = { L fors = m) +1-un, k€ A\ ) (4.4)
(4,5)€B
by the assumption (b), since
N_J 1 z+v,=m(d)
bz +vi) = { 0 o+v;2mb)+1
e () +1S2 40 S m(b) +14m(o)
< 1 form(b)+12z+v; Smb)+1+m(c
c+mb))(z +v;) = J
(cm(b))( i) { 0 for z +v; £ m(b).
Since c+m(b) = ZZ‘:(? (8_v;, +k+m(b)), it is enough to show
1 z=m(b)+1-v;
Jl(x)_{ 0 z#mbd)+1-uv,. (45)

Suppose z # m(b) + 1 — vy, for any k; € A\{v;, }, then

L Amb)e) = Y Sile—mb)+oy)+ Y di(z—m(b)+v;)di(z —m(b) +v;)

szA (%])EB
= z&l(m—m(b)+vk,) for (i,j) € B
ki€EA

by v; # v;. Suppose £ — m(b) + vi, = 1 for some k; € A, then z = m(b) + 1 — vg,. This contradicts the
assumption. Thus J;(z) = 0 by (4.4).
Suppose z = m(b) + 1 — vy, for k; € A\{v;, }, then

L(5,Fm(b))(z) Y d1(z + vk — m(b)

ki€EA
+ Z 81(z — m(b) + v;)81 (z — m(b) + v;)
(i,j)€B
> di(x + v —m(b))
k€A
+ Y 1ok +v3)80(1 v, +vj)
(4,5)€B

thus J;(z) = 0 by (4.4).
Suppose z = m(b) + 1 — vj,, then we have

L(&i+md))(z) = Ypeadi(e+vi—m(b)
i +z(i,j)€B 51(a;—m(b) +v,—)51(z—m(b) +vj)
Ykeadi(@ + vi —m(b))

+ Z(i,j)eB 81 (v, +v5)d1(1 — vj, +v;5)

= 1,

thus Jy () = 1. Finally we obtain (4.5) and Lgo = Lob + Y17 (8—y,, +1+m(b)).
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Assume L'gy = Lib + (c+(m(b) — tv;,)) for ¢t < n. Then

L™ go(z) = L(L"(z))
= Z Lng()(fB + Uk) + Z Lngl)(m + ’Uz-)Lngo(it + Uj)

k€A (i,j)€B
= L7*'b(z) + Le(z — m(b) + nvj, ) + Z c(z + v; — m(b) + nv;, ) Lgb(x + v;)
(,5)€B
+ Y Lib(m+vie(z +v; —m(b) +nvjy) + 3 Lb(a +vi)Lob™ (z + v;)
(i,j)eB (4,5)eB
m(c)
= LPMb(z) + Lody (@ — m(b) + nwj,) + Y 6_uy +n(z —m(b) +nvj,)
h=2
+ Z c(z + v; — m(b) +nvj, ) Lgb(z + v;) + Z Lgb(z + v;)Lgb(z + vj)
(i,j)eB , (4,5)€B
+ Z L2b(z + vi)e(z + v; — m(b) + nv;,)  (by Lemma 2)
(3,7)eB
m(c)
= LpTb(z) + Lodi(z — m(b) + nvy, ) + Z Sn(z —m() + (n+ vy,)
h_
+ Z c(x + v; — m(b) + nvj, ) Lgb(z +v;) + Z Lab(z + v;)Lgb(z + v;)
(i.j)eB (i,j)€B
+ Z Lyb(z + v;)e(z + vj — m(b) + nvj, ).
(4,7)€B

Since Lg is linear,

o0 (z Z Z Z go(z +vs, +- - +vs,)

81€A 32€A 3n €A

by Proposition 3. Suppose 3; < p Lob(® +v;)LPb(z +v;) = 1 holds, then {s;}7,, {s{}}x,, for k,k" € Z
such that

T+v, +o v, +vp = kg
£E+'l)3'1+"'+'l)3'n+’vj' = k'q-
We get q(k — k' — M) = vy — vy = —1 for M € Z by assumption (b), but this contradicts ¢ 2 2 and

k—k —-MeZ.
Thus it is enough to show

Jo(z) = Loby(z—m(b)+nv)+ Y, cla+v; —m(b)+nvj,)Lgb(z + vj)
(4,5)€B

+ Y Lyb(z +vi)e(z +v; —m(b) + ;) + 3 Lyb(@ +vi)Lg(z +vj)
(¢,5)€B (1,4)€B

1 forz=m(d)+1-(n+1)v;
0 otherwise,

which will be proved in a similar way to the case n = 1.
So (4.3) holds for any n € N. This completes the proof. : a

We define the set J by
J={go| go=b+(ctm(b)) for ceW, beVg}.

Theorem 6. Suppose a transition rule L is defined by (4.1) and satisfies the following properties:
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(a) There is ¢ = 2 such that
ql(vjy, —v;) for 1<I<M -1,
where A= {j1,-++ ,im} (h <+ <jm);
(b) B ={(,7)|vi =v; =1 for j € {ja, -+, jm}} ;
(¢) C=0.

Then there ezists h € 7(Es) such that lim,, ﬁ‘}j(wg) = h holds for any § = {40(90),0,0,---} with
go € J.

Proof. This follows from Proposition 3 and Theorem 3. ‘ O

We investigate the most simplest non-linear rule which contains the triadic term. We consider the

conditions for g and L such that lim,—,o, F}(7g) exists and it belongs to i € 7(Eo), when the rule
satisfies v; = —r, v = —r + 1, -+, vgppy =1,

Lemma 3. Leta € P! be finite and nonzero. Suppose a transition rule L is defined by (4.1) and satisfies
the following properties: '

(a) A={1,2r +1};
() B={(1,r+1)} or B={(r+1,2r + 1)};
() C={(L,r+1,2r +1)}.
Then
(i) Ifa(@)a(z + 7 +2rl) = 0 for any | € NU{0} and any z € 2, then
L"a(z)L a(z + 7+ 2rl) = 0 (ne N, le NU{0}).
(i) If there is M € N such that

a(zla(z+r+2rl)=0 (z€2Z, 01 M),
then
Lra(z)LFa(z+r4+2r) =0 (k<M, 0LISM—k).
Proof. Suppose B = {1,r + 1}.
(i) Since a(z)a(z +7+2rl)=0forn =1,

Z a(z +v;)a(z + v;) + 2 a(z + v;, )a(z + v;, )a(z + vy,) = 0.
(i,5)€B (21,42,i3)€C
Therefore
La(z)La(z +r +2rl) = {a(z—r)+a(z+r)}{a(z+2rl) +a(z+r+2rl+7)}
= a(z—r)a(z+2rl)+a(z—r)a(z+r+2rl +7)
+a(z+r)a(z +2rl) +a(z +r)a(z +r+2rl +71)
0.

Proceeding inductively, we have L"a(z)L"a(z + r + 2rl) = 0.
(ii) Let k =1, then
La(z)La(z + 7 + 2rl)

{a(z—r)+a(z+r)}{a(z+2rl) + a(z + 7+ 27l + 1)}
a(z —r)a(z 4+ 2rl) + a(z —r)a(z + 7+ 2rl +7)
+a(z +r)a(z+2rl)+a(z+r)a(z +7+2rl +7)
= a(z—r)a(z —r+r+2r(l+1)). »
We have a(z —r)a(z + 7+ 2rl+7) =0 for 0 <! < M — 1 by assumption. Then

La(z)La(z +7+2rl) =0for 0 XIS M — 1.
Using an induction argument, we have L¥a(z)L¥a(z + 7+ 2rl) =0 for kS M, 0< 1< M — k.
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~ For B = {r +1,2r + 1}, we can prove (i) and (ii) in the same way as above. O

Proposition 4. Suppose a transition rule L is defined by (4.1) and satisfies the same conditions as in
Lemma 3. Let a € P! be finite and nonzero. The following are equivalent:

(i) a(z)a(z + r + 2rl) = 0 holds for anyl € NU{0}, any z € Z.
(i) L"a = Lga holds for any n € N.

Proof. Suppose B = {(1,r + 1)}. ‘

First we show (i) implies (ii). L"a(z)L"a(z + r + 2rl) = 0 holds for n € N, 1 € NU {0} by Lemma
3(i). Thus La = Loa for n = 1 by a(z)a(z + r + 2rl) = 0. Assume L™ 'a = L§™".

L"a(z) = X, ca L™ 'a(z +vp) + L" Ya(z + v1)L" 'a(z + vr41)
+ L a(z +v) L a(z + vpy1 )L a(T + Vars1)
S ven L la(o + 1)
= Lga.

Thus L"a = Lga for any n € N.

Conversely, suppose L"a = L7a hold for any n € N, then a(z —r)a(z){1+a(z+r)} = 0 by La = Loa,
that is, either (I) a(z—r)a(z) = 1 and a(z+r) = 1 or (II) a(z —r)a(z) = 0 holds for z € Z. Let (I) holds
for some z € Z. Set 2’ = max{z | z satisfies (I)}, then a(z’' +r —r)a(z' +r) =1, but a(z’ +r +7) = 0.
Thus z’ + r doesn’t satisfy (I) and (II). This contradicts the assumption. Therefore if La = Loa, then
a(z)a(z+r)=0for z € Z.

If L"'a = L7 'a, then a(z)a(z +r + 2r(n — 1)) = 0 for z € Z. Ly a(z)Ly 'a(z + r) = 0 holds by
L"a = Lga. Therefore

Ly Ya(z) + Ly a(z + ) {L2 2%a(z —r) + L? %a(z + r)H{Ly %a(z) + Ly 2a(z + 2r)}
Ly %a(z — )Ly %a(z + 2r)
{Lr3a(z — 2r) + Lo 2a(z) H{Ly 2a(z + ) + Lg 2a(z + 3r)}
= L7 %a(z —2r)Ly a(z + 3r)

Il

L *a(z — (k — 1)r)L} *a(z + kr)

;z(a: — (n—1Dr)a(z + nr)
0

by Lemma 3 (ii). _
For B = {(r + 1,2r 4+ 1)}, we may show the equivalence of (i) and (ii) in the same way as above. [

Theorem 7. Suppose a transition rule L is defined by (4.1) and satisfies the following properties:
(a) A={1,2r +1}; '
(b) B={(l,r+1)}or B={(r+1,2r + 1)}
(¢) C={(1,7+1,2r +1)}.

Let go € P! be finite and nonzero. If go(z)go(z + 7+ 2rl) =0 for anyl € NU {0} and any x € Z, then
there ezists h € T(Eo) such that lim, oo FR(7g) =h.

Proof. This follows from Proposition 4 and Theorem 3. O
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