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Abstract

This paper studies conditionally trimmed sums for triangular arrays of independent random variables
and generalize the Hahn-Kuelbs result for i.i.d. cases.
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1. Introduction

Let X1, Xs,... be a sequence of i.i.d. random variables with common nondegenerate distribution
function F'(z), and let {X}n)}g’zl (n > 1) be the order statistics based on the sample {X7, ..., X, } in the

descending order in absolute value; i.e., {ngn)}?:l is a rearrangement of {X;}7_, so that

XM > x> > )

Let p, (n = 1,2,...) be a sequence of positive, nondecreasing integers such that 1 < p, < n and define

SPr = i: X;n)

J=pntl
7 Pn

:ZXJ'—ZX]("), n=12 ...
j=1 j:l

SPewhich is often referred to as the trimmed sum, is the n-th partial sum with the p, largest samples
trimmed and its asymptotic distribution as n — 0o have been studied by many authors. (e.g. Stigler [4],
Mori [3], etc. See Hahn-Kuelbs [2] for more references.) ‘

A common interest of these authors is to get asymptotic normality theorems by deleting extreme
samples even in the case where the tail probability of X; is large (and hence the CLT no longer holds
for the usual partial sums), and it is one of the important philosophy that it is desirable to retain as
much data as possible. From this point of view, Hahn-Kuelbs ([2]) introduced the notion of conditionally
trimmed sums; let a, (n > 1) be positive numbers and let

n Pn
P (an) = Y Xj = S XI(1X] > an).
ji=1 j=1

Hence S2(a,,) denotes the n-th partial sum with the p, largest samples trimmed provided that they exceed
a, in magnitude. Hahn-Kuelbs ([2]) proved that for arbitrary nondegenerate distribution function F (2),
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we can find p,, an, b, and c, such that p,/n — 0,a, — 00 as n — oo and that (1/¢,){S%"(an) — bn}
converges in law to a Gaussian random variable. In fact, the existence of such sequences p,, an, b, and ¢,
is easy itself (see Remark in Section 3). So the significance of their result is offering an explicit procedure
to find pn, @, b, and c,. Now the aim of the present paper is to consider a similar problem for sums of
triangular arrays of independent random variables. The author admits that all necessary ideas are found
in [2], but we believe that their idea will be clearer under our formulation.

We give the main theorem in Section 2 and the i.1.d. case will be discussed in Section 3.

2. Main Theorem

For every n =1,2,..., let {€,1,&n.2,---,&n k. } be a sequence of independent random variables (k, —
00) and let {€,1,&n2,.--,&n k. } be a rearrangement of the samples {&,1,6n 2, -, &nk, } SO that

|£n,1‘ 2 Ign,Ql Z 2 |€Nn,kn|'

For every p (1 < p < k) and a(> 0), we define the conditionally trimmed sum 57, (a) as follows:
n r 5 - .
Sh(@) = _ni = 3 Enil(nsl > @)
Jj=1 ji=1

Thus SZ(a) denotes the sum of {£, ;} with the p largest samples deleted provided that they exceed the
prescribed level a (> 0) in magnitude.

Theorem 1. Let {a,}5%, be a sequence of positive numbers and let

Up = Z Val'(fn,jl('fn,jl < a‘n))'
J

If

(A1) ZP(E\/E < |énjl < an) — 0 (n— 0), forevery e >0,
J

then, for any p, € Z4 (n > 1) satisfying the condition
1
(A.2) ?ZP(KM[ > a,) — 0,
. .
j

1t holds

Dy = 1 [Sp" (an) — mn] L.z

\/m n

where Z is an N(0,1)-random variable and

mp =Y E[€n; 161 < an)].
J

» £.7 denotes the convergence in law.) A sufficient condition for (A.1) is

(A.3) ty = 0(\/17;) as n — 00.
Proof. Let .
S:l = Zén,jl(lfn,jl < an)'

i=1
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We shall first see that

| c
Z = —{S; —m,} — Z.
V'Un
This can easily be seen because S7,53,. .. are usual sums of independent random variables. Indeed, 1t can

be rewritten as follows;

Z; =Y (G = Elin)

J

where
1

C”:j - \/Ef”',f [(|£n,]| i a‘n)'

First, it holds

Yl >2) = ;za(%m—m,muw <an) > )

= ZP(’&,JI >eyo, and |6, ;| < an)

J

which vanishes as n — oo by (A.1). Furthermore, by the definition of v,, we also see that
ZV&I‘(QL’]‘) =1.
J

Therefore, by the usual CLT, we obtain

(2.1) ey

We next show that P(|Z, — Z| > ¢) — 0, for every ¢ > 0:
. , 1
P(l€np,| > an) = P(#{j : lnjlt 2 pn) = P[p_zj[iﬁn,jl >an] 21
n N
j

< B[ S 1601 > 0r)] = o= 3 Pllns| > o)

J
which converges to 0 by (A.2). Thus we obtain
P(|np.| > an) = 0.
Since S¥»(a,) = S% on the event {lén .| < @y} it holds that
(22) P(Zy = 2] > Pllénp.| < an] — 1.
Combining (2.1) and (2.2) we obtain the assertion of the theorem. U

3. The Case of IID Random Variables

In this section we shall study the case where the triangular array {£, ;} comes from an i.i.d. sequence:
Let X;,Xo,... be a nondegenerate i.i.d. random variables with the common distribution function F' as in
Introduction and let k, = n, &, ; = X;. Then, as a special case of Theorem 1 in the previous sectlon we
have the following theorem, which is is a modification of Hahn-Kuelbs ([2]).
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Theorem 2. Let a, be a sequence tending to infinity and one of the following two conditions is satisfied.

(B.1a) a% z?dF(z) — 00 (n— o)
n J|¢|<axn

(B.1b) n/ dF(z) — 0 (n— ), for every € > 0.
lej>ev/m

Then, for any p,, (1 < p, < n) such that

(B.2) = dF(z) — 0 (n— o),
Pn Jiz|>a,

1t holds that

(2.1) TS ) = 0} < 7 (n =)

where

b, = \/n/ 22 dF(z),
[¢|<an

en = n/ zdF(2)
|z|<an

and 7 is an N(0,1)-random variable.

Proof. Since v, in Theorem 1 is equal to n.[m@n z?dF(z), (B.1a) is equivalent to (A.3). If (B.1b) is
satisfied instead, then it is easy to see that nP[|X1| > £,/v,] — 0, which implies (A.1). Furthermore,
(A.2) can be rewritten as (B.2). Thus we have the assertion. 0

Remarks. (i) We can always find a,, (] oo) satisfying (B.1a) unless P[X; = 0] = 1. Also we can choose
pn 50 that p, = o(n) in (B.2).
(i) A sufficient condition for (B.1b) is E[X?] < oo since, in general,

nP[|X/\/n| > €] < e 2E[X?: |X]| > ev/n].

(iii) As we mentioned in Introduction, if we are interested only in the existence of {pn, @n, bn, cn}
satisfying (2.1), the proof is easier: For every fixed a > 0, choose o > 0 small enough so that |X,[fm]| >a
for all sufficiently large n (a.s.), which is possible due to the law of large numbers. Then, for all sufficiently
large n, S,[{m](a) is equal to Y; 4 - -- + Y, where Yy = X I[|Xi| < a]. Therefore, under a suitable linear
normalization, Skyn](a) converges in law to an N(0, 1)-random variables. Now by a standard argument,
choosing a,, tending slowly enough, we can find a,(] o), b, and ¢, satisfying (2.1).
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