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§1. Introduction

Let R%*! be the upper half space in R**!. It is well-known that the
Poisson integrals of functions f in LP(R?) converge to f nontangentially
except for a set of d-dimensional Lebesgue measure zero. Moreover it has
been also known that the Poisson integrals of functions in a subfamily of
L*(RY), for example, a family of L?-potentials, a family of Bessel potentials
or the Besov space, have limits within tangential approach regions except
for a set of appropriately dimensional Hausdorff measure zero (ctf. [4],
(5], [1]).

Y. Mizuta investigated tangential boundary behavior of harmonic funec-
tions in R in [5] and proved that, if 0<i<1, p>1, pA<d and d—pi<
B<d, then the Poisson integral of a function in the Besov space A%?(R?)
has a limit within a tangential approach region

Q.,(Z) = {(z, ) e R : plw—2|"<t}

for t=B/(d—pa) for all z& R* except for a set of B-dimensional Hausdorff
measure zero.

P. Ahern and A. Nagel also proved in [1] that the above result is still
valid even if 1=1. Recall that a function f in L?(R?) belongs to A%?(R?)
if the Poisson integral w of f satisfies '

Sstp(m—l)—-l

where m is the least integer greater than A.

In this paper we consider a bounded C"*-domain D in R? (d=3) instead
of the upper half space. We ask what functions f ondD allow us to
get that the solution to the Dirichlet problem for the Laplacian with
boundary data f converges to f through a tangential approach region ex-
cept for a set of surface measure zero, or that it has a limit within a
tangential approach region except for a set of B-dimensional Hausdorft

o™
at™

(e, t)lpdxdt<oo,
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measure zero for f<d—1.
To answer the questions, we consider an approach region I’ ,(Z) de-
fined by

I AZ):={XeD:<Z—X, Ny>>p| X~ Z|7)

for 7z, 1<r<a+1 and 0<5<1, where N, stands for the outward unit
normal to the 6D at Z.

We will introduce a function space A%(¢), which is a Besov space on
dD. More precisely, let p, 2 be positive real numbers such that p>1, 0<
A<1 and ¢ be the sufface measure of dD. We denote by A%(¢) the space
of all functions f in L”(¢) such that the functions f, ; defined by

fot2y=(M DAL o))

also belong to L?(g).
The space A%(s) is a Banach space with norm

”lepA = Hf”p+”fpl”p9

where

1 1=({1717d) .

Using double layer potentials, we will prove the following theorem
in §4.

THEOREM. Let D be a bounded C'“-domain in R® (0<a<l, d=38)
such that R\D is connected. Further, let p, B, 2 be positive real numbers
satisfying p>1,0<i<a, pA<d—1and d—1—pi<f=d—1. If B/(d—1—p2)
<a+1, then for
(1.1) T= dt%m
and for every function fe A%(c) there exists a function u on D with the
Sollowing properties (a)-(c):

(a) Au=0 in D,

(b) The limit of w(X) as X—Z, X&', (Z), exists axcept for a set
of B-dimensional Hausdorf measure zero and is equal to f(Z) at o-almost
every point Z<aD,

(c) There exist positive real numbers ¢, & such that

lugll o <cllflipz,
where uy is the function defined by}

uy(Z)=sup {(w(X)|: X&TI'. (Z)NB(Z, )}
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and ¢, d do not depend on f.

REMARK. This theorem corresponds to the result obtained by P. Ahern
and A. Nagel in [1, §7] for the upper half domain, although i<a. If D
is a C™*domain, A%(¢) will be defined for A<m.

§2. Local estimates of double layer potentials

In this paper D is a bounded C"*-domain in R* (0<a=1, d=3). Recall
that a domain D in R? is called a C"“-domain if to each point Q€adD
there correspond a system of coordinates of R? with origin @ and an open
ball B(Q, p) with center @ and radius p such that with respect to this

coordinate system
(2.1) DNB@, p)={(x,t): xc R, t>$(2)} N\ B(Q, o),

0DNB(Q, p)={(x, (1)) : x € R* "IN B(Q, p),
where ¢=Cy*(R*") and ¢(0)=D,$(0)=0. Note that Cy*(R*') stands for
the space of all functions ¢ in C'(R*™!) with compact support satisfying
(2.2) |D;g(x)—D;g(y)| = Mo —yl|*

for all z,ye R** and 1<j<d—1.
Let us define, for Xe R?, Y<adD,

1

k(X, Y):—wmd(d—Z)

<VY|X_ Y|2-d’ NY>

if it is well-defined and k(X, Y)=0 otherwise, where w, is the area of the
surface of the unit ball in R? and <{-, -> denotes the usual inner product

in R%.
It is well-known that the function k& has the following properties.
LEMMA 2.1. Let 0<6<1 and X, Z€adD. Then
(a) kX, Z)|<clX—Z|** "
(b) kX, Y)—k(Z, V)| <e| X—Z](|X—-Y|* "0 | Z - Y2701
for every YeoD, Y+ X, Y#Z.

Using Green’s formula, we can show the following lemma.

LEMMA 2.2. The function k has the following properties:
(a) Sk(X, Y)de(Y)=1 for XD

(b) Sk(X, Y)de(Y)=0 for X<RAD,
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(c) Sk(x, Y)de(Y)=1/2 for XeoD.

Let us now estimate the maximal functions with respect to a tangential
approach region. Let 1<r<a+1, 0<yp<1l and consider a tangential ap-
proach region

I': (PYy={XeD:<{P—-X,N,>nX—P|}
at P=dD. We define, for feL?(¢) and X< R¢,

(2.3) u(X)= S k(X, Y)f(Y)da(Y)

if it is well-defined and u,(X)=0 otherwise. Then the function u, is har-
monic in R\@D. To study the boundary behavior of u,, we cover dD by
finite balls

(24) Bj:B(QJ') 5]) (j: 1) Y, n)

which satisfy (2.1) for Q=Q;, ¢=¢; and p=405,. Furthermore we may
assume that ‘

(2.5) 5,<1, Moya-r< —;l and |Vg,| < 7/4.
Set
(2-6) 50:min {611 52; “.;5n} .

In this paper we fix this covering {B,}. To investigate the boundary
behavior of u,, we may suppose that supp fCB; by using a partition of
unity subordinate to {B(Q;, §;,)} if necessary.

The following lemma corresponds to Proposition 7 on p. 151 in [6] for
the upper half space.

LEMMA 2.3. Let p, 2 be positive real numbers satisfying p>1, 1<1.
Suppose that f< A3(e) and supp fCB(Q;,d,;). Then

45]
S S tp(l—/?)—l
0 121<408 §

PROOF. Put w=u;, ¢=¢;, 6=4¢;, glx)=r(», ¢(x)) and X=(z, ¢(x)+1).
From

oty
ot

(s, ¢j(x)+t)'pdxdt§ 1l

| 0

X, V)| S X— Y]

and
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0

—\ k(X Y)=

atSlc( L Y)de(Y)=0
it follows that

S |g(z) — g(z)|

u
51 @ 9"(%)“)1 (o—2] +|¢ D)+ t— (@)

0
ot 2 s
lg(x+2)—g(x)]

- S(lz!—%—lq& )+t— ¢x+zlz)‘”2dz

/\

If t>]z|, then we have
[t+¢(x) — (v +2)|

>t—|d(x+z)—¢ x)|>t—ﬁ|z|, -?Lt

where
(2.7) 2 @, ple) 1)
écz(ngl |Q(x+z x)|d2+gz>tm(m+—|2;—_i(w—)ldz)
EIl(m, t)+Iz(ﬂc, t) .
Set

w@ =wird)=({lowt+2)—g@rds) " and Q0= wirede

where S is the surface of the unit disc. From

(1, t)pdm)upgﬁmsttd (flgte+2- glw)|dz)  dz
=< ;;S:rd'm(r)dr
and
(Slz(x, t)de)llpég |zlld<glg x+2z)—g( P’dac)l/pdz
gg:oﬁr"z!?(?”)d'r
we deduce
J = (Sft”“"“"‘d S|x1<406 g?;( )+t)’ do(;

<o { o, Td—zQ(fr)dr)pdt)”p

salfvr ([ e a)”

13
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With the aid of Hardy’s inequalities we obtain

J< @(S?t“““‘[)(t)%t)up

sof| MoerAg@Eg N oy

’z|p,{+d—1

This completes the proof. Q.E.D.

We next investigate, for f= A5(¢) satisfying supp fCB,, how the double
layer potential defined by (2.3) behaves near B;N\dD. For the purpose we
prepare the following lemma, which can be shown by the same method as
in the proof of Lemma 7.1 in [1].

LEMMA 2.4. Let t>1 and 0<p<l. Then there is a positive real

number e=¢e(r,z) such that |x—z|=t=blx—z|" implies
{(, 9;() +3): [o—yl<pt, t—s<pt} C{(y, ¢,(y) +3) : bely—z|"<s}.

We note that, if Z= (Z, ¢](Z))EB(Q], 5]) and X:(w, ¢](x)+t)err,p(z)ﬂ
B(Z, 3,), then
(2.8) t>Llp—glr.

2
In fact, by (2.2) and (2.5) we have
t>nlz—al"—<{z—w, V4,(2)> + ¢;(2) — ¢,(x)

1
2 pla—xl— Mz a2 L ylz—ol"

Let us denote by b(z,») the ball in R*™' with center z and radius .
The function u, defined by (2.3) is estimated near B; oD as follows.

LEMMA 2.5, Let p>1, 1<t<a+1, 0<B=d—1 and set

1= (d=lr—p
pT

Further define
1
.Q(z)={(x, di(x)+1t): t> —2—n|m~z]’, |z —2| <5, t<5,}

for (z,¢,(z))=B;. Suppose that v is a positive Borel measure on the set
b(0, 36;) and
v(b(z, r)) <corf

whenever b(z, ryCb(0,85;). Then
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(Ssup{luf z, §,@)+ )7 (2, 6,@)+r)E 2z du(z) <¢lflp.s
for every fe A%o) with supp fCB;.

PROOF. We prove this lemma by the similar method to that in the
proof of Theorem 7.1 in [1]. We write simply u, ¢, § instead of u,, ¢;, 9;,
respectively and g(x)=f(x, #(x)). Let (x, o(x)+r)=2(z). Note that

ulz, ¢()+ 1) =ulw, ¢(z) +25)—S 5; (@, $(x) +t)dt .
Since
|¢(x)+25—¢(y)l225—%lmﬂy!z%—/”%'j'z'm _>__%5
for y<=b(0,30), we have
lu(z, ¢(x)+25)!§clg (|x—y12+|¢(x|)ﬁ%);~¢(y)\2)“‘”/20@

H/\

{19 ay <e s,

We next consider

o

ou
ot

(z, ¢(x —|—t1dt

2nr 20
gg +§ =I,(x, r)+ Lz, ),

lz—zi/2

where n is the largest integer satisfying 2"r=<|x—z|.
To estimate I,(x,r), let (x, ¢(x)+1t)= 2(2) and (1/2)|x—2z[<t. We denote
by J((z, t), o) the bounded cylinder

8): la—yl<p, [t—s|<p}
for p>0. Then J((z, ¢(x)+1¢), (1/2)t)cD. In fact, if (y,s)=
J((, ¢(x)+1), (1/2)t), then
d(y)=(¢(y) — @)+ (d(x) +t—s)+5—1t

t t
< —+—+s—t<s.
=3 5 s—t<s

By the mean value theorem we obtain

ou _

< cst S
J((x GCxd+t),t/2)

8

a 2 1/
<oit5( ', s)\ dyds)
Jz g )+, 1/2) as E
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If (y,s)eJ((x, ¢(x)+1), t/2) then

t 3t
|¢(w)—¢(y)|<-8— and s<¢(w)+5.
Using this, we easily see that ¢>(1/2)(s—¢(y)). Therefore we have
ou
(2.9) S, gla)+1)
1 ou P Up
< — = |Z=
—05<SJ((J:.¢(.Z')+1:),£/2) (S*¢(y))d 0s (y’ 8)1 dyds)
ou P _\Up
a -pa—-d|= "
= ot (S;z—y1<t/2dygz/4<s<2zs ’ 0s <y’ $(y)+s) ds) ’
where a=(8(r—1)/pr)—1. Putting, for Z=(z, ¢(z)),
E(Z)={(y, ¢(y)+s): ly—2|<10s}
and
A={(y,s): ly| <35, s<44d},
we obtain
ou
@, ¢(a)+ 1)
ou P 1/p
< a -d—-pa| "
<est <SE(Z)M3 P s (y, ¢(y) +s) dyds)

Since o> —1, we have

Szﬁ
lz—2z1/2

= @,(Sza tadt)(gmz) Ms‘d“ palgz’(y’ é(y)+ s)} pdyds)“p

0

du
ot

(z, $la)+ t)’dt

pdyds>l/p.

(y, d(y)+s)

0
§06(S S—d—pa j;”
ECZN4 s

whence

S sup {|Lx(x, )|? : (z, ¢(x)+ 7)< 2(2)}dv(z)

<e| 57 2w, 6+ 9)| (s at@)dn(@))ayds

ou

s (¥, ¢(y)+s)

ou

a_S (y) ¢(y) + 3)

p
§C7S S—d—pa+ﬁ dyds

A

p
§C7SA827(1—1)—1 dyds

=csll fl5.a.
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The last inequality was deduced from Lemma 2.3.
We next estimate I,(x,r). We write

Szk“Tau

Lz, r) =X 5 (z, t)dt,

k Jokr

where the sum is taken over natural numbers %k satisfying 2¢*'r<|x—z].
By the same method as in the proof of (2.9) we have

ou

2w, g0+ 0)

0
g (v, 6(y)+5)

cht"d”’(g
= T, (2 +8),8/2) |0

2|0

pdyds)llp

pdyds>”p, :

§010(g s
lz-y1<i/2,t/4<8<2t

gzk+lr
2ky

=U11
jz-y1<2kr,2k-2rs<ok+2r

whence

ou
3t (2, p(x)+ t)‘olt

s-d+pg_g(y, () +s)lpdyds>”p .

Suppose that |x—y|<2*r and 2¢2r<s<2%r. From pnlz—2z|"/2<r we
deduce

2k+1/',,__8<2k+1,',.__2k—27.§%21&17.’

7
le—y| <2< 'gzkﬂﬁ"

and

—g—2k+llx—z|’<2"“’r§|x—zl .

" On account of Lemma 2.4 we can find ¢>0 such that
s>1152k|»y—2|7, |

where ¢ is independent of »,y, 2z and k.

Setting
EJ(Z)={(y, p(y)+s) : 2 nely —2|"<s<49, |y| <34},
we have
k+11
(2.10) S’k g%(m,gb(x)—kt)‘dt
—dsp|0U P p
e[, 5 W, g)+ 9 dyds)
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Since
Iy_zl<(2—k77—ls—ls)l/r

for every (y, ¢(y)+s)=E(Z), we get

2k+lr gy P
S(m ¢(z§EgEQ(z)g2kr 57 (& ¢(x)+t)’dt> dv(2)
S j—

ot

ou P
o (v, 6(y)+s)| dyds

0
<ou(2 )57 a-01 Sy, gy)+-9)| “ayds.

From this and Lemma 2.3 we deduce

(S sup I(x, fr)”du(z))”p

(z, g X+rIER (2

2k+17-
<30, 200
k (2,6 (x)+T)ERC2)J2kr

gcmz 2—kﬂ/(1p)<g8p(l‘2)—l
k

ou

o (@, gla)+ t)\dt)”dy(z))””

ou P p
S, 9 +9)|"dyds)

gch”f“p,Z .

Thus we complete the proof. Q. E.D.

§3. Boundedness of the operator K
To study the behavior of double layer potentials on D, we define, for
feL?o) and Z<aD,
Kf (2)={k(Z, Y)f (Y)do(Y)

if it is well-defined and Kf(Z)=0 otherwise. In this section we discuss
the boundedness and compactness of the operator K. We begin with the
boundedness.

LEMMA 3.1. Let p,2 and p be positive real numbers such that p>1,
0<2<1 and 0<pu<min{ita,1}. Then K is a bounded operator from
A%(e) to A% (a).

PROOF. To prove

1Ef N o n=cllfly.

for all feA3(e), we may assume that supp fCB;=B(Q;, d;) by using a
partition of unity if necessary. If X, YeoD\B(Q,,2d8,) and Z<B,, then
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(X, Z)—k(Y, Z)|<c;| X— Y.
So it is easy to see that the inequality

“(Kf)XaD\ij,zaj)Hp,p §c2“f”p,2
holds.
If XeaDNB(Qy,28;) and YEaD\B(Q,, 39;), then | X—Y|zJ;, whence

SS I(Kf)XB(Qf.ZBj)(X)—(Kf)XBD\B(Qj.35j)(Y)I
IX— Yld-—1+,up

dedy <csll fll, -

We next prove .
K xze 5005 x SCall Fllp.a-
Noting that ¢=¢,=Ch*(R*™),

0D N B(Q;, 4056,;)={(z, #(x)), x R*"'noD},
Q;=(0,0) and |V¢|<1/4, define

_ $(@)—g(z) —<w—2z, Vg(2)>
.|z —2|*+|p(x) —P(2)|%)¥*

and g(x)=f(z, ¢(x)) for f<A3(e) with supp fCB;.
Then we have

h(zx, z)

|h(x, 2)| <esle—z]*+ "¢
and
(3.1) \h(x, 2)—h(y, 2)| Sede—yl2(|lx—2z|* 70744y —g|* 704179

for 3,0=<6<1. Moreover define

Hy(w)={nlz, Dg(2)dz.

We note
Kf (X)={kX, 2)f (2)do(Z)=Hylw)  for X=(,$())
and
(3.2) IHg(w)lécyglw—ZI““"ilg(z)ldz
<csMy(),
where

1
Mg(z)=sup {lb(z, " Sb(m) lg(y)dy : 'r>0} .

Therefore we have [Hgll,<collgll,.
We next show
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20
H —H ¥4 1/p

(3.3) (SS' g;f”}y'd_?fg” dzdy) <cwlgly.,

where

lgllp.:= (Slg(w) | de>1/p+ (S%%g—@;';dxdz)w .

Since H1(x)=1/2 tor every x, we have, by (3.1),

|Hg(x)—Hg(y)]

— ’S (h(z, 2)—hly, 2))(g(2) — @)z

<ou| (le—zl""1= 24 [y —2|"* 19| g(2) — g w) | dz

lz-z|s2lr-y|

+cuS |2 —yl(le—2|*"*+ |y —z]*"9)g(z) — g(x)|dz

lz—2z|<21x~yt
=1(x, y)+ L, ) .
We note that |r—z|<2|x—y| implies |y—z|<3lz—y|. Put gq=p/(p—1).
From

le—2]*"1"% g(2) — g(x)|dz

S\x—ugwx—yl

_ _ /g [g(x)wg(z)lp 1/p
< sl Catl=d+(d-1)/p+ g S_—
_<Slx‘-zl§211—y|!x zl dz) ( ‘w_z[dAl—lp)

and a+21>py, we deduce
I 1/p
([ L) aray) " <culgl, ..

|w_y]d—1+;1p

Let us estimate L(x,¥y). To do this we pick a positive real number &

satisfying d<a and p#<d+1<1, and we have, by (3.1),

L(z, y)
gcl4lx~ylglx_zl>m_y[lx—zl‘*'dlg(Z)—g(x)ldz
< _ _pomarca-1yp+a_19(2)—g(®)|
_614|.’E yl§lz—x|>2|w—ylz .’X?l Iz—xl(d‘””’”dz

|g(2) —g(x)]” )W

1/g
<eulr— (S | B+ d=1)/p+ D) z) (___________
o 14] y| lz—x|>2[.z'—;y||z xl d lz—x|‘i'1+“’dz
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whence
IZ’ 1/p
(ngdmy) =cullglp.z-
Thus we have the desired inequality (3.8). Q.E.D.

LEMMA 8.2. Let p, 2 be positive real mumbers such that p>1 and
i1<a. Then K is a compact operator on A3(g).

PROOF. We use the same notations as in the proof of Lemma 3.1.
Let {f,} be a sequence of A%(¢) satisfying | f.l,.:<1and supp f.NB,;. We
shall show the existence of a subsequence {f,,} such that {Kf,,} converges
in A%(¢). From the consideration of the proof of Lemma 3.1 it suffices to
prove that there exist a subsequence {g,,} of {g.} and a function g, such
that

(3.4) N(HGn,— 9o Aoc0.05plp —> 0

and

|Hg,,(x)— go(x) — Hg () + 90(¥)|”

dedy —> 0,
SSb(O,saj)Xb(o.a(?,—) !x__yld~1+2p

(3.5)

where ¢,(x)=f.(z, ¢(x)). For this purpose we use a mollifier {v.}.>, on R*™!
consisting of functions v.(x)=¢'"%v(x/e), Where

—1 . _
v(x)Z[ rexp<~———1_‘x|2> if |x[<1
0 if |x|=1,

and 7>0 is so chosen that Sv(x)dx:L
Let us define

hx,z)= Sh(m —w, 2)v.(w)dw

Sh(m— sw, 2)v(w)dw

I

and
H, g(0)={h.(z, 2)g(2)dz

Then there is a constant ¢. such that

ho(x,z)<c. and |h(x,2)—h(y,2)|<c.lo—yl

for all x, y=b(0,35;) and 2<b(0,d;).
Let {g.) be a sequence satisfying llg.l,=1. We take a positive real
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number g with A<u<1. Noting that

Sup {legn(x)t . web(oy 36])}
and

IHsgn(m)_Hegn(y)‘
lo—yl*

sup { : @, y<b(0, 35,), x#y}

are uniformly bounded, we can choose a subsequence {gn,; such that {H.g,}.
converges to g. uniformly on b(0, 39,) and

[Hogn,(x)—H.g,,(y)
{ e —yl* }k

also converges uniformly on 6(0, 39,) Xb(0, 35,)\{x, x) : xc R*"'}. It is easy
to see that

(3'6) ”(Hagnk_‘ge)xuo,sﬁj)“p,/l —0 as k—oo .,

Thus to prove (3.4) and (8.5), it suffices to see the following claim.
Claim. There exist positive real numbers @, such that a.—0 as ¢—0
and

(3-7) ” (Heg—Hg)Xa(o.35j>|| p.]éasng“p,l fOI' every QEA?{(O') .

Let us prove the claim. We choose >0 with 1+26<a. On account
of (3.1) we have

|H.g(x)—Hg(x)|

Svs(w)de(h(x —w, 2)—h(zx, 2))g(2)dz

gSv;(w)lede le—w—2z]*"%*""% g(z)|d2
12-w=-21<50 5

+Svs(w)IWI"de le—2|*"%"1" % g(z)|dz,

12— 21<14d
whence
I(H.g—Hg)goc0.05pl p S €16°ll gl .
Further, putting
S, y; 2z, w)=h(x—w, 2)—h(x, 2) —h(y —w, 2)+ h(y, 2)
we write

|H.g(x)— Hg(x)—H.g(y)+ Hg(y)|

Sve(w)deJ (%, y; 2, w)g()dz
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Slwlglx—ylva(w)deL](x’ Y, %, ’w)Hg(z)ldz

IA

S ve(w)deU(x, y; 2, w)llgR)dz=I+1,.
lwli>lz=yl
Since

(3.8) Ilégvs(w)dwg Wz —w, 2)—h(z, 2)|1g(2)|dz

lwisiz-yl

-I—Sve(w)dwg Ih(y—w, 2)— Ry, 2)lg(z)ldz,

fwlgle-y!

we denote by I, (resp. I,,) the first (resp. second) term in the right-hand
side. By virtue of (3.1) we have

I, §02S ’I)s(W)[’W[“zadw
Iwisiz—y)

XS(Ix_w_z‘a—25—1+1—d+ |oc—z|‘”'25'“1"d)lg(z)ldz
éczlw—yl‘”gvs(w)lwlédw

xS{Ix—w—zl“'Z”’“l"hkIx—zl“‘”‘“"d}lg(z)idz.
Noting that a—20—21+1—d>1—d, we obtain
(Ssm—_—y—lﬁ—_;ﬂdwd@”pécseallgllpgv(W)lwladW§c4eailng .
Similarly we have the same estimate for I, and hence

(Sgﬁy%ﬁﬂdxdy)wé%eallgllp .

Moreover we also obtain the same estimate Tor I, by using the fol-
lowing inequality, instead of (3.8),

1s| vw)dw | \h@—w, 2)~hly—w, 2l g()ldz

fwi>1z-y!

vw)dw|h(w, 2)—~h(y, 2)| 9@ dz

S|w|>|z—yl

Thus we see that (3.7) holds. This completes the proof. Q.E.D.

§4. Estimates of tangential maximal functions

In this section we study the boundary behavior of the double layer
potential %, and prove our theorem. Recall that
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(up)3(Z)=sup {lu (X): XTI, (Z)NB(Z, )}

for Z=dD and §>0.
The double layer potential u, is estimated as follows.

LEMMA 4.1. Let p, 8,7, be positive real numbers satisfying p>1,
0<B=d—1, 0<9<1, 1<r<a+1 and set

1= (d—1)r—B
pr )
Fuyrthermore, let v be a positive Borel measure on 0D such that

(4.1) v(A(Z, r)) <r?

Jor all surface balls A(Z,r)=B(Z,r)noD. Then
(a) There are positive real mumbers ¢ and & such that

(Jwrzyran2)) " <eif1,.,

for every fe A¥o),

(b) If f€C'@D), then the limit of u,(X) as X—Z, Xel'. (Z), exists
and 1s equal to Kf(Z)+(1/2)f(Z) for every Z<oD,

(¢) If fedi(a), then the limit of ul(X) as X—Z, XI'., (Z), exists
Jor every Z&4D except for set of B-dimensional Hausdorff measure zero
and s equal to Kf(Z)+(1/2)f(Z) except for a set of surface measure zero.

PROOF. (a) Let feA%e). Using a partition of unity subordinate to
(2.1), we may suppose that supp fCB,. If Z&B(Q,,35,), then

X <ei(38)1 £ (V)lda(Y) 261,

J

and hence

(4.2) (u)F(V)ds (V) <ellfl,,

<S6’D\B(Qj» 835

where 0 is the positive real number 4§, in (2.6).

We next estimate u, in case Z=B(Q,,35,). Since ¢ is of class C-*
and the mapping II : #—(x, ¢(x)) is topological, we define, for a positive
measure v satisfying (4.1),

w(E)y=y(II(E)NB(Q;, 35;))
for a Borel set EC R*"!, Then
u(b(z, r)) <em? for every b(z, r)C R*',

Applying Lemma 2.5, we obtain
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([sup thes (@, 6,@)+ 017 : (@, 6,@)+ D= Q@Ndp2) Sl s

From this and (2.8) it follows that

(SB(Q.% )(uf) #(Z)Pdy( Z)) <ol fllpa-

Combining this with (4.2) we have the estimate (a).
(b) Let f=C*9D). We may suppose that supp fCB;. First, assume
that Z€B(Q,, 30,)n4D. Using the same notations as in the proof of Lemma

2.5 and noting that the function XHSk(X, Y)do(Y) is constant on D, we

can write, for (z, ¢(x)+r)e L(2),

Uy - s (@, ¢la)+7)

=ty (a, §la) +20)— | LD (1, o)+ )t

If |x—y|<d, then |¢(x)+26—9(y)|>5. Therefore we have
(4.3) }:L}fluf_f(z)(x, ¢( +25) Us-.rz> z ¢ +25

We next show that

auf

e (z, p(x)+t)dt

(4.4) lim g

Z-2, (T, @ (X +TIER (D Ir

To see this, we write

- auf
(4.5) [ % @, (o) +
= e e[ e e

and show that the integrands are dominated by some integrable functions
independent of x, respectively.

We begin with estimating the second term in the right-hand side of
(4.5). On account of (2.9) we obtain

2 Qu,
I,= S.z 5w, gt o)lde

"dsdy) "

<e; Szat"’dt(gs sTarpe %(x P(x)+s)
=MD | T—y 1< E/2 <8<t ds "’

where 0<b<1. Since g(w)=f(w, #(w)) is of C'-class, we can estimate
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i} lg(w)—g(¥)| P
» d+pb
IOéCZSSEczmAS ’ dyds(g ly —w|?*+ |¢(?J)+3‘_¢(’W)|2)d/2dw)
dy 28 b-1-l-pm
écsgly—zlémély“'Zld_l-LSD s? s

d
X(Sw~wl<45|y—w?ﬂ_l_m)p

from the same consideration as in (2.7). Here we choose small positive
real numbers [, m such that pb—1—Il—pm>—1. Therefore we see that
the integrand of the second term in the right-hand side of (4.5) is do-
minated by an integrable function.

We next estimate the integrand of the first term. Set

ok +1,
Ik:g

2ky

ou
e ¢(x)+t)Idt .

Using (2.10), we obtain

ou

— (9, ¢(y) +35)

p
35 dyds

I}’§§G4S s a*?
E 2

—dtp g lg(w)—g(y)ldw »
O5S5k<2>8 dyds(g(ly—wlz+I¢(y)+s~¢(w)1p)d-2>

IA

and hence

1
(2¥y—z]7)"

d
x(g‘y_w,mlyTu(d_H)” )

where a, b are positive real numbers satisfying

20
lec)g(:sg S S—d+p—-bp+a.ds
0

(4.6) ar<d—1, —d+p—bp+a>—1 b<1.

It is possible to choose a, b satisfying (4.6). Indeed, noting that A<1 and
pA<d—1, we pick a positive real number b with 1<1—b and p(1-b)<
d—1. Since

_ B < d—1
T d—1—pi d—1—p(d—0)"’

T

it suffices to choose a positive real number o satistying

d-—l—p(l—b)<a<d—:1 .

Therefore we have that
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8uf

lz-21/2
Sr S, ¢ m)—l—t)ldt
o k+1l,
<3 Sz auf(w ¢(z) +1) ‘dt
k=1 Jokr
1
< - ka -
:07§ 2 S]y—zl(et&ly_ZlTady )

Thus we see that (4.4) holds, whence

lim s sz (@, ¢lx)+7)
2,720, ¢ () +rIER(2)

= 13({1 {uf_f(z)(z, ¢(z)+25)—§ %—f (2, ¢(z)+t)dt}

:uf-f<Z)(z,~ ¢(z)) .
Noting that I'. ,(Z)C2(z), we have
(4.7) lim  w/(X)= lim  {u;_ (X)) +F(X)}

X-2Z.Xle, (D) X-Z.X€lr, (D>

:Kf(Z)+——~f(2Z) .

Finally suppose that Z=dD and Z#B(Q;,35;). If |[X—Z|<4; and
XeD, then we have
I X—Y|=o, on supp f.

Consequently we also obtain (4.7).
(¢) Denote by E, the set of all boundary points Z at which
lim U (X)

X-Z,Xel e, n(D

do not exist. If E, is not a set of p-dimensional Hausdorff measure zero,
then so is not a compact subset K of E,. Therefore we can find a posi-
tive measure v with supp vC K such that

v(B(Z, r))<crf

for every ball B(Z,r) (cf. [2, Theorem 1 in § IIJ).

On the other hand, by using a partition of unity and mollifiers, we
see that C!(@D) is dense in A%(¢). On account of (a) and (b) we can show
that v(E;)=0 by the standard argument. This yields a contradiction.

Q.E.D.

Let us now prove our theorem.

PROOF OF THEOREM. In [3, Theorem 2.1] it has been shown that
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K+(1/2)I is injective on L?(¢). Therefore K+(1/2)I is also injective on

A%(o).

Since K is a compact operator on A%(¢) by Lemma 3.2, the operator

(K+(1/2)I) is invertible on 4%(s). Let f=A%0) and choose g< A%(g) satis-
fying (K+(1/2)I)g=f. Then Lemma 4.1 shows that w=wu, is the desired
function. Q.E.D.
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