Tangential Boundary Behavior of Solutions to the Dirichlet Problem

Hisako Watanabe

Department of Mathematics, Faculty of Science Ochanomizu University, Tokyo (Received Apr. 5, 1994)

§ 1. Introduction

Let \mathbf{R}_{+}^{d+1} be the upper half space in \mathbf{R}^{d+1} . It is well-known that the Poisson integrals of functions f in $L^{p}(\mathbf{R}^{d})$ converge to f nontangentially except for a set of d-dimensional Lebesgue measure zero. Moreover it has been also known that the Poisson integrals of functions in a subfamily of $L^{p}(\mathbf{R}^{d})$, for example, a family of L^{p} -potentials, a family of Bessel potentials or the Besov space, have limits within tangential approach regions except for a set of appropriately dimensional Hausdorff measure zero (cf. [4], [5], [1]).

Y. Mizuta investigated tangential boundary behavior of harmonic functions in \mathbf{R}_{+}^{d+1} in [5] and proved that, if $0 < \lambda < 1$, p > 1, $p\lambda < d$ and $d - p\lambda < \beta \le d$, then the Poisson integral of a function in the Besov space $\Lambda_{\lambda}^{p,p}(\mathbf{R}^{d})$ has a limit within a tangential approach region

$$\Omega_{\tau,\,\eta}(Z) := \{(x,\,t) \in \mathbf{R}_+^{d+1} : \eta | x - z|^{\sigma} < t\}$$

for $\tau = \beta/(d-p\lambda)$ for all $z \in \mathbf{R}^d$ except for a set of β -dimensional Hausdorff measure zero.

P. Ahern and A. Nagel also proved in [1] that the above result is still valid even if $\lambda \ge 1$. Recall that a function f in $L^p(\mathbf{R}^d)$ belongs to $\Lambda^{p,p}_{\lambda}(\mathbf{R}^d)$ if the Poisson integral u of f satisfies

$$\iint \!\! t^{p(m-\lambda)-1} \Big| \!\! rac{\partial^m \! u}{\partial t^m}(x,t) \Big|^p dx dt \! < \infty$$
 ,

where m is the least integer greater than λ .

In this paper we consider a bounded $C^{1,\alpha}$ -domain D in \mathbf{R}^d ($d \ge 3$) instead of the upper half space. We ask what functions f on ∂D allow us to get that the solution to the Dirichlet problem for the Laplacian with boundary data f converges to f through a tangential approach region except for a set of surface measure zero, or that it has a limit within a tangential approach region except for a set of β -dimensional Hausdorff

measure zero for $\beta \leq d-1$.

To answer the questions, we consider an approach region $\Gamma_{\tau,\eta}(Z)$ defined by

$$\Gamma_{\tau,\eta}(Z) := \{X \in D : \langle Z - X, N_Z \rangle > \eta | X - Z|^{\tau} \}$$

for τ , $1 < \tau < \alpha + 1$ and $0 < \eta < 1$, where N_Z stands for the outward unit normal to the ∂D at Z.

We will introduce a function space $\Lambda^p_{\lambda}(\sigma)$, which is a Besov space on ∂D . More precisely, let p,λ be positive real numbers such that p>1, $0<\lambda<1$ and σ be the sufface measure of ∂D . We denote by $\Lambda^p_{\lambda}(\sigma)$ the space of all functions f in $L^p(\sigma)$ such that the functions $f_{p,\lambda}$ defined by

$$f_{p,\lambda}(Z) = \left(\int \frac{|f(Y) - f(Z)|^p}{|Y - Z|^{d-1+\lambda p}} d\sigma(Y)\right)^{1/p}$$

also belong to $L^p(\sigma)$.

The space $\Lambda_{\lambda}^{p}(\sigma)$ is a Banach space with norm

$$||f||_{p,\lambda} := ||f||_p + ||f_{p,\lambda}||_p$$

where

$$||f||_p = \left(\int |f|^p d\sigma\right)^{1/p}.$$

Using double layer potentials, we will prove the following theorem in § 4.

THEOREM. Let D be a bounded $C^{1 \ \alpha}$ -domain in \mathbf{R}^d $(0 < \alpha \le 1, \ d \ge 3)$ such that $\mathbf{R}^d \setminus D$ is connected. Further, let p, β , λ be positive real numbers satisfying p > 1, $0 < \lambda < \alpha$, $p\lambda < d-1$ and $d-1-p\lambda < \beta \le d-1$. If $\beta/(d-1-p\lambda) < \alpha+1$, then for

(1.1)
$$\tau = \frac{\beta}{d - 1 - p\lambda}$$

and for every function $f \in \Lambda_{\lambda}^{p}(\sigma)$ there exists a function u on D with the following properties (a)-(c):

- (a) $\Delta u = 0$ in D,
- (b) The limit of u(X) as $X \rightarrow Z$, $X \in \Gamma_{\tau,\eta}(Z)$, exists axcept for a set of β -dimensional Hausdorff measure zero and is equal to f(Z) at σ -almost every point $Z \in \partial D$,
 - (c) There exist positive real numbers c, δ such that

$$\|u_{\delta}^*\|_p \leq c \|f\|_{p,\lambda}$$
,

where u* is the function defined by

$$u_{\delta}^*(Z) = \sup \{|u(X)| : X \in \Gamma_{\tau,\eta}(Z) \cap B(Z,\delta)\}$$

and c, δ do not depend on f.

REMARK. This theorem corresponds to the result obtained by P. Ahern and A. Nagel in [1, § 7] for the upper half domain, although $\lambda < \alpha$. If D is a $C^{m,\alpha}$ -domain, $A_{\ell}^{p}(\sigma)$ will be defined for $\lambda < m$.

§ 2. Local estimates of double layer potentials

In this paper D is a bounded $C^{1,\alpha}$ -domain in \mathbf{R}^d ($0 < \alpha \le 1$, $d \ge 3$). Recall that a domain D in \mathbf{R}^d is called a $C^{1,\alpha}$ -domain if to each point $Q \in \partial D$ there correspond a system of coordinates of \mathbf{R}^d with origin Q and an open ball $B(Q,\rho)$ with center Q and radius ρ such that with respect to this coordinate system

(2.1)
$$D \cap B(Q, \rho) = \{(x, t) : x \in \mathbf{R}^{d-1}, t > \phi(x)\} \cap B(Q, \rho),$$
$$\partial D \cap B(Q, \rho) = \{(x, \phi(x)) : x \in \mathbf{R}^{d-1}\} \cap B(Q, \rho),$$

where $\phi \in C_0^{1,\alpha}(\mathbf{R}^{d-1})$ and $\phi(0) = D_j \phi(0) = 0$. Note that $C_0^{1,\alpha}(\mathbf{R}^{d-1})$ stands for the space of all functions g in $C^1(\mathbf{R}^{d-1})$ with compact support satisfying

(2.2)
$$|D_j g(x) - D_j g(y)| \le M|x - y|^{\alpha}$$

for all $x, y \in \mathbb{R}^{d-1}$ and $1 \le j \le d-1$.

Let us define, for $X \in \mathbb{R}^d$, $Y \in \partial D$,

$$k(X, Y) = -\frac{1}{\omega_a(d-2)} \langle \nabla_Y | X - Y |^{2-a}, N_Y \rangle$$

if it is well-defined and k(X, Y) = 0 otherwise, where ω_d is the area of the surface of the unit ball in \mathbb{R}^d and $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^d .

It is well-known that the function k has the following properties.

LEMMA 2.1. Let $0 < \delta \le 1$ and X, $Z \in \partial D$. Then

- (a) $|k(X, Z)| \le c|X Z|^{\alpha + 1 d}$.
- (b) $|k(X, Y) k(Z, Y)| \le c|X Z|^{\delta}(|X Y|^{\alpha \delta + 1 d} + |Z Y|^{\alpha \delta + 1 d})$ for every $Y \in \partial D$, $Y \ne X$, $Y \ne Z$.

Using Green's formula, we can show the following lemma.

LEMMA 2.2. The function k has the following properties:

(a)
$$\int k(X, Y)d\sigma(Y) = 1$$
 for $X \in D$

(b)
$$\int k(X, Y) d\sigma(Y) = 0$$
 for $X \in \mathbf{R}^d \setminus \bar{D}$,

(c)
$$\int k(X, Y)d\sigma(Y) = 1/2$$
 for $X \in \partial D$.

Let us now estimate the maximal functions with respect to a tangential approach region. Let $1 < \tau < \alpha + 1$, $0 < \eta < 1$ and consider a tangential approach region

$$\Gamma_{\tau,\eta}(P) = \{X \in D : \langle P - X, N_n \rangle > \eta | X - P |^{\tau} \}$$

at $P \in \partial D$. We define, for $f \in L^p(\sigma)$ and $X \in \mathbf{R}^d$,

(2.3)
$$u_f(X) = \int k(X, Y) f(Y) d\sigma(Y)$$

if it is well-defined and $u_f(X)=0$ otherwise. Then the function u_f is harmonic in $\mathbb{R}^d \setminus \partial D$. To study the boundary behavior of u_f , we cover ∂D by finite balls

$$(2.4) B_j = B(Q_j, \delta_j) (j=1, \cdots, n)$$

which satisfy (2.1) for $Q=Q_j$, $\phi=\phi_j$ and $\rho=40\delta_j$. Furthermore we may assume that

$$(2.5) \hspace{1cm} \delta_j \!<\! 1, \hspace{0.3cm} M \delta_j^{\scriptscriptstyle 1+\alpha-\tau} \!<\! \frac{\eta}{2} \hspace{0.3cm} \text{and} \hspace{0.3cm} |\nabla \phi_j| \!<\! \eta/4.$$

Set

(2.6)
$$\delta_0 = \min \{\delta_1, \delta_2, \cdots, \delta_n\}.$$

In this paper we fix this covering $\{B_j\}$. To investigate the boundary behavior of u_f , we may suppose that supp $f \subset B_j$ by using a partition of unity subordinate to $\{B(Q_j, \delta_j)\}$ if necessary.

The following lemma corresponds to Proposition 7 on p. 151 in [6] for the upper half space.

LEMMA 2.3. Let p, λ be positive real numbers satisfying p>1, $\lambda<1$. Suppose that $f\in A^p_{\lambda}(\sigma)$ and supp $f\subset B(Q_j,\delta_j)$. Then

$$\int_0^{4\delta_f} \int_{|x|<40\delta_f} t^{p(1-\lambda)-1} \left| \frac{\partial u_f}{\partial t}(x,\phi_f(x)+t) \right|^p dx dt \leq \|f\|_{p,\lambda}.$$

PROOF. Put $u=u_f$, $\phi=\phi_j$, $\delta=\delta_j$, $g(x)=f(x,\phi(x))$ and $X=(x,\phi(x)+t)$. From

$$\left| \frac{\partial}{\partial t} k(X, Y) \right| \leq c_1 |X - Y|^{-d}$$

and

$$\frac{\partial}{\partial t} \int k(X, Y) d\sigma(Y) = 0$$

it follows that

$$\begin{split} \left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right| &\leq c_1 \int \frac{|g(z) - g(x)|}{(|x - z|^2 + |\phi(x) + t - \phi(z)|^2)^{d/2}} dz \\ &\leq c_1 \int \frac{|g(x + z) - g(x)|}{(|z|^2 + |\phi(x) + t - \phi(x + z)|^2)^{d/2}} dz \;. \end{split}$$

If t > |z|, then we have

$$|t+\phi(x)-\phi(x+z)|$$

$$\geq t-|\phi(x+z)-\phi(x)| \geq t-\frac{\eta}{4}|z| \geq \frac{3}{4}t,$$

where

(2.7)
$$\left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right|$$

$$\leq c_2 \left(\int_{|z| \leq t} \frac{1}{t^d} |g(x+z) - g(x)| dz + \int_{|z| > t} \frac{|g(x+z) - g(x)|}{|z|^d} dz \right)$$

$$\equiv I_1(x, t) + I_2(x, t) .$$

Set

$$w(z) = w(r\xi) = \left(\int |g(x+z) - g(x)|^p dx\right)^{1/p} \quad \text{and} \quad \Omega(r) = \int_S w(r\xi) d\xi$$

where S is the surface of the unit disc. From

$$egin{aligned} \left(\int I_1(x,t)^p dx
ight)^{1/p} &\leq \int_{|z| \leq t} rac{1}{t^d} \Big(\int |g(x+z)-g(x)|^p dx\Big)^{1/p} dz \ &\leq rac{1}{t^d} \int_0^t r^{d-2} \mathcal{Q}(r) dr \end{aligned}$$

and

$$\begin{split} \left(\int &I_2(x,t)^p dx\right)^{1/p} \leq \int_{|z|>t} \frac{1}{|z|^d} \left(\int |g(x+z)-g(x)|^p dx\right)^{1/p} dz \\ \leq &\int_t^\infty r^{-2} \mathcal{Q}(r) dr \end{split}$$

we deduce

$$egin{aligned} J := \left(\int_0^{4\delta} t^{p\,(1-\lambda)-1} dt \int_{|x|<40\delta} \left|rac{\partial u}{\partial t}(x,\phi(x)+t)
ight|^p dx
ight)^{1/p} \ & \leq c_3 \!\! \left(\int_0^\infty t^{p\,(1-\lambda)-p\,d-1} \!\! \left(\int_0^t r^{d-2} arOmega(r) dr
ight)^p dt
ight)^{1/p} \ & + c_3 \!\! \left(\int_0^\infty t^{p\,(1-\lambda)-1} \!\! \left(\int_t^\infty r^{-2} arOmega(r) dr
ight)^p dt
ight)^{1/p}. \end{aligned}$$

With the aid of Hardy's inequalities we obtain

$$egin{aligned} J & \leq & c_4 igg(\int_0^\infty t^{-p \lambda - 1} \mathcal{Q}(t)^p dt igg)^{1/p} \ & \leq & c_5 igg(\int_{R^{d-1}} & rac{\|g(x+z) - g(x)\|_p^p}{|z|^{p \lambda + d - 1}} dz igg)^{1/p} \leq & c_6 \|f\|_{p,\lambda} \ . \end{aligned}$$

This completes the proof.

Q. E. D.

We next investigate, for $f \in A_{\lambda}^{p}(\sigma)$ satisfying supp $f \subset B_{j}$, how the double layer potential defined by (2.3) behaves near $B_{j} \cap \partial D$. For the purpose we prepare the following lemma, which can be shown by the same method as in the proof of Lemma 7.1 in [1].

LEMMA 2.4. Let $\tau > 1$ and $0 < \rho < 1$. Then there is a positive real number $\varepsilon = \varepsilon(\tau, z)$ such that $|x-z| \ge t \ge b|x-z|^{\tau}$ implies

$$\{(y, \phi_j(y)+s): |x-y| < \rho t, t-s < \rho t\} \subset \{(y, \phi_j(y)+s): b \varepsilon |y-z|^{\tau} < s\}.$$

We note that, if $Z=(z,\phi_j(z))\in B(Q_j,\delta_j)$ and $X=(x,\phi_j(x)+t)\in \Gamma_{\tau,\eta}(Z)\cap B(Z,\delta_0)$, then

$$(2.8) t > \frac{\eta}{2} |z - x|^{\tau}.$$

In fact, by (2.2) and (2.5) we have

$$egin{split} t > & \eta |z-x|^{ au} - \langle z-x, \,
abla \phi_{\jmath}(z)
angle + \phi_{\jmath}(z) - \phi_{\jmath}(x) \ & \geq & \eta |z-x|^{ au} - M |z-x|^{1+lpha} \geq rac{1}{2} \, \eta |z-x|^{ au}. \end{split}$$

Let us denote by b(z, r) the ball in \mathbb{R}^{d-1} with center z and radius r. The function u_f defined by (2.3) is estimated near $B_f \cap \partial D$ as follows.

LEMMA 2.5. Let
$$p>1$$
, $1<\tau<\alpha+1$, $0<\beta\leq d-1$ and set

$$\lambda = \frac{(d-1)\tau - \beta}{p\tau}.$$

Further define

$$Q(z) = \left\{ (x, \phi_j(x) + t) : t > \frac{1}{2} \eta |x - z|^{\tau}, |x - z| < \delta_j, t < \delta_j \right\}$$

for $(z, \phi_j(z)) \in B_j$. Suppose that ν is a positive Borel measure on the set $b(0, 3\delta_j)$ and

$$\nu(b(z,r)) \leq c_0 r^{\beta}$$

whenever $b(z, r) \subset b(0, 3\delta_j)$. Then

$$\left(\int \sup \{|u_f(x,\phi_j(x)+r)|^p: (x,\phi_j(x)+r) \in \mathcal{Q}(z)\} d\nu(z)\right)^{1/p} \leq c \|f\|_{p,\lambda}$$

for every $f \in \Lambda^p_{\lambda}(\sigma)$ with supp $f \subset B_j$.

PROOF. We prove this lemma by the similar method to that in the proof of Theorem 7.1 in [1]. We write simply u, ϕ , δ instead of u_f , ϕ_j , δ_j , respectively and $g(x)=f(x,\phi(x))$. Let $(x,\phi(x)+r)\in \mathcal{Q}(z)$. Note that

$$u(x, \phi(x)+r) = u(x, \phi(x)+2\delta) - \int_{r}^{2\delta} \frac{\partial u}{\partial t}(x, \phi(x)+t)dt.$$

Since

$$|\phi(x)+2\delta-\phi(y)| \ge 2\delta - \frac{\eta}{4}|x-y| \ge 2\delta - \frac{|x-z|+|z-y|}{4} \ge \frac{3}{4}\delta$$

for $y \in b(0, 3\delta)$, we have

$$egin{align} |u(x,\phi(x)+2\delta)| &\leq c_1 \int rac{|g(y)|}{(|x-y|^2+|\phi(x)+2\delta-\phi(y)|^2)^{(d-1)/2}} dy \ &\leq c_1 \int rac{|g(y)|}{\delta^{d-1}} dy \leq c_3 \|f\|_p \ . \end{split}$$

We next consider

$$egin{aligned} &\int_{r}^{2\delta} \left| rac{\partial u}{\partial t}(x,\phi(x)+t) \right| dt \ &\leq & \int_{r}^{2n_{r}} + \int_{|x-z|/2}^{2\delta} \equiv I_{1}(x,r) + I_{2}(x,r) \,, \end{aligned}$$

where n is the largest integer satisfying $2^n r \le |x-z|$.

To estimate $I_2(x, r)$, let $(x, \phi(x) + t) \in \Omega(z)$ and (1/2)|x-z| < t. We denote by $J((x, t), \rho)$ the bounded cylinder

$$\{(y,s): |x-y| < \rho, |t-s| < \rho\}$$

for $\rho > 0$. Then $J((x, \phi(x) + t), (1/2)t) \subset D$. In fact, if $(y, s) \in J((x, \phi(x) + t), (1/2)t)$, then

$$\begin{aligned} \phi(y) &= (\phi(y) - \phi(x)) + (\phi(x) + t - s) + s - t \\ &\leq \frac{t}{8} + \frac{t}{2} + s - t < s \; . \end{aligned}$$

By the mean value theorem we obtain

$$\begin{split} \left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right| &\leq c_3 t^{-d} \int_{J((x, \phi(x) + t), t/2)} \left| \frac{\partial u}{\partial s}(y, s) \right| dy ds \\ &\leq c_4 t^{-d/p} \Big(\int_{J((x, \phi(x) + t), t/2)} \left| \frac{\partial u}{\partial s}(y, s) \right|^p dy ds \Big)^{1/p} . \end{split}$$

If $(y,s) \in J((x,\phi(x)+t), t/2)$ then

$$|\phi(x)-\phi(y)|<\frac{t}{8}$$
 and $s<\phi(x)+\frac{3t}{2}$.

Using this, we easily see that $t > (1/2)(s - \phi(y))$. Therefore we have

$$\begin{aligned} |\frac{\partial u}{\partial t}(x,\phi(x)+t)| \\ &\leq c_{\delta} \Big(\int_{J((x,\phi(x)+t),t/2)} \frac{1}{(s-\phi(y))^{d}} \Big| \frac{\partial u}{\partial s}(y,s) \Big|^{p} dy ds \Big)^{1/p} \\ &\leq c_{\delta} t^{a} \Big(\int_{|x-y| < t/2} dy \int_{t/4 < s < 2t} s^{-pa-d} \Big| \frac{\partial u}{\partial s} \Big(y,\phi(y) + s \Big) \Big|^{p} ds \Big)^{1/p}, \end{aligned}$$

where $a = (\beta(\tau - 1)/p\tau) - 1$. Putting, for $Z = (z, \phi(z))$,

$$E(Z) = \{(y, \phi(y) + s) : |y - z| < 10s\}$$

and

$$A = \{(y, s) : |y| < 3\delta, s < 4\delta\}$$

we obtain

$$egin{aligned} \left| rac{\partial u}{\partial t}(x,oldsymbol{\phi}(x)+t)
ight| \ & \leq c_5 t^a \Bigl(\int_{oldsymbol{\mathcal{E}}(Z)\cap A} \!\! s^{-d-pa} \Bigl| rac{\partial u}{\partial s}(y,oldsymbol{\phi}(y)+s) \Bigr|^p dy ds \Bigr)^{1/p} \end{aligned}$$

Since a > -1, we have

$$egin{aligned} &\int_{|x-z|/2}^{2\delta} \left|rac{\partial u}{\partial t}(x,oldsymbol{\phi}(x)+t)
ight|dt \ &\leq c_5 \Big(\int_0^{2\delta} t^a dt\Big) \Big(\int_{oldsymbol{E}(Z)\cap A} s^{-d-pa} \left|rac{\partial u}{\partial s}(y,oldsymbol{\phi}(y)+s)
ight|^p dy ds\Big)^{1/p} \ &\leq c_6 \Big(\int_{oldsymbol{E}(Z)\cap A} s^{-d-pa} \left|rac{\partial u}{\partial s}(y,oldsymbol{\phi}(y)+s)
ight|^p dy ds\Big)^{1/p}. \end{aligned}$$

whence

$$\begin{split} &\int \sup \left\{ |I_2(x,r)|^p : (x,\phi(x)+r) \in \Omega(z) \right\} d\nu(z) \\ &\leq & c_6 \int_A s^{-d-pa} \left| \frac{\partial u}{\partial s}(y,\phi(y)+s) \right|^p \left(\int \chi_{E(Z)\cap A}(z) d\nu(z) \right) dy ds \;, \\ &\leq & c_7 \int_A s^{-d-pa+\beta} \left| \frac{\partial u}{\partial s}(y,\phi(y)+s) \right|^p dy ds \\ &\leq & c_7 \int_A s^{p(1-\lambda)-1} \left| \frac{\partial u}{\partial s}(y,\phi(y)+s) \right|^p dy ds \\ &\leq & c_8 \|f\|_{p,\lambda}^p \;. \end{split}$$

The last inequality was deduced from Lemma 2.3.

We next estimate $I_1(x, r)$. We write

$$I_1(x,r) = \sum\limits_k \int_{2^{k_T}}^{2^{k+1}r} rac{\partial u}{\partial t}(x,t) dt$$
 ,

where the sum is taken over natural numbers k satisfying $2^{k+1}r \le |x-z|$. By the same method as in the proof of (2.9) we have

$$egin{aligned} \left| rac{\partial u}{\partial t}(x, \phi(x) + t)
ight| \ & \leq c_9 t^{-d/p} \Bigl(\int_{J \, ((x, \phi(x) + t), t/2)} \left| rac{\partial u}{\partial s}(y, \phi(y) + s)
ight|^p dy ds \Bigr)^{1/p} \ & \leq c_{10} \Bigl(\int_{|x-y| < t/2, t/4 < s < 2t} s^{-d} \left| rac{\partial u}{\partial s}(y, \phi(y) + s)
ight|^p dy ds \Bigr)^{1/p}, \end{aligned}$$

whence

$$\begin{split} & \int_{2^{k}r}^{2^{k+1}r} \left| \frac{\partial u}{\partial t}(x,\phi(x)+t) \right| dt \\ & \leq c_{11} \Big(\int_{|x-y| < 2^{k}r, 2^{k-2}r < s < 2^{k+2}r} s^{-d+p} \left| \frac{\partial u}{\partial s}(y,\phi(y)+s) \right|^{p} dy ds \Big)^{1/p} \,. \end{split}$$

Suppose that $|x-y| < 2^k r$ and $2^{k-2} r < s < 2^{k+2} r$. From $\eta |x-z|^r/2 < r$ we deduce

$$2^{k+1}r - s < 2^{k+1}r - 2^{k-2}r \le \frac{7}{8} 2^{k+1}r$$
,
$$|x-y| < 2^kr < \frac{7}{8} 2^{k+1}r$$

and

$$\frac{\eta}{2} 2^{k+1} |x-z|^{\tau} < 2^{k+1} r \leq |x-z|.$$

On account of Lemma 2.4 we can find $\varepsilon > 0$ such that

$$s\!>\!\eta\,arepsilon 2^k |y\!-\!z|^ au$$
 ,

where ε is independent of r, y, z and k.

Setting

$$E_{k}(Z) = \{(y, \phi(y) + s) : 2^{k} \eta \varepsilon | y - z|^{\tau} < s < 4\delta, |y| < 3\delta\}$$
,

we have

(2.10)
$$\int_{2^{k}r}^{2^{k+1}r} \left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right| dt$$

$$\leq c_{12} \left(\int_{E_{b}(Z)} s^{-d+p} \left| \frac{\partial u}{\partial s}(y, \phi(y) + s) \right|^{p} dy ds \right)^{1/p}.$$

Since

$$|y-z| < (2^{-k}\eta^{-1}\varepsilon^{-1}s)^{1/\tau}$$

for every $(y, \phi(y)+s) \in E_k(Z)$, we get

$$\begin{split} & \int \!\! \left(\sup_{(x \mid \phi(x) + r) \in \mathcal{Q}(x)} \int_{2 \mid k \mid r}^{2^{k+1} r} \left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right| dt \right)^{p} d\nu(z) \\ & \leq c_{13} (2^{-k/\tau})^{\beta} \int \!\! s^{-d+p+\beta/\tau} \left| \frac{\partial u}{\partial s}(y, \phi(y) + s) \right|^{p} dy ds \\ & \leq c_{13} (2^{-k/\tau})^{\beta} \int \!\! s^{p(1-\lambda)-1} \left| \frac{\partial u}{\partial s}(y, \phi(y) + s) \right|^{p} dy ds \; . \end{split}$$

From this and Lemma 2.3 we deduce

$$egin{aligned} \left(\int_{(x,\phi(x)+r)\in\mathcal{Q}(z)}^{\sup}I_1(x,r)^pd
u(z)
ight)^{1/p} \ &\leq \sum_k \left(\int_{(x,\phi(x)+r)\in\mathcal{Q}(z)}^{\sup}\int_{2^kr}^{2^{k+1}r}\left|rac{\partial u}{\partial t}(x,\phi(x)+t)
ight|dt
ight)^pd
u(z)
ight)^{1/p} \ &\leq c_{14}\sum_k 2^{-keta/(au p)} \left(\int_{\mathbb{S}^{p(1-\lambda)-1}}^{y(1-\lambda)-1}\left|rac{\partial u}{\partial s}(y,\phi(y)+s)
ight|^pdyds
ight)^{1/p} \ &\leq c_{12}\|f\|_{p,\lambda}\,. \end{aligned}$$

Thus we complete the proof.

Q. E. D.

$\S 3.$ Boundedness of the operator K

To study the behavior of double layer potentials on ∂D , we define, for $f \in L^p(\sigma)$ and $Z \in \partial D$,

$$Kf(Z) = \int k(Z, Y) f(Y) d\sigma(Y)$$

if it is well-defined and Kf(Z)=0 otherwise. In this section we discuss the boundedness and compactness of the operator K. We begin with the boundedness.

LEMMA 3.1. Let p, λ and μ be positive real numbers such that p>1, $0<\lambda<1$ and $0<\mu<\min\{\lambda+\alpha,1\}$. Then K is a bounded operator from $\Lambda^p_{\lambda}(\sigma)$ to $\Lambda^p_{\mu}(\sigma)$.

PROOF. To prove

$$\|Kf\|_{p,\mu} \leq c \|f\|_{p,\lambda}$$

for all $f \in \Lambda_{\lambda}^{p}(\sigma)$, we may assume that supp $f \subset B_{j} = B(Q_{j}, \delta_{j})$ by using a partition of unity if necessary. If $X, Y \in \partial D \setminus B(Q_{j}, 2\delta_{j})$ and $Z \in B_{j}$, then

$$|k(X, Z) - k(Y, Z)| \le c_1 |X - Y|$$
.

So it is easy to see that the inequality

$$\|(Kf)\chi_{\partial D\setminus B(Q_j,2\delta_j)}\|_{p,\mu} \leq c_2 \|f\|_{p,\lambda}$$

holds.

If $X \in \partial D \cap B(Q_j, 2\delta_j)$ and $Y \in \partial D \setminus B(Q_j, 3\delta_j)$, then $|X - Y| \ge \delta_j$, whence $\iint \frac{|(Kf)\chi_{B(Q_j, 2\delta_j)}(X) - (Kf)\chi_{\partial D \setminus B(Q_j, 3\delta_j)}(Y)|}{|X - Y|^{d-1 + \mu p}} dxdy \le c_3 \|f\|_p \ .$

We next prove

$$||(Kf)\chi_{B(Q_j,3\delta_j)}||_{p,\mu} \leq c_4 ||f||_{p,\lambda}.$$

Noting that $\phi \equiv \phi_j \in C_0^{1,\alpha}(\mathbf{R}^{d-1})$,

$$\partial D \cap B(Q_j, 40\delta_j) = \{(x, \phi(x)), x \in \mathbb{R}^{d-1} \cap \partial D\}$$

 $Q_j = (0, 0)$ and $|\nabla \phi| \leq 1/4$, define

$$h(x,z) = \frac{\phi(x) - \phi(z) - \langle x - z, \nabla \phi(z) \rangle}{\omega_d(|x - z|^2 + |\phi(x) - \phi(z)|^2)^{d/2}}$$

and $g(x) = f(x, \phi(x))$ for $f \in A_{\lambda}^{p}(\sigma)$ with supp $f \subset B_{\beta}$.

Then we have

$$|h(x,z)| \leq c_5 |x-z|^{\alpha+1-d}$$

and

$$(3.1) |h(x,z)-h(y,z)| \le c_6|x-y|^{\delta}(|x-z|^{\alpha-\delta+1-d}+|y-z|^{\alpha-\delta+1-d})$$

for δ , $0 \le \delta \le 1$. Moreover define

$$Hg(x) = \int h(x, z)g(z)dz$$
.

We note

$$Kf(X) = \int k(X, Z)f(Z)d\sigma(Z) = Hg(x)$$
 for $X = (x, \phi(x))$

and

$$|Hg(x)| \leq c_7 \int |x-z|^{\alpha+1-d} |g(z)| dz$$

$$\leq c_8 Mg(x),$$

where

$$Mg(z) = \sup \left\{ \frac{1}{|b(z,r)|} \int_{b(z,\tau)} |g(y)dy: r > 0 \right\}.$$

Therefore we have $||Hg||_p \leq c_9 ||g||_p$.

We next show

$$(3.3) \qquad \left(\iint \frac{|Hg(x) - Hg(y)|^p}{|x - y|^{d-1 + \lambda p}} dx dy \right)^{1/p} \leq c_{10} ||g||_{p, \lambda},$$

where

$$||g||_{p,\lambda} = \left(\int |g(x)|^p dx\right)^{1/p} + \left(\int \frac{|g(x)-g(z)|^p}{|x-z|^{d-1-\lambda p}} dx dz\right)^{1/p}.$$

Since H1(x)=1/2 for every x, we have, by (3.1),

$$egin{align*} |Hg(x)-Hg(y)| \ &= \left|\int (h(x,z)-h(y,z))(g(z)-g(x))dz
ight| \ &\leq c_{11}\!\!\int_{|x-z|\leq 2|x-y|} (|x-z|^{lpha+1-d}\!+|y-z|^{lpha+1-d})|g(z)-g(x)|dz \ &+ c_{11}\!\!\int_{|x-z|<2|x-y|} |x-y|(|x-z|^{lpha-d}\!+|y-z|^{lpha-d})|g(z)-g(x)|dz \ &\equiv I_1(x,y)+I_2(x,y) \;. \end{gathered}$$

We note that $|x-z| \le 2|x-y|$ implies $|y-z| \le 3|x-y|$. Put q = p/(p-1). From

$$\begin{split} & \int_{\|x-z\| \leq 2\|x-y\|} |x-z|^{\alpha+1-d} |g(z)-g(x)| dz \\ & \leq & \left(\int_{\|x-z\| \leq 2\|x-y\|} |x-z|^{(\alpha+1-d+(d-1)/p+\lambda)q} dz \right)^{1/q} \left(\int_{\|x-z\|^{d-1-\lambda p}}^{\|g(x)-g(z)\|^p} \right)^{1/p} \\ & \leq & c_{12} |x-y|^{\alpha+\lambda} \left(\int_{\|x-z\|^{d-1-\lambda p}}^{\|g(x)-g(z)\|^p} dz \right)^{1/p} \end{split}$$

and $\alpha + \lambda > \mu$, we deduce

$$\left(\iint \frac{I_{1}(x,y)}{|x-y|^{d-1+\mu p}}dxdy\right)^{1/p} \leq c_{13} \|g\|_{p,\lambda}.$$

Let us estimate $I_2(x, y)$. To do this we pick a positive real number δ satisfying $\delta < \alpha$ and $\mu < \delta + \lambda < 1$, and we have, by (3.1),

$$\begin{split} I_{2}(x,y) & \leq c_{14}|x-y| \int_{|x-z|>2|x-y|} |x-z|^{\delta-d}|g(z)-g(x)|dz \\ & \leq c_{14}|x-y| \int_{|z-x|>2|x-y|} |z-x|^{\delta-d+(d-1)/p+\lambda} \frac{|g(z)-g(x)|}{|z-x|^{(d-1)/p+\lambda}} dz \\ & \leq c_{14}|x-y| \Big(\int_{|z-x|>2|x-y|} |z-x|^{(\delta-d+(d-1)/p+\lambda)q} dz \Big)^{1/q} \Big(\frac{|g(z)-g(x)|^{p}}{|z-x|^{d-1+\lambda p}} dz \Big)^{1/p} \\ & \leq c_{15}|x-y|^{\delta+\lambda} \Big(\int_{|z-x|^{d-1+\lambda p}}^{|g(z)-g(x)|^{p}} dz \Big)^{1/p} , \end{split}$$

whence

$$\left(\int\int \frac{I_{2}^{p}}{|x-y|^{d-1+\mu p}}dxdy\right)^{1/p} \leq c_{16} \|g\|_{p,\lambda}.$$

Thus we have the desired inequality (3.3).

Q. E. D.

LEMMA 3.2. Let p, λ be positive real numbers such that p>1 and $\lambda < \alpha$. Then K is a compact operator on $\Lambda_{\lambda}^{p}(\sigma)$.

PROOF. We use the same notations as in the proof of Lemma 3.1. Let $\{f_n\}$ be a sequence of $\Lambda^p_{\lambda}(\sigma)$ satisfying $\|f_n\|_{p,\lambda} \leq 1$ and $\operatorname{supp} f_n \cap B_j$. We shall show the existence of a subsequence $\{f_{n_k}\}$ such that $\{Kf_{n_k}\}$ converges in $\Lambda^p_{\lambda}(\sigma)$. From the consideration of the proof of Lemma 3.1 it suffices to prove that there exist a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ and a function g_0 such that

and

$$(3.5) \qquad \iint_{b(0,3\delta_i)\times b(0,3\delta_i)} \frac{|Hg_{n_k}(x) - g_0(x) - Hg_{n_k}(y) + g_0(y)|^p}{|x - y|^{d-1+\lambda p}} dx dy \longrightarrow 0,$$

where $g_n(x) = f_n(x, \phi(x))$. For this purpose we use a mollifier $\{v_{\varepsilon}\}_{{\varepsilon}>0}$ on \mathbf{R}^{d-1} consisting of functions $v_{\varepsilon}(x) = {\varepsilon}^{1-d} v(x/{\varepsilon})$, where

$$v(x)\!=\!\left\{egin{array}{ll} \gamma\exp\left(rac{-1}{1-|x|^2}
ight) & ext{if } |x|\!<\!1 \ 0 & ext{if } |x|\!\geq\!1 \ , \end{array}
ight.$$

and $\gamma > 0$ is so chosen that $\int v(x)dx = 1$.

Let us define

$$h_{\varepsilon}(x,z) = \int h(x-w,z)v_{\varepsilon}(w)dw$$
$$= \int h(x-\varepsilon w,z)v(w)dw$$

and

$$H_{\varepsilon}g(x) = \int h_{\varepsilon}(x,z)g(z)dz$$
.

Then there is a constant c_{ε} such that

$$h_{\varepsilon}(x,z) \leq c_{\varepsilon}$$
 and $|h_{\varepsilon}(x,z) - h_{\varepsilon}(y,z)| \leq c_{\varepsilon}|x-y|$

for all $x, y \in \overline{b(0, 3\delta_j)}$ and $z \in \overline{b(0, \delta_j)}$.

Let $\{g_n\}$ be a sequence satisfying $\|g_n\|_{p,\lambda} \le 1$. We take a positive real

number μ with $\lambda < \mu < 1$. Noting that

$$\sup \{|H_{\varepsilon}g_n(x)|: x \in \overline{b(0, 3\delta_j)}\}$$

and

$$\sup \left\{ \frac{|H_{\varepsilon}g_n(x) - H_{\varepsilon}g_n(y)|}{|x - y|^{\mu}} : x, y \in \overline{b(0, 3\delta_j)}, x \neq y \right\}$$

are uniformly bounded, we can choose a subsequence $\{g_{n_k}\}$ such that $\{H_{\varepsilon}g_{n_k}\}_k$ converges to g_{ε} uniformly on $\overline{b(0,3\delta_j)}$ and

$$\left\{\frac{|H_{\varepsilon}g_{n_{k}}(x)-H_{\varepsilon}g_{n_{k}}(y)|}{|x-y|^{\mu}}\right\}_{k}$$

also converges uniformly on $\overline{b(0,3\delta_j)} \times \overline{b(0,3\delta_j)} \setminus \{x,x\} : x \in \mathbb{R}^{d-1}\}$. It is easy to see that

Thus to prove (3.4) and (3.5), it suffices to see the following claim. Claim. There exist positive real numbers a_{ε} such that $a_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$ and

(3.7)
$$\|(H_{\varepsilon}g - Hg)\chi_{b(0.3\delta_j)}\|_{p,\lambda} \leq a_{\varepsilon}\|g\|_{p,\lambda} \quad \text{for every } g \in \Lambda^p_{\lambda}(\sigma).$$

Let us prove the claim. We choose $\delta > 0$ with $\lambda + 2\delta < \alpha$. On account of (3.1) we have

$$\begin{split} |H_{\varepsilon}g(x)-Hg(x)| \\ &= \left|\int v_{\varepsilon}(w)dw \int (h(x-w,z)-h(x,z))g(z)dz\right| \\ &\leq \int v_{\varepsilon}(w)|w|^{\delta}dw \int_{|x-w-z|<\delta\delta_j}|x-w-z|^{\alpha-\delta+1-d}|g(z)|dz \\ &+ \int v_{\varepsilon}(w)|w|^{\delta}dw \int_{|x-z|<\delta\delta_j}|x-z|^{\alpha-\delta+1-d}|g(z)|dz \,, \end{split}$$

whence

$$\|(H_{\varepsilon}g-Hg)\chi_{b(0.3\delta_j)}\|_p \leq c_1 \varepsilon^{\delta} \|g\|_p$$
.

Further, putting

$$J(x, y; z, w) = h(x-w, z) - h(x, z) - h(y-w, z) + h(y, z)$$

we write

$$|H_{\varepsilon}g(x) - Hg(x) - H_{\varepsilon}g(y) + Hg(y)|$$

$$= \left| \int v_{\varepsilon}(w) dw \int J(x, y; z, w) g(z) dz \right|$$

$$\leq \int_{|w|\leq |x-y|} v_{\varepsilon}(w)dw \int |J(x,y;z,w)| |g(z)| dz$$

$$+ \int_{|w|>|x-y|} v_{\varepsilon}(w)dw \int |J(x,y;z,w)| |g(z)| dz \equiv I_1 + I_2.$$

Since

$$(3.8) I_{1} \leq \int v_{\varepsilon}(w)dw \int_{|w| \leq |x-y|} |h(x-w,z) - h(x,z)| |g(z)| dz$$

$$+ \int v_{\varepsilon}(w)dw \int_{|w| \leq |x-y|} |h(y-w,z) - h(y,z)| |g(z)| dz ,$$

we denote by I_{11} (resp. I_{12}) the first (resp. second) term in the right-hand side. By virtue of (3.1) we have

$$\begin{split} I_{11} & \leq c_2 \int_{|w| \leq |x-y|} v_{\varepsilon}(w) |w|^{\lambda+2\delta} dw \\ & \times \int (|x-w-z|^{\alpha-2\delta-\lambda+1-d} + |x-z|^{\alpha-2\delta-\lambda+1-d}) |g(z)| dz \\ \\ & \leq c_2 |x-y|^{\lambda+\delta} \int v_{\varepsilon}(w) |w|^{\delta} dw \\ & \times \int \{|x-w-z|^{\alpha-2\delta-\lambda+1-d} + |x-z|^{\alpha-2\delta-\lambda+1-d}\} |g(z)| dz \ . \end{split}$$

Noting that $\alpha-2\delta-\lambda+1-d>1-d$, we obtain

$$\left(\iint \frac{I_{11}^p}{|x-y|^{d-1+\lambda p}}dxdy\right)^{1/p} \leq c_3 \varepsilon^{\delta} \|g\|_p \int v(w) |w|^{\delta} dw \leq c_4 \varepsilon^{\delta} \|g\|_p.$$

Similarly we have the same estimate for I_{12} and hence

$$\left(\iint_{\overline{|x-y|^{d-1+\lambda p}}} dx dy\right)^{1/p} \leq c_5 \varepsilon^{\delta} \|g\|_p.$$

Moreover we also obtain the same estimate for I_2 by using the following inequality, instead of (3.8),

$$\begin{split} I_2 & \leq \int_{|w|>|x-y|} v_{\varepsilon}(w) dw \int |h(x-w,z) - h(y-w,z)| |g(z)| dz \\ & + \int_{|w|>|x-y|} v_{\varepsilon}(w) dw \int |h(x,z) - h(y,z)| |g(z)| dz \;. \end{split}$$

Thus we see that (3.7) holds. This completes the proof. Q. E. D.

§ 4. Estimates of tangential maximal functions

In this section we study the boundary behavior of the double layer potential u_f and prove our theorem. Recall that

$$(u_f)^*_{\delta}(Z) = \sup\{|u_f(X): X \in \Gamma_{\tau,\eta}(Z) \cap B(Z,\delta)\}$$

for $Z \in \partial D$ and $\delta > 0$.

The double layer potential u_f is estimated as follows.

LEMMA 4.1. Let p, β, τ, η be positive real numbers satisfying p>1, $0<\beta\leq d-1$, $0<\eta<1$, $1<\tau<\alpha+1$ and set

$$\lambda = \frac{(d-1)\tau - \beta}{p\tau}$$
.

Furthermore, let ν be a positive Borel measure on ∂D such that

for all surface balls $A(Z, r) = B(Z, r) \cap \partial D$. Then

(a) There are positive real numbers c and δ such that

$$\left(\int (u_f)^*_{\delta}(Z)^p d\nu(Z)\right)^{1/p} \leq c \|f\|_{p,\lambda}$$

for every $f \in \Lambda^p_{\lambda}(\sigma)$,

- (b) If $f \in C^1(\partial D)$, then the limit of $u_f(X)$ as $X \to Z$, $X \in \Gamma_{\tau,\eta}(Z)$, exists and is equal to Kf(Z) + (1/2)f(Z) for every $Z \in \partial D$,
- (c) If $f \in \Lambda^p_{\lambda}(\sigma)$, then the limit of $u_f(X)$ as $X \to Z$, $X \in \Gamma_{\tau,\eta}(Z)$, exists for every $Z \in \partial D$ except for set of β -dimensional Hausdorff measure zero and is equal to Kf(Z) + (1/2)f(Z) except for a set of surface measure zero.

PROOF. (a) Let $f \in \Lambda_{\lambda}^{p}(\sigma)$. Using a partition of unity subordinate to (2.1), we may suppose that supp $f \subset B_{j}$. If $Z \notin B(Q_{j}, 3\delta_{j})$, then

$$|u_f(X)| \leq c_1(3\delta_j)^{1-\delta} \int_{B_j} |f(Y)| d\sigma(Y) \leq c_2 ||f||_p$$

and hence

$$\left(\int_{\partial D \setminus B(Q_j, \, ^3 \delta_j)} (u_f)_{\delta}^* (Y)^p d\nu(Y) \right)^{1/p} \leq c_3 \|f\|_p ,$$

where δ is the positive real number δ_0 in (2.6).

We next estimate u_f in case $Z \in B(Q_j, 3\delta_j)$. Since ϕ is of class $C^{1,\alpha}$ and the mapping $\Pi : x \mapsto (x, \phi(x))$ is topological, we define, for a positive measure ν satisfying (4.1),

$$\mu(E) = \nu(\prod(E) \cap B(Q_j, 3\delta_j))$$

for a Borel set $E \subset \mathbb{R}^{d-1}$. Then

$$\mu(b(z,r)) \leq c_4 r^{\beta}$$
 for every $b(z,r) \subset \mathbf{R}^{d-1}$.

Applying Lemma 2.5, we obtain

$$\left(\int \sup \{|u_f(x,\phi_j(x)+t)|^p: (x,\phi_j(x)+t) \in \Omega(z)\} d\mu(z)\right)^{1/p} \leq c_5 \|f\|_{p,\lambda}.$$

From this and (2.8) it follows that

$$\left(\int_{B(Q_f,\,3\delta_f)}(u_f)^*_\delta(Z)^pd\nu(Z)\right)^{1/p} \leq c_6\|f\|_{p\,,\,\lambda}\,.$$

Combining this with (4.2) we have the estimate (a).

(b) Let $f \in C^1(\partial D)$. We may suppose that supp $f \subset B_j$. First, assume that $Z \in B(Q_j, 3\delta_j) \cap \partial D$. Using the same notations as in the proof of Lemma 2.5 and noting that the function $X \mapsto \int k(X, Y) d\sigma(Y)$ is constant on D, we can write, for $(x, \phi(x) + r) \in \Omega(z)$,

$$u_{f-f(Z)}(x,\phi(x)+r)$$

$$=u_{f-f(Z)}(x,\phi(x)+2\delta)-\int_{r}^{2\delta}\frac{\partial u_{f-f(Z)}}{\partial t}(x,\phi(x)+t)dt.$$

If $|x-y| < \delta$, then $|\phi(x) + 2\delta - \phi(y)| > \delta$. Therefore we have

(4.3)
$$\lim_{n \to z} u_{f-f(Z)}(x, \phi(x) + 2\delta) = u_{f-f(Z)}(z, \phi(z) + 2\delta).$$

We next show that

(4.4)
$$\lim_{x \to z, (x, \phi(x) + r) \in \Omega(z)} \int_{r}^{2\delta} \frac{\partial u_{f}}{\partial t}(x, \phi(x) + t) dt$$
$$= \int_{r}^{2\delta} \frac{\partial u_{f}}{\partial t}(z, \phi(z) + t) dt.$$

To see this, we write

(4.5)
$$\int_{r}^{2\delta} \frac{\partial u_{f}}{\partial t}(x, \phi(x) + t) dt$$

$$= \int_{r}^{(x-z)/2} \frac{\partial u_{f}}{\partial t}(x, \phi(x) + t) dt + \int_{(x-z)/2}^{2\delta} \frac{\partial u_{f}}{\partial t}(x, \phi(x) + t) dt$$

and show that the integrands are dominated by some integrable functions independent of x, respectively.

We begin with estimating the second term in the right-hand side of (4.5). On account of (2.9) we obtain

$$egin{aligned} I_0 &\equiv \int_{|x-z|/2}^{2\delta} rac{\partial u_f}{\partial t}(x,oldsymbol{\phi}(x)+t)|dt \ &\leq c_1 \int_0^{2\delta} t^{-b} dt \Bigl(\iint_{|x-y| < t/2,\, t/4 < s < 2t} s^{-d+pb} igg| rac{\partial u_f}{\partial s}(x,oldsymbol{\phi}(x)+s) igg|^p ds dy \Bigr)^{1/p} \ . \end{aligned}$$

where 0 < b < 1. Since $g(w) = f(w, \phi(w))$ is of C^1 -class, we can estimate

$$egin{align*} I_0^p &\leq c_2 \!\! \int_{E(Z) \cap A} \!\! s^{-d+pb} dy ds \!\! \left(\int \!\! rac{|g(w) - g(y)|}{|y - w|^2 + |\phi(y) + s - \phi(w)|^2)^{d/2}} dw
ight)^p \ &\leq c_3 \!\! \int_{|y - z| < 40\delta} \!\! rac{dy}{|y - z|^{d-1-l}} \!\! \int_0^{2\delta} \!\! s^{pb-1-l-p\, m} ds \ & imes \!\! \left(\int_{|y - w| < 4\delta} \!\! rac{dw}{|y - w|^{d-1-m}} \!\!
ight)^p \end{split}$$

from the same consideration as in (2.7). Here we choose small positive real numbers l, m such that pb-1-l-pm>-1. Therefore we see that the integrand of the second term in the right-hand side of (4.5) is dominated by an integrable function.

We next estimate the integrand of the first term. Set

$$I_k = \int_{2k_T}^{2k+1_T} \left| \frac{\partial u}{\partial t}(x, \phi(x) + t) \right| dt$$
.

Using (2.10), we obtain

$$egin{aligned} I_k^p &\leq c_4 \!\! \int_{E_k(Z)} \!\! s^{-d+p} \! \left| rac{\partial u}{\partial s}(y,\phi(y)\!+\!s)
ight|^p \! dy ds \ &\leq c_5 \!\! \int_{E_k(Z)} \!\! s^{-d+p} \! dy ds \!\! \left(\!\! \int \!\! rac{|g(w)\!-\!g(y)| dw}{(|y\!-\!w|^2\!+\!|\phi(y)\!+\!s\!-\!\phi(w)|^p)^{d-2}} \!\!
ight)^p \end{aligned}$$

and hence

$$egin{aligned} I_k^p &\leq c_6 \int rac{1}{(2^k |y-z|^{ au})^u} \int_0^{2\delta} s^{-d+p-b\,p+a} ds \ & imes \left(\int_{|y-y| \leq 4\delta} rac{dw}{|y-w|^{d-1-b}}
ight)^p \; , \end{aligned}$$

where a, b are positive real numbers satisfying

(4.6)
$$a\tau < d-1, -d+p-bp+a > -1 b < 1.$$

It is possible to choose a, b satisfying (4.6). Indeed, noting that $\lambda < 1$ and $p\lambda < d-1$, we pick a positive real number b with $\lambda < 1-b$ and p(1-b) < d-1. Since

$$au = rac{eta}{d-1-p\lambda} < rac{d-1}{d-1-p(1-b)}$$
 ,

it suffices to choose a positive real number a satisfying

$$d-1-p(1-b) < a < \frac{d-1}{\tau}$$
.

Therefore we have that

$$\int_{r}^{\lfloor x-z\rfloor/2} \left| \frac{\partial u_f}{\partial t}(x, \phi(x) + t) \right| dt$$

$$\leq \sum_{k=1}^{\infty} \int_{2k_T}^{2^{k+1}r} \left| \frac{\partial u_f}{\partial t}(x, \phi(x) + t) \right| dt$$

$$\leq c_7 \sum_{k} 2^{-ka} \int_{|y-z| \leq 4\delta} \frac{1}{|y-z|^{\tau a}} dy.$$

Thus we see that (4.4) holds, whence

$$\begin{split} &\lim_{x\to z, r\to 0, \, (x,\,\phi(x)+r)\in\mathcal{Q}(z)} u_{f-f(Z)}(x,\phi(x)+r) \\ &= \lim_{r\to 0} \left\{ u_{f-f(Z)}(z,\phi(z)+2\delta) - \int_r^{2\delta} \frac{\partial u_f}{\partial t}(z,\phi(z)+t) dt \right\} \\ &= u_{f-f(Z)}(z,\phi(z)) \; . \end{split}$$

Noting that $\Gamma_{\tau,\eta}(Z)\subset\Omega(z)$, we have

(4.7)
$$\lim_{X \to Z, X \in \Gamma_{\tau, \eta}(Z)} u_f(X) = \lim_{X \to Z, X \in \Gamma_{\tau, \eta}(Z)} \{u_{f-f(Z)}(X) + f(X)\}$$
$$= Kf(Z) + \frac{f(Z)}{2}.$$

Finally suppose that $Z \in \partial D$ and $Z \notin B(Q_j, 3\delta_j)$. If $|X - Z| < \delta_j$ and $X \in D$, then we have

$$|X-Y| \ge \delta$$
, on supp f .

Consequently we also obtain (4.7).

(c) Denote by E_f the set of all boundary points Z at which

$$\lim_{X\to Z,\,X\in\Gamma_{\tau,\,\eta}(Z)}u_f(X)$$

do not exist. If E_f is not a set of β -dimensional Hausdorff measure zero, then so is not a compact subset K of E_f . Therefore we can find a positive measure ν with supp $\nu \subset K$ such that

$$\nu(B(Z,r)) \leq cr^{\beta}$$

for every ball B(Z, r) (cf. [2, Theorem 1 in § II]).

On the other hand, by using a partition of unity and mollifiers, we see that $C^1(\partial D)$ is dense in $\Lambda^p_{\lambda}(\sigma)$. On account of (a) and (b) we can show that $\nu(E_t)=0$ by the standard argument. This yields a contradiction.

Q. E. D.

Let us now prove our theorem.

PROOF OF THEOREM. In [3, Theorem 2.1] it has been shown that

K+(1/2)I is injective on $L^p(\sigma)$. Therefore K+(1/2)I is also injective on $A^p_{\lambda}(\sigma)$. Since K is a compact operator on $A^p_{\lambda}(\sigma)$ by Lemma 3.2, the operator (K+(1/2)I) is invertible on $A^p_{\lambda}(\sigma)$. Let $f \in A^p_{\lambda}(\sigma)$ and choose $g \in A^p_{\lambda}(\sigma)$ satisfying (K+(1/2)I)g=f. Then Lemma 4.1 shows that $u=u_g$ is the desired function. Q. E. D.

References

- [1] P. Ahern and A. Nagel: Strong L^p estimates for maximal functions with respect to singular measures: with applications to exceptional sets, Duke Math. J. 53 (1986), 359-393.
- [2] L. Carleson: Selected problems on exceptional sets, Van Nostrand, 1967.
- [3] E.B. Fabes, M. Jodeit, JR. and N.M. Rivière: Potential techniques for boundary value problems on C^1 -domains, Acta Math. 141 (1978), 165-186.
- [4] A. Nagel, W. Rudin and J. Shapiro: Tangential boundary behavior of function in Dirichlet-type spaces, Ann. Math. 116 (1982), 331-360.
- [5] Y. Mizuta: On the boundary limits of harmonic functions with gradient in L^p , Ann. Inst. Fourier 34 (1984), 99-109.
- [6] E.M. Stein: Singular integrals and differentiability properties of functions, Princeton University Press, Princeton-New Jersey, 1970.