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Introduction

In a previous paper [Mu], using the method of [GO], we studied the
deformations of harmonic maps of a Riemann surface 2 into a quaternionic
projective space HP™ which are strongly isotropic or quaternionic mixed
pairs and as a consequence, we obtained the results on the connectedness
of the space of such harmonic 2-spheres in HP". In this paper, we deal
with the case of harmonic 2-spheres in a real Grassmann manifold of 2-
planes Gr,(R"*?), or a complex hyperquadric @,(C). According to [BW1]
and [BW2], the construction theory of harmonic 2-spheres in Gr,(R™*?) or
Q.,(C) have algebraic structure analogous to the case HP", However,
there are some differences between the case HP™ and the case Gr,(R™*%);
for instance, the group which acts on the twistor spaces over each space,
the existence of stable harmonic 2-spheres, and so on. On the other hand,
although @Q,(C) — Gr, (R""?) is the double universal covering, when we
consider harmonic 2-sphere in Q,(C) and Gr,(R™**), the interesting dif-
ferences between Q,(C) and Gr,(R"*?) on topology and structure of mani-
folds attract our attention.

In Section 1, we shall discuss the standard twistor spaces over Q,(C)
and Gr,(R"*%. It is known that the standard twistor spaces over Q,(C)
are Q,(C) itself and Z.(C?™*%) for n=2m, and those over Gr,(R"*? are
Q.,(C) (double covering) and Z,(C*™*?) for n=2m. In Section 2 and 3,
applying the argument of [GO] to horizontal holomorphic maps into each
twistor space, we shall prove results on Morse-Bott theoretic deformations
for harmonic maps. In Section 4, we shall discuss the energy and degree
for harmonic 2-spheres in @,(C) and Gr,(R"*?). In Section 5 and 6, we
shall show main theorems. In Section 7, we shall remark the relation
between the main theorem and the construction of harmonic 2-spheres in
Gr,(R™?) and give some conjectures.

To state our theorems, we prepare the following notations. First, for
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a map ¢: S°—>Q,(C), in the case n=2, let Harmg,, . ce,,(S? @2(C)) be the
space of harmonic maps with fixed bi-degree (deg(¢), degu(g)). In the
case n=3, let Harmg, ;,,(S? @.(C))***°* and Hol,,,(S? Q.(C)) be the space
of strongly isotropic harmonic maps with fixed energy and fixed degree
and the space of holomorphic maps with fixed degree, respectively. Here
we call a harmonic map ¢: 3 — Q,(C) strongly isotropic if ¢ is strongly
isotropic as a harmonic map into Gr,(C"*?) when we regard a map ¢ as
the composition of the maps ¥ —Q,(C), Q,(C)—Gr,(R"*?) (double covering)
and Gry(R"*2)—Gr,(C"** (see [BW1]). Then the statement of theorem is
as follows.

THEOREM A. (1) The space Harmgyy,, s, (S Q:(C)) is path-con-
nected.

(2) If n=3, the space Harmg, 4,, (S?, Q,(C))*"**°" 45 path-connected.

(8) If m=3, the space Holg,., (S? Q.(C)) is path-connected.

Next, for a map ¢: S*—Gr,(R**?), in the case n=2, let Harm, , 4, .
(S?, Gry(R*)) be the space of harmonic maps with fixed d_(¢), fixed dy(p)
and fixed signature e (=1 or —1) of (deg.(¢)-degw(g)). Here d.(p):=
ldeg c(@)| and d4(p) :=|degqy(p)| for a lift ¢ of ¢ to Q,(C). In the case
n=3, let Harmg, 4(S?, Gro(R"*?))*"%% and Harm, (S? Gr,(R"*?))"™?: be the
space of strongly isotropic harmonic maps with fixed energy and fixed d(¢)
and the space of real mixed pairs (see Section 1) with fixed d(¢p), respec-
tively. Here d(p) :=l|deg(¢)] for a lift ¢ of ¢ to Q,(C). Then our main
result is as follows.

THEOREM B. (1) The space Harmg , 4. (S? Gr,(R"Y)) 1s path-con-
nected.

(2) If n=3, the space Harmg ,(S? Gr,(R"*?)**° 45 path-connected.

(8) If n=3, the space Harm,(S?, Gry,(R"*?)"™? 45 path-connected.

ACKNOWLEDGEMENTS : The author would like to thank Professors Y.
Ohnita and K. Tsukada for valuable discussions and useful suggestion.

1. Twistor spaces over Gr,(R""?) and Q,(C), and Harmonic 2-spheres

Let < ,> and (,) denote the standard Hermitian inner product and the
standard complex symmetric bilinear form on C"*? defined by

v, W) =0 W1+ "+ Vn oWy 42, (v, W) =V W1+ +Vpp2Wnio

where v=(vy, ***, Vpya), W=(wy, =+, w,,2) =C"*%, and ~ denotes complex con-
jugation.
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For a k-dimensional complex subspace W of C"*? invariant under the
conjugation, we denote by Wr={w< W|w=w} the real form of W, which
is a k-dimensional real subspace of R™*:., Then we can identify a k-
dimensional complex subspace of C"*2 invariant under the conjugation with
a k-dimensional real subspace of R"*%; by corresponding W to Wz and
conversely by corresponding a k-dimensional real subspace of R™*? to its
complexification.

DEFINITION. A complex subspace W of C™*? is called complex iso-
tropic if (v, w)=0 for v, w= W, namely, W LW relative to < , >.

Let Gr,(R""?) denote the real Grassmann manifold of 2-planes in R"™*?
with the standard Riemannian metric. Since we have an identification
Gry(R* " ) ={W e Gr,(C"**)|W =W}, we can regard Gr,(R"*?) as a totally
geodesic submanifold of Gr,(C"*?). The universal double covering space
of Gry(R"*? is Gr,(R™"?), the real Grassmann manifold of oriented 2-planes
in R™**, Then Gr,(R"**) may be identified with the complex hyperquadric

Q. (C)={LeCP""'|(L, L)=0},

as follows. The map @,(C)—Gr,(R"*? is given by L=[Z]—[Re(Z) AIm(Z)],
where [Re(Z) AIm(Z)] denotes an oriented 2-plane in R"** spanned by the
oriented pair of vectors {Re(Z), Im(Z)}. The inverse map Gr,(R***)—Q,(C)
is given by [X;AX,]—[X,++ —1X,], where [X,;AX,] denotes an oriented
2-plane with an orthonomal basis {X;, X,} compatible with the orientation.

Throughout this paper, let G and G¢ denote the special orthogonal
group SO(n+2) and its complexification SO(n+2, C), namely,

G°={A=SL(n+2,C)|'AA=1}
={AeSL(n+2, C)|(Av, Aw)=(v, w) for each v, wesC™*?%},

Now we introduce two twistor spaces over Q,(C): one is Q,(C) itself
with the projection z=14d and another is

Zon(C* ) ={W € Gr, (C*™**) (W, W)=0}

with the projection =(W)=(W®@W)* tfor n=2m. Here @ denotes an Her-
mitian orthogonal direct sum with respect to < ,)>. Since G acts transi-
tively on Q,(C) and Z,.(C?*™*?), we have Q,(C) = SO(n-+2)/SO(2) X SO(n)
and Z,(C?*™"?) = SO2m+2)/SO2) X U(m). In particular, their complex
dimensions are given by dim, Q.(C)=n and dim;Z,(C*"**)=(m(m-3)/2).

The space Gr,(R"*?) has two standard twistor spaces Q,(C) with the
projection z(L)=LP L (double covering) and Z,(C*™**) with the projection
o(W)Y=(WDW)* for n=2m.
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Let us discuss in detail the twistor space Z£,(C*™*?). We define three
tautological complex vector bundles 99, ¥ and & over Z,(C*"*%): for
We Z.(C*?), Wy=W, (W)y=W and Ep=EF, where C*""*=WOWOE.
Using a natural inclusion map Z,.(C*™*%*) —, Gr,(C*™**), we describe the
holomorphic tangent bundle of £, (C*™*?) as

TZ,(C**) =Hom(TW, TW)*oPHom(W, &) .
Here
Hom(9W, Gp)tsot:
= 1I {TeHom(W, W)|(Tw, v)=0 for each ve W}

WEZp (C2M+2)

corresponds to the vertical subspaces of = and Hom(9/, &) corresponds to
the horizontal subspaces of n for m: Z,(C*™"*)—Q,.(C) or Gr,(R*"?)., A
smooth map f: 2 —Z,(C**?% of a Riemann surface is said to be a hori-
zontal holomorphic map if df(TX'°)C Hom(9/,&). The holomorphicity
and horizontality conditions are written respectively as

I"C (W) Co(F W),
OCT(fIW)CC(fTW)+C(fE).

We know that if a map ¢: Y —Q,(C) is of the form ¢=nof, for a
horizontal holomorphic map f: ¥—Z%,(C?™*?) with respect to z: Z.(C?™*?)
—@Q,(C), then ¢ is harmonic. Thus ¢: ¥—Gr,(R**?) is also harmonic,
because @,(C)—Gr,(R"*?) is an universal double covering.

The group G° acts transitively on Z,.(C*™*%) in the natural way: for
AsG® and WeZ,(C*™"?), we have A(W)e Z,(C*™*?), because the group
(¢ preserves the complex symmetric bilinear form (,). Then we have
the following.

LEMMA 1.1. (1) Thas action of G on Z,(C*™*%) preserves the com-
plex structure of Z,(C*™**) and the horizontal subspaces with respect
to 7: Zn(C?™*)—=Q,(C) or Gry(R™*?).

(2) Let A=G® and f: 2 — Z,(C*™2) be a horizontal holomorphic
map. Then Aof: ¥—Z, (C**?) 4s also a horizontal holomorphic map.

PROOF. (1) Let A=G¢ and T=Hom(9/,&). For any s, s'=C(W),
then we have ((AT)s, 3> =((AT)s, s')=(A(T (A 's)), s’ )=(T (A 's), A™s")=0,
because T (A 's)e& and A 's'=F/. Since (AT)s L 5 and §<C(W), we
obtain AT €Hom(W, &).

(2) For any s,s'=C=(f 1Y), A(s) is a section of (Aof) 9. Note
that (Aof) I =A(f*Y). Then we have
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0"A(s)=A@"s)c AC™(f "W )=C*((Aof) W) .

Hence Aof is holomorphic. Also we have
0" A(s), A(s")>=(A(0’s), A(s"))=(0's, 8")=<0"s, 5") =0,
because 0’s=d’C*(f ') and §’=C=(f'9Y). Hence Aof is horizontal. [

Next let us discuss another twistor space @Q,(C). We define three
tautological complex vector bundles over Q,(C) for L=Q,(C) as follows:
L;=L(L),=L and </,=V, where C***=LOLDV. The holomorphic
tangent bundle of @,(C) is given by

TQ,(C)"*=Hom(.L, L)*°*HHom(L, V).
Here

Hom(L, .L)#°= 11 {T'<=Hom(/L, L)|(Tw,v)=0 for each ve L}

LEQ,O)

corresponds to the vertical subspaces of = and Hom(.L, ©UV) corresponds to
the horizontal subspaces of n for n: @,(C)—Gr,(R"*?), A smooth map g:
Y - Q,(C) of a Riemann surface is said to be a holomorphic map if
dg(TX)CTQ,(C)"°. It suffices to consider the holomorphicity condition,
because the projection Q,(C)—Gr,(R"*?) is a covering map. This condition
is written as

0"C=(g t.LYyc Cx(g~*.0).
Then the following fact holds.

LEMMA 1.2. (1) This action of G° on Q,(C) preserves the complex
structure of Q,(C).

(2) Let A=G® and g: 2—Q,(C) be a holomorphic map. Then Aog :
Y —Q@,(C) is a holomorphic map.

DEFINITION ([BW1]). A map ¢: X —Gr,(R"**?) is called a real mized
pair if there exists a holomorphic map g: ¥ — Q,(C) such that ¢=royg,
namely, if ¢ denotes the corresponding subbundle to ¢, then ¢=9gDg.

Now we mention the relation between the classification of harmonic
maps 2 — Gr,(R"*?) and the lift to the twistor space Z,(C?™*%) over
Gr,(R"*?).

In [Gl] and [BW1], it was shown that ¢: 2 — Gr,(R"*?) is strongly
isotropic if and only if there exists a horizontal holomorphic map f: 3 —
Z,(C*"*?) such that p=ncf, namely ¢= (I@_J_?)*. In this case, it is known
that if a harmonic map ¢: ¥ — Gr.(R"*?) is strongly isotropic, then ¢(2)
CGr (R*™*%) C Gr,(R"**) for some (2m + 2)-dimensional real subspace
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REMARK. (1) Throughout this paper, for a k-dimensional complex
subspace W of C"*?, we define

CP*YW)={L|L is a 1-dimensional subspace of Wj}.

(2) If we let F'™*' an (m-+1)-dimensional complex isotropic subspace
of C*™*2 then ¢: S?— {(LPL)z|LeCP™F)}=CP™C Gr,(R*™"*) is a holo-
morphic map it and only if ¢ is both a strongly isotropic harmonic map
and a real mixed pair.

(3) If ¢: S*—>Gry(RY) is a harmonic map, then ¢ is strongly isotropic
or a real mixed pair (see [BW1]).

2. Deformations of strongly isotropic harmonic maps into Gr,(R""?)

(A) Morse-Bott theory over twistor space Z,.(C°""). Let G =
SO(2m+2) and g denote its Lie algebra. Then we can regard Z,(C*™")
as an orbit of the adjoint representation of (G as follows: If we let W,
a fixed element of Z,(C*™*%) and set §=+ —1lay,—+ —lap, then we have
Za(C*m )= Ad(G)E. Here rmy, denotes the Hermitian projection in cam+?
onto K.

v —1ay—~ —1rpe Ad(G)¢, with W e Z,(C*™'?), we define the height
function ¥ : Ad(G)é—R by

RP(X)=KX, P)) .

Here < ,>> is an Ad(G)-invariant inner product on g. Then it is known
that h? is a Morse-Bott function. Let grad k¥ be a gradient vector field
of ¥ with respect to the Kéahler metric. The following fact is due to
Frankel: the flow of —(grad k%) is given by the action of {exp+ —1tP}.

We shall describe non-degenerate critical manifolds of 2”. It is known
that a point X € Ad(G)¢ is a critical point of 2¥ if and only if [X, P]=0,
ie.

[V —=1lay—~ =1y, ~V—1lz,—+~ —1z;]=0.

Then a critical point X of A” is characterized by W=W,PW,P W, with
W.,cL, WoC L, W,=(LDL)*, where C*"":=LOLP(LAL)*. We obtain the
following lemma.

LEMMA 2.1. There are three connected non-degenerate critical mani-
folds of h*;
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C,={WeZ,(C*"?)|LCW}zZ,.,(C*™),

Co={WeZ, (C*" )W (LPL)}=Z.(C™),
C.={WeZ,(C*") LcWi=Z, (C*™).

PROOF. Assume that W,#{0}. We see that W,=L and so W,={0}.
Hence we get the critical manifold C. of A”. Next assume that W,={0}.
Then W=W,DW, If we let W,={0}, then we get the critical manifold
Co, and if we let W,#{0}, then we get the critical manifold C_. in the
same way as C,. Now it is easy to show that C,, C, and C_ are dif-
feomorphic to £,,-,(C*™), Z.(C*™) and £, _,(C*™), respectively. O

We set Gp={A=G°|A(L)=L}. In general, we know that the stable
manifold for a connected non-degenerate critical manifold N is given by
SP(N)=GpX for X=N. In our case we shall determine the corresponding
stable manifolds.

LEMMA 2.2. For three non-degenerate critical manifolds in Lemma
2.1, the corresponding stable manifolds ST(C.), S*(Cy), S*(C.) are

S,=C,,
Se={W & Z(C*™*)| WL={0}, Wc L'},
S.={WeZ(C")WNL={0}, W¢ L},
respectively.

PROOF. It is clear that S”(C.) coincides with S,. For A=Gp, we
have <W, Ly=(W, L)=(A(W), A(L))=(A(W), L)=<A(W), L>. Thus we get
A(W)c L* (respectively, A(W)¢ L*), because W | L (respectively, W¢ L*).
On the other hand, since W _LL, we have A(W)nL={0}. Then we have
SP(Cy) S, (respectively, SP(C.)cS.). Since

Zn(C?m 1) =8"(C YIS (C)ILS"(C -)
=8, IIS,IIS-
are two decompositions of Z,(C*™*?), we obtain SP(C,)=S,, S¥(C,) = S,
and SE(C.)=S.. O
REMARK. For S?(C.), we see that if W¢ L*, then W\ L={0}.

(B) Deformations of harmonic maps. Let ¢: 3 — Gr,(R*™™®) be a
strongly isotropic harmonic map, and f: Y — Z,.(C*™*) be a horizontal
holomorphic map corresponding to ¢. If f(2)cS?(C-), then {(expv —1tP)o
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Slosiz Provides a continuous deformation to a horizontal holomorphic map
into C.. We shall show that there exists some L=@Q,,(C) such that f(2)
cSE(C ).

We set Y/ ={L=Q,,(C)|f(z) & ST(C.) for some z=2X}. Then we have
Y ={L € Quu(C)|L 1. f(z) for some z < Y}. It suffices to show that Y’
cannot be equal to @,,(C). We define

G={L, W)<Qum(C)X Z,(C*™ )| L LW} .

Let p, and p, be the projections to @,,(C) and Z,(C*™*?), respectively.
Then we get Y’/ = p,(p;'f(2)). We shall estimate the fibre p;' (W)=
{LEQun(C)|L LW},

Let us consider two cases; LC W* or L& W*. Hence we get p; (W)
=9 11K ,, where

I ={LEQun(C)| LI W, LCW+},
2 ={LEQun(C)|L I W, Lg W*}.
First we deal with the space 4 ,.

LEMMA 2.3. The space H, is diffeomorphic to O2)/U1). In parti-
cular, dime ', 1s equal to 0.

PROOF. Since LI W and L.I1W, we have LC(W@W) . Note that
(WEW)* is a 2-dimensional real subspace of C?™*%, Then we can write
(WPHW)*=I®I, where I is a 1-dimensional complex isotropic line. Thus
I, ={I, I}=02)/U1Q). O

Next we consider the space 9(,.

LEMMA 2.4. The space H, is diffeomorphic to the space attached
along zero sections of two vector bundles

53:( I Hom(V,I)> U ( I Hom(V,f))

vecpm-1w) CPM—1 (W) \VeCPM-1(W)

over CP™ (W) with the fibres Hom(V, I) and Hom(V, I) at VeCP™ (W)
respectively.

REMARK. In particular, dim;B=(m—1)+1=m.

PROOF. Let p¢ and v be the Hermitian orthogonal projections from L
to W and (W@EW)*, respectively. Set V=pg(L) and so V is a line of W.
We see that »(L) is a complex isotropic subspace of (WPW)*, indeed, for
any v=p(v)+v(v), w=plw)+yv(w)e L, we have 0=<v, @) =<{v(), J(w)).
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Assume that v(L)=#{0}. Then it must be v(L)=1I or I where (W& W):
=IPI. If v(L)=I, then we see that for all xV, there is unique y&I
satisfying x+y<=L. Indeed, using a linear isomorphism p: L — W, since
we can write z=x+y(z)L for any x<V, then we take v(z)=y. Then
we have a linear map 6,: V—I defined by 8,(x)=y for x= V. If v(L)=I,
then we have a linear map o7: V —I similarly. Next assume that v(L)=
{0}. Then L=V is a 1-dimensional space of W. Hence we get a smooth
map H,>L—(V,d,) or (V,dér)eP.

Now let us examine its inverse map. First for any VeCP™ (W),
we put L=V, then we get LI ,. For any (V,d)& 11 Hom(V, I),

VeCPm-1(w)
we put L={x+d(x)|z=V}. Then we show that L=9(,. Indeed, it is clear
that L LW and L¢ W+, and we see that L is complex isotropic because for
any 2, 2’ € V we get {x+d(x),2’+d(x’)> =0. For any (V,dé)e 1

veCPm-1(w)
Hom(V, I), if we put L={x+d'(x)|lxz<= V}, then we see that L= Y(, as above.
Thus we get the inverse map B=(V,d) or (V,d)—»LeY(,.
Hence we obtain a diffeomorphism Y ,«——. O

It is sufficient to estimate the dimension of the fibre of p, from above
by the larger dimension of ¥, and 4 ,. Hence we have

(2.1) dim Y <dim p;" () =dimeH . +dime f(T)=m+1.

From (2.1) and dim¢Q.n(C)=2m, if m=2, the space Y’ cannot be
equal to @,.(C). It suffices to choose LEQ,,(CN\Y’/. It follows that if
m=2, then any horizontal holomorphic map into Z,(C*™**) can be deformed
continuously through horizontal holomorphic maps to a horizontal holomor-
phic map into %, .(C*™). Thus by induction on dimension m, we obtain
the proposition.

PROPOSITION 2.5. If m=2, then any horizontal holomorphic map 2
—Zn(C*™) can be deformed continuwously through horizontal holomor-
phic maps to a horizontal holomorphic map into Z,(C*).

Thus we obtain the following statement for harmonic maps.

THEOREM 2.6. If m=2, then any strongly isotropic harmonic map
¢: X >Gry(R*™*%) can be deformed continuously through strongly isotropic
harmonic maps to a strongly isotropic harmonic map 2 —Gr,(R").

3. Deformations of harmonic maps of real mixed pairs

(A) Morse-Bott theory over twistor space Q,(C). Let G=SO0(n+2)
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and g denote its Lie algebra. Then we can regard Q,(C) as an orbit of
the adjoint representation of G. To consider the height function as Section
2, we fix an useful element P of g. However we note that the choice of
P is different in each case when n is odd or even.

First we treat the case when n=2/—1. Let G ={FeGr(C"|(F, F)
=0}. Then we have &,=S0(2l4+1)/U(l) and the complex dimension of &,
is (n+1)(n+3)/8. Fix FEF, and put P=v —1np,—~ —1rzz=g. For X=
vV —1r,—~—1Iz; with L=Q,(C), we define the height function hP(X)=
KX, P)).

Then a critical point X of h? is characterized by L=L&L,PL, with
LS F,L,CF, L,c(FBF)*, where C""*=FPF®(FOF)*. We obtain the
following lemma.

LEMMA 3.1. In the case n=21—1, there are two connected non-degenerate
critical manifold of h*;
C,={Lc@,(C)|LC F}=CP'",
C_={LeQ,(C)|Lc F}=CP' ",
We set Gp,={A=G°|A(F)=F}. In general, we know that the stable
manifold for a connected non-degenerate critical manifold N is given by

SP(N)=GpX for XeN. Then we determine the corresponding stable ma-
nifolds by the same way as Lemma 2.2.

LEMMA 3.2. In the case n=2l—1, for two mnon-degenerate critical
manifolds in Lemma 3.1, the corresponding stable manifolds are
SP(C+):C+;
SP(C)={LEQu(O) LAF ={0}),

respectively.

Next we treat the case when n=2I. Let
JC1+1:{K€GTH1(C"+2)](K K)=0}.

Then we have K,,;=S0(214+2)/U(l+1) and the complex dimension of X,
is n(n+2)/8. Fix K= X,,;, and put P=+—1rg—+~ —1zzg=qg. For X =
v —1r,—~'—1zx;, where L=Q,(C), in this case, a critical point X of A?
is characterized by L = L, P:L, with L,<K, L, K, where C"** = KOK.
We obtain the following two lemmas as above.

LEMMA 3.8. In the case n=2I, there are two connected non-degenerate
critical manifolds of h*;
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C,={L=Q,(C)|LcK}=CP',
C.={LeQ,(C)|LCK}=CP".

LEMMA 3.4. In the case n=2l, for two mnon-degenerate critical ma-
nifolds in Lemma 3.3, the correspondtng stable manifolds are

SP(C+):C+ ’
SP(C ) ={LEQ.(C)LNEK={0}},

respectively.

REMARK. In Lemma 3.1 and 3.3, the twistor fibration n: Q,(C)—
Gr,(R™*?) induces a biholomorphic diffeomorphism

C.=CP™>L —> (LB L)r=Gry(R™?)

where m=(n—1)/2 when n is odd and m=mn/2 when n is even.

(B) Deformations of harmonic maps. Let ¢: Y — Gr,(R""®) be a
real mixed pair, and g: Y —@Q,(C) be a holomorphic map correponding to
e. If g(¥)cS?(C.), then {(expv —1tP)og}o1-.. Drovides a continuous de-
formation to a holomorphic map into C.. We shall show that there exists
some F'&F, in the case n=2l—1 or K=K ,,, in the case n=2[, such that
g(2)cSP(CL).

In the case n=2l—1, we set Yéi={F =F |g(z)¢S*(C_) for some z&X}.
Then we have Yé={F=F,|g(z)=F for some z=2X}. It suffices to show
that ¢ cannot be equal to &F,. We define Y,={(F, L)ETF X Q.(C)|LCF}.
Let p. be the projection on the second ractor of this product. Since the
fibere of p, is F,.,, we have dim;Yi<((n—1)(n+1)/8)+1. If n is odd
greater than or equal to 3, then the space ¢ cannot be equal to F,.
Therefore we can choose F < \YS.

In the case n=2l, we set Yi={K<K,,,|gz)ZS"(C_) for some z X}
Then we have Yi={(KeK,,,lg(z)eK for some z=2Y}. We define Y,=
(K, Lye K,,1XQ.(C)|[LCK}. Let p, be the projection on the second factor
of this product. Since the fibre of p, is KX,, we have dim Y§=<(n—2)n/8
+1. If n is even greater than or equal to 4, then the space Y% cannot
be equal to K;.,;. Then we can choose K&K, \Yj.

Hence we obtain the following proposition.

PROPOSITION 8.5. If n=3, then any holomorphic map ¢: 3 — Q,(C)
can be deformed continuously through holomorphic maps to a holomorphic
map into CP™, where m=(n—1)[2 when n is odd and m=n/2 when n 1s
even. Moreover, ¢ can be deformed continuously to a holomorphic map
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into CP*cCP™.
Thus we obtain the following statement for harmonic maps.

THEOREM 3.6. If n=3, then any real mixed pair ¢: X—Gry(R"*?)
can be deformed continuously through real mixed pairs to a holomorphic
map X —-CP'CGr,(RY).

4. Energy and Degree

We shall give the formula of the energy and the degree for a smooth
map ¢: 2—@,(C) of a compact Riemann surface. In the case n=2, we
suppose that Q,(C) has the maximum ¢ of the sectional curvatures.

First we consider the degree deg(¢) of ¢. There is a natural inclusion
11 Q,(C) & CP* ' =Gr,(C™*?). We also denote by £ a tautological bundle
over @Q,(C) pull-backed from the tautological bundle £ over CP™*! by i.
In the case n=3, since 7,(Q,(C))=Z, the degree of ¢ can be defined for
a smooth map ¢: S?—Q,(C) by

(4.1) deg(g)= —c,(¢7'.L)

and that the deg(¢) determines the homotopy class of ¢, namely, for smooth
maps ¢, ¢’ : ¥—Q,(C), deg(¢)=deg(¢’) if and only if ¢ is homotopic to ¢’

Next we consider the energy of ¢, in the case when ¢ is a holomor-
phic map and in the case when ¢ is a strongly isotropic harmonic map
respectively.

Let gcp be the Kéahler metric on CP**'=Gr (C"*?) induced from the
standard Hermitian inner product < ,> through (TCP"*")“°=Hom(.L, .L*).
Set wep(X, Y)=gcp(JX, Y) for X, YETCP"*! where J is a complex struc-
ture tensor of CP"*'. Then it is known that the first Chern class of .
is given by ¢i(L)=[—(1/27)wcp]. On the other hand, let w, denote the
Kéahler form on CP**' of constant holomorphic sectional curvature ¢’. We
remark that in the case n=2, the maximum of sectional curvatures of
Q,(C) is the same value ¢’ relative to the Riemannian metric induced
through the inclusion @,(C)cCP"*'. Then we restrict the Kihler form
o, on Q,(C). We know that the first Chern class of L is ¢,(.L) =
[—(c'[4m)w.]. Assume that wcp is equal to o, on @,(C). As (1/2r)wcy and
(¢’[4m)w. are harmonic forms in the same cohomology class, we have
(1/27)wcp=(¢'[/4n)w,,. Then we get ¢'=2.

Hence we obtain the energy of a holomorphic map 0

E(g)= —{quﬁ*wcp: _ égcl(¢—1£): %Edeg(gzi) .

¢



December 1993 On Connectedness of the Space 111
Then we obtain the following.

PROPOSITION 4.1. Let ¢: ¥—Q,(C) be a holomorphic map of a com-
pact Riemann surface. Then the energy of ¢ is

&(g)="T deglg)= " Z.

Next suppose that ¢ is a strongly isotropic harmonic map. There is
a natural inclusion j: Z.(C?™"?) < Gr,(C*™?). We also denote by 9/ a
tautological bundle over Z,(C*™*?) pull-backed from the tautological bundle
9 over Gr,(C*™*%) by j. Let g be the Kéhler metric induced from the
standard Hermitian inner product ¢ , > through TGr,(C*™**)"* = Hom(7/,
W1y, Set we (X, Y)=gs(JX, Y). The Kahler metric g, induces a Kahler
metric on Z,(C*) and we also denote by ws, the Kahler form induced on
Z,(CY. It is known that the first Chern class of 9 is given by c¢,()=
[—(1/27)ws,]. On the other hand, for Z,(C*) < CF? let w. denote the
Kahler form on CP? of constant holomorphic sectional curvatule ¢’, and
we restrict the Kiahler form w, on Z,(C*). We know that the first Chern
class of TV is ¢,(W)=[—(c'/4m)w..]. If we suppose that w., is equal to w.
on %,(CY, then by a similar argument we get ¢'=2.

Since g: ¥ —Z,(C*™"?) is horizontal holomorphic, we obtain the energy
of a strongly isotropic harmonic map ¢

2

Eg)=Elgy=—{ _gwe =~

B cl(g"lq/f/) .

Then we obtain the following.
PROPOSITION 4.2. Let ¢: ¥—Q,(C) be a strongly isotropic harmonic
map of & compact Riemann surface. Then the energy of ¢ 1s

eg)=—"Feg W)= T 2.

From the above results we can give the energy formula of a harmonic
map ¢: X—-Gr(R""?) as follows.

" PROPOSITION 4.3. (1) Let ¢: X—Gry(R"*?) be a real mixed pair of
a compact Riemann surface. Then the energy of ¢ 1s

Elp)=E(g) =" deglg)= “" 7,

where ¢: 3—Q,(C) is a lift of ¢, which is a holomorphic map.
(2) Let ¢: ¥—Gry(R™?) be a strongly isotropic harmonic map of a
compact Riemann surface. Then the energy of ¢ is
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where ¢ : X —Q,(C) is a lift of ¢, which is a strongly isotropic harmonic
map.

In the case n=2m=2, we have that Z,(C*")=Q,(C)=CP'*xCP*. These
identifications are as follows: CP'XCP'=(u,v)— (u, v)=Q,(C) and CP*X
CP'=(u, v)— (u, )= Z,(C). We note that for any LeQ,(C), a 1-dimen-
sional complex isotropic subspace W of C* is determined uniquely where
C'=LOLAWSW. Then for LeQ,(C), we may give two line bundles [
and 9/ over Q,(C) defined by (L), =L and (%), =W. Denote L, and L,
by the tautological bundle over each factor of CP'XCP!. Then we see
that L=_L,Q.L, and W=_L,RL,.

The bi-degree (deg  (¢), degs(¢)) can be defined for a smooth map ¢=
(b1, @2) 1 ST — Q(C) = CP' x CP*. If we define deg (¢) = —ci(¢™'L) and
degq(¢)= —ci(¢~'9), then

deg o (¢) =deg(¢,) +deg(gp,), degq () =deg(h,) —deg(g,) .

Since 7,(Qx(C))=r,(CP*XCP') = ZBZ, for smooth maps @, 0" X — Q,(C),
deg(¢)=deg(¢') and degq(d)=degy(¢’) if and only if ¢ is homotopic to ¢'.

5. On connectedness of the space of harmonic maps into Q,(C)
(Proof of Theorem A)

Suppose that ¥ = S?. Before we mention the connectedness of the
space of harmonic maps S*—Gr,(R**?), we shall treat the case of harmonic
maps S*—@,(C).

First we shall consider the case n=2. [BW1] showed that for a har-
monic map ¢=(¢,, @) : S*~@,(C) with ¢,, ¢,: S*—-CP?, since ¢, and ¢, are
holomorphic or antiholomorphic, the pairs {¢,, ¢ or {¢,, ,} are both holo-
morphic or both antiholomorphic. If we fix deg.(¢) and degq(sp), then
they determine deg(¢,) and deg(¢,). Then we obtain Theorem A(1).

We know that in general the energy of ¢ is &(¢)=|(4n/c)deg(¢)| and
the equality holds if and only if ¢ is holomorphic or antiholomorphic.

Now we consider the case =n = 3. Suppose that 6: SE—-Q,C) is a
holomorphic map. Then combining Proposition 8.5 and the fact the space
of holomorphic maps of S? into CP! with fixed degree is path-connected,
we obtain Theorem A(3).

Next suppose that ¢: S*—Q,(C) is a strongly isotropic harmonic map.
We may assume that ¢ is neither holomorphic nor antiholomorphic. Let
g:8*>Z,(C*™**) corresponding to ¢ be a horizontal holomorphic map and
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g'=(g1, g3): S?—>Z,(CH=Qx(C)=CP' X CP' be a horizontal holomorphic map
which is obtained by continuous deformation of g in Proposition 2.5.

Then we can restate the energy &(¢) and the degree deg(¢) of ¢ in
(4.1) and Proposition 4.2, using g’=(gi, 9:) as follows:

47

E(P)=— i—”cl(g‘lW)-: — 701(9"1CW): t—n(deg(gi) —deg(g3))
and
deg(g)=—ci(¢p 'L)=—c (g 'n "' L)=—c\(¢g''n""L)=deg(g;) +deg(gs) .

From the assumption of ¢, &(¢)+|(4x/c)deg(p)|. Then the energy &(¢) and
the degree deg(¢) determine deg(gi) and deg(gs). Thus Theorem A(2) fol-
lows from Theorem A(1).

This completes the proof of Theorem A.

6. On connectedness of the space of harmonic maps into Gr,(R"*?)
(Proof of Theorem B)

In this section, we consider connectedness of the space of harmonic
maps ¢: S*—Gr,(R***) which are strongly isotropic or real mixed pairs.

We remark that any Kdhler form cannot be defined entirely on Gr,(R"*?),
because the second cohomology group of Gr,(R"*?) is HXGr,(R"*?), Z)=1Z,.
Then to introduce a homotopy invariant as degree for ¢, using a lift ¢ of
¢ to @,(C) which is a Kéhler manifold, we define d(p) :=|deg(¢)!.

Now we must note the following. For a smooth map ¢: S*— @Q,(C)
with deg(¢) # 0, § cannot be homotopic to ¢, because deg(g) = —deg(g).
However, for smooth maps ¢=nrc¢ and ¢'=mo¢’ with ¢, ¢': S*—Q,(C), if
deg(¢)= +deg(g’), i.e., dlp)=d(¢’), then ¢ is homotopic to ¢’.

In the case n=2, if we fix
dr(p)=|deg (¢)| =|deg(¢,) +deg(ds)!,
da(p)=|degqy(¢)| =|deg(d,) —deg(d.)|,

and signature ¢ (=1 or —1) of (deg (¢)-degq(¢)), then in the above sense,
we can characterize the homotopy class for a smooth map S?— Gry(R").
Thus we obtain Theorem B(1).

In the case n=3, Theorem B(2) and (3) follow from Theorem A(2)
and (3).

Hence we have completed the proof of Theorem B.

7. Remarks and Conjectures

We shall remark the relation of our results with the construction
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theory of all harmonic maps ¢ : S?->Gr,(R**?). According to the classifica-
tion theory of [BW1], there are four classes of harmonic 2-spheres in
Gr.(R"*?) as follows; (I) strongly isotropic and &’-reducible, (II) strongly
isotropic and o’-irreducible, (III) finite isotropy order and 4’-reducible, (IV)
finite isotropy order and o’-irreducible.

Bahy-El-Dien and Wood [BW1] showed that if a harmonic map ¢:
S*—Gry(R"*?) is of class (III), then ¢ is a real mixed pair. If a harmonic
map ¢: S*—Gr,(R"*?) is of class (IV), then ¢ can be lifted to a horizontal
holomorphic map into neither @,(C) nor Z,.(C*™*%). However they showed
that ¢ of class (IV) can be transformed to a map of class (III) after a
finite number of forward and backward replacements.

Theorem B implies the connectedness of the space of harmonic 2-spheres
in Gry(R"*?) of class (I), (II) or (III). Then it is very interesting to in-
vestigate the deformations of harmonic 2-spheres in Gr,(R"*?) of class
(IV) and to determine the connectedness problem of the space of all har-
monic 2-spheres in Gr,(R"*?),

Congecture. Is the space of all harmonic 2-spheres in Gr,(R"*?) (resp.
Q,(C)), n=3, with fixed energy and fixed d (resp. degree) path-connected?

The similar results have already obtained by [Mu] in the case HP™.

Congecture. Is the space of all harmonic 2-spheres in HP", n=2,
with fixed energy path-connected?

More generally let M be a compact Riemannian symmetric space of
inner type and < (M) be the standard twistor space over M with the pro-
jection = : J(M)—M, which was classified by Bryant [Br] and Salamon [Sa].
We call a harmonic map ¢: Y — M which can be lifted to a horizontal
holomorphic map into (M) isotropic harmonmic map, strongly pseudo-
holomorphic map or branched superminimal immersion. FEspecially, we
obtained similar results on the connectedness of the isotropic harmonic 2-
spheres in the classical Riemannian symmetric spaces M of inner type.
We shall discuss these results elsewhere.

Congecture. Let M be a Riemannian symmetric space of compact type.
Is the space of harmonic 2-spheres in M with fixed energy and fixed ho-
motopy class path-connected?
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