On Connectedness of the Space of Harmonic 2-Spheres in Real Grassmann Manifolds of 2-Planes #### Mariko Mukai Department of Mathematics, Faculty of Science, Ochanomizu University (Received October 5, 1993) #### Introduction In a previous paper [Mu], using the method of [GO], we studied the deformations of harmonic maps of a Riemann surface Σ into a quaternionic projective space HP^n which are strongly isotropic or quaternionic mixed pairs and as a consequence, we obtained the results on the connectedness of the space of such harmonic 2-spheres in HP^n . In this paper, we deal with the case of harmonic 2-spheres in a real Grassmann manifold of 2planes $Gr_2(\mathbf{R}^{n+2})$, or a complex hyperquadric $Q_n(\mathbf{C})$. According to [BW1] and [BW2], the construction theory of harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ or $Q_n(C)$ have algebraic structure analogous to the case HP^n . However, there are some differences between the case HP^n and the case $Gr_2(\mathbf{R}^{n+2})$; for instance, the group which acts on the twistor spaces over each space, the existence of stable harmonic 2-spheres, and so on. On the other hand, although $Q_n(C) \to Gr_2(\mathbf{R}^{n+2})$ is the double universal covering, when we consider harmonic 2-sphere in $Q_n(C)$ and $Gr_2(R^{n+2})$, the interesting differences between $Q_n(\mathbf{C})$ and $Gr_2(\mathbf{R}^{n+2})$ on topology and structure of manifolds attract our attention. In Section 1, we shall discuss the standard twistor spaces over $Q_n(C)$ and $Gr_2(\mathbf{R}^{n+2})$. It is known that the standard twistor spaces over $Q_n(C)$ are $Q_n(C)$ itself and $\mathcal{Z}_m(C^{2m+2})$ for n=2m, and those over $Gr_2(\mathbf{R}^{n+2})$ are $Q_n(C)$ (double covering) and $\mathcal{Z}_m(C^{2m+2})$ for n=2m. In Section 2 and 3, applying the argument of [GO] to horizontal holomorphic maps into each twistor space, we shall prove results on Morse-Bott theoretic deformations for harmonic maps. In Section 4, we shall discuss the energy and degree for harmonic 2-spheres in $Q_n(C)$ and $Gr_2(\mathbf{R}^{n+2})$. In Section 5 and 6, we shall show main theorems. In Section 7, we shall remark the relation between the main theorem and the construction of harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ and give some conjectures. To state our theorems, we prepare the following notations. First, for a map $\phi: S^2 \to Q_n(C)$, in the case n=2, let $\operatorname{Harm}_{\deg_{\mathcal{L}}, \deg_{\mathcal{W}}}(S^2, Q_2(C))$ be the space of harmonic maps with fixed bi-degree $(\deg_{\mathcal{L}}(\phi), \deg_{\mathcal{W}}(\phi))$. In the case $n \geq 3$, let $\operatorname{Harm}_{\mathcal{E}, \deg}(S^2, Q_n(C))^{st.isot.}$ and $\operatorname{Hol}_{\deg}(S^2, Q_n(C))$ be the space of strongly isotropic harmonic maps with fixed energy and fixed degree and the space of holomorphic maps with fixed degree, respectively. Here we call a harmonic map $\phi: \Sigma \to Q_n(C)$ strongly isotropic if ϕ is strongly isotropic as a harmonic map into $Gr_2(C^{n+2})$ when we regard a map ϕ as the composition of the maps $\Sigma \to Q_n(C), Q_n(C) \to Gr_2(R^{n+2})$ (double covering) and $Gr_2(R^{n+2}) \to Gr_2(C^{n+2})$ (see [BW1]). Then the statement of theorem is as follows. THEOREM A. (1) The space $\operatorname{Harm}_{deg_{\mathcal{L}}, deg_{\mathcal{W}}}$ $(S^2, Q_2(\mathbf{C}))$ is path-connected. - (2) If $n \ge 3$, the space $\operatorname{Harm}_{\mathcal{E}, deg}(S^2, Q_n(C))^{st.isot.}$ is path-connected. - (3) If $n \ge 3$, the space $\operatorname{Hol}_{deg}(S^2, Q_n(\mathbb{C}))$ is path-connected. Next, for a map $\varphi: S^2 \to Gr_2(\mathbf{R}^{n+2})$, in the case n=2, let $\operatorname{Harm}_{d_{\mathcal{L}}, d_{\mathcal{W}}, \varepsilon}(S^2, Gr_2(\mathbf{R}^4))$ be the space of harmonic maps with fixed $d_{\mathcal{L}}(\varphi)$, fixed $d_{\mathcal{W}}(\varphi)$ and fixed signature ε (=1 or -1) of $(\deg_{\mathcal{L}}(\phi) \cdot \deg_{\mathcal{W}}(\phi))$. Here $d_{\mathcal{L}}(\varphi) := |\deg_{\mathcal{L}}(\phi)|$ and $d_{\mathcal{W}}(\varphi) := |\deg_{\mathcal{W}}(\phi)|$ for a lift ϕ of φ to $Q_2(\mathbf{C})$. In the case $n \geq 3$, let $\operatorname{Harm}_{\varepsilon, d}(S^2, Gr_2(\mathbf{R}^{n+2}))^{st.isot.}$ and $\operatorname{Harm}_d(S^2, Gr_2(\mathbf{R}^{n+2}))^{r.m.p.}$ be the space of strongly isotropic harmonic maps with fixed energy and fixed $d(\varphi)$ and the space of real mixed pairs (see Section 1) with fixed $d(\varphi)$, respectively. Here $d(\varphi) := |\deg(\phi)|$ for a lift φ of φ to $Q_n(\mathbf{C})$. Then our main result is as follows. THEOREM B. (1) The space $\operatorname{Harm}_{d_{\mathcal{L}},d_{\mathcal{W}},\varepsilon}(S^2, Gr_2(\mathbf{R}^4))$ is path-connected. - (2) If $n \ge 3$, the space $\operatorname{Harm}_{\mathcal{E}, d}(S^2, Gr_2(\mathbf{R}^{n+2}))^{st.isot.}$ is path-connected. - (3) If $n \ge 3$, the space $\operatorname{Harm}_d(S^2, Gr_2(\mathbf{R}^{n+2}))^{r \cdot m \cdot p}$ is path-connected. ACKNOWLEDGEMENTS: The author would like to thank Professors Y. Ohnita and K. Tsukada for valuable discussions and useful suggestion. ## 1. Twistor spaces over $Gr_2(\mathbf{R}^{n+2})$ and $Q_n(\mathbf{C})$, and Harmonic 2-spheres Let \langle , \rangle and (,) denote the standard Hermitian inner product and the standard complex symmetric bilinear form on C^{n+2} defined by $$\langle v, w \rangle = v_1 \overline{w}_1 + \dots + v_{n+2} \overline{w}_{n+2}, \qquad (v, w) = v_1 w_1 + \dots + v_{n+2} w_{n+2}$$ where $v=(v_1, \dots, v_{n+2}), w=(w_1, \dots, w_{n+2}) \in \mathbb{C}^{n+2}$, and $\bar{}$ denotes complex conjugation. For a k-dimensional complex subspace W of \mathbb{C}^{n+2} invariant under the conjugation, we denote by $W_R = \{w \in W | \overline{w} = w\}$ the real form of W, which is a k-dimensional real subspace of \mathbb{R}^{n+2} . Then we can identify a k-dimensional complex subspace of \mathbb{C}^{n+2} invariant under the conjugation with a k-dimensional real subspace of \mathbb{R}^{n+2} ; by corresponding W to W_R and conversely by corresponding a k-dimensional real subspace of \mathbb{R}^{n+2} to its complexification. DEFINITION. A complex subspace W of \mathbb{C}^{n+2} is called *complex isotropic* if (v, w) = 0 for $v, w \in W$, namely, $W \perp \overline{W}$ relative to \langle , \rangle . Let $Gr_2(\mathbf{R}^{n+2})$ denote the real Grassmann manifold of 2-planes in \mathbf{R}^{n+2} with the standard Riemannian metric. Since we have an identification $Gr_2(\mathbf{R}^{n+2}) \cong \{W \in Gr_2(\mathbf{C}^{n+2}) | W = \overline{W}\}$, we can regard $Gr_2(\mathbf{R}^{n+2})$ as a totally geodesic submanifold of $Gr_2(\mathbf{C}^{n+2})$. The universal double covering space of $Gr_2(\mathbf{R}^{n+2})$ is $\tilde{G}r_2(\mathbf{R}^{n+2})$, the real Grassmann manifold of oriented 2-planes in \mathbf{R}^{n+2} . Then $\tilde{G}r_2(\mathbf{R}^{n+2})$ may be identified with the complex hyperquadric $$Q_n(C) = \{L \in CP^{n+1} | (L, L) = 0\}$$, as follows. The map $Q_n(C) \to \tilde{G}r_2(\mathbf{R}^{n+2})$ is given by $L = [Z] \to [\operatorname{Re}(Z) \wedge \operatorname{Im}(Z)]$, where $[\operatorname{Re}(Z) \wedge \operatorname{Im}(Z)]$ denotes an oriented 2-plane in \mathbf{R}^{n+2} spanned by the oriented pair of vectors $\{\operatorname{Re}(Z), \operatorname{Im}(Z)\}$. The inverse map $\tilde{G}r_2(\mathbf{R}^{n+2}) \to Q_n(C)$ is given by $[X_1 \wedge X_2] \mapsto [X_1 + \sqrt{-1}X_2]$, where $[X_1 \wedge X_2]$ denotes an oriented 2-plane with an orthonomal basis $\{X_1, X_2\}$ compatible with the orientation. Throughout this paper, let G and G^c denote the special orthogonal group SO(n+2) and its complexification $SO(n+2, \mathbb{C})$, namely, $$\begin{split} G^c = & \{A \in SL(n+2, \mathbf{C}) | {}^t A A = I \} \\ = & \{A \in SL(n+2, \mathbf{C}) | (Av, Aw) = (v, w) \text{ for each } v, w \in \mathbf{C}^{n+2} \}. \end{split}$$ Now we introduce two twistor spaces over $Q_n(\mathbf{C})$: one is $Q_n(\mathbf{C})$ itself with the projection $\pi = id$ and another is $$\mathcal{Z}_m(\mathbf{C}^{2m+2}) = \{ W \in Gr_m(\mathbf{C}^{2m+2}) | (W, W) = 0 \}$$ with the projection $\pi(W) = (W \oplus \overline{W})^{\perp}$ for n = 2m. Here \oplus denotes an Hermitian orthogonal direct sum with respect to \langle , \rangle . Since G acts transitively on $Q_n(C)$ and $\mathcal{Z}_m(C^{2m+2})$, we have $Q_n(C) = SO(n+2)/SO(2) \times SO(n)$ and $\mathcal{Z}_m(C^{2m+2}) = SO(2m+2)/SO(2) \times U(m)$. In particular, their complex dimensions are given by $\dim_{\mathbf{C}} Q_n(C) = n$ and $\dim_{\mathbf{C}} \mathcal{Z}_m(C^{2m+2}) = (m(m+3)/2)$. The space $Gr_2(\mathbf{R}^{n+2})$ has two standard twistor spaces $Q_n(\mathbf{C})$ with the projection $\pi(L) = L \oplus \overline{L}$ (double covering) and $\mathcal{Z}_m(\mathbf{C}^{2m+2})$ with the projection $\pi(W) = (W \oplus \overline{W})^{\perp}$ for n = 2m. Let us discuss in detail the twistor space $\mathcal{Z}_m(C^{2m+2})$. We define three tautological complex vector bundles \mathcal{W} , $\overline{\mathcal{W}}$ and \mathcal{E} over $\mathcal{Z}_m(C^{2m+2})$; for $W \in \mathcal{Z}_m(C^{2m+2})$, $\mathcal{W}_w = W$, $(\overline{\mathcal{W}})_w = \overline{W}$ and $\mathcal{E}_w = E$, where $C^{2m+2} = W \oplus \overline{W} \oplus E$. Using a natural inclusion map $\mathcal{Z}_m(C^{2m+2}) \subset Gr_m(C^{2m+2})$, we describe the holomorphic tangent bundle of $\mathcal{Z}_m(C^{2m+2})$ as $$T\mathcal{Z}_m(C^{2m+2})^{1.0} = \text{Hom}(\mathcal{W}, \overline{\mathcal{W}})^{isot} \oplus \text{Hom}(\mathcal{W}, \mathcal{E})$$. Here $\operatorname{Hom}(\mathcal{W}, \overline{\mathcal{W}})^{isot}$. $$= \coprod_{W \in \mathcal{Z}_m(C^{2m+2})} \{ T \in \text{Hom}(W, \overline{W}) | (Tv, v) = 0 \text{ for each } v \in W \}$$ corresponds to the vertical subspaces of π and $\operatorname{Hom}(\mathcal{W},\mathcal{E})$ corresponds to the horizontal subspaces of π for $\pi: \mathcal{Z}_m(C^{2m+2}) \to Q_n(C)$ or $Gr_2(R^{n+2})$. A smooth map $f: \Sigma \to \mathcal{Z}_m(C^{2m+2})$ of a Riemann surface is said to be a horizontal holomorphic map if $df(T\Sigma^{1,0}) \subset \operatorname{Hom}(\mathcal{W},\mathcal{E})$. The holomorphicity and horizontality conditions are written respectively as $$\begin{split} \partial'' C^\infty(f^{-1}\mathcal{W}) &\subset C^\infty(f^{-1}\mathcal{W}) \,, \\ \partial' C^\infty(f^{-1}\mathcal{W}) &\subset C^\infty(f^{-1}\mathcal{W}) + C^\infty(f^{-1}\mathcal{E}) \,. \end{split}$$ We know that if a map $\phi: \Sigma \to Q_n(\mathbf{C})$ is of the form $\phi = \pi \circ f$, for a horizontal holomorphic map $f: \Sigma \to \mathcal{Z}_m(\mathbf{C}^{2m+2})$ with respect to $\pi: \mathcal{Z}_m(\mathbf{C}^{2m+2}) \to Q_n(\mathbf{C})$, then ϕ is harmonic. Thus $\phi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ is also harmonic, because $Q_n(\mathbf{C}) \to Gr_2(\mathbf{R}^{n+2})$ is an universal double covering. The group G^c acts transitively on $\mathcal{Z}_m(C^{2m+2})$ in the natural way; for $A \in G^c$ and $W \in \mathcal{Z}_m(C^{2m+2})$, we have $A(W) \in \mathcal{Z}_m(C^{2m+2})$, because the group G^c preserves the complex symmetric bilinear form (,). Then we have the following. - LEMMA 1.1. (1) This action of G^c on $\mathcal{Z}_m(C^{2m+2})$ preserves the complex structure of $\mathcal{Z}_m(C^{2m+2})$ and the horizontal subspaces with respect to $\pi: \mathcal{Z}_m(C^{2m+2}) \to Q_n(C)$ or $Gr_2(R^{n+2})$. - (2) Let $A \in G^c$ and $f: \Sigma \to \mathcal{Z}_m(C^{2m+2})$ be a horizontal holomorphic map. Then $A \circ f: \Sigma \to \mathcal{Z}_m(C^{2m+2})$ is also a horizontal holomorphic map. - PROOF. (1) Let $A \in G^c$ and $T \in \operatorname{Hom}(\mathcal{W}, \mathcal{E})$. For any $s, s' \in C^{\infty}(\mathcal{W})$, then we have $\langle (AT)s, \bar{s}' \rangle = ((AT)s, s') = (A(T(A^{-1}s)), s') = (T(A^{-1}s), A^{-1}s') = 0$, because $T(A^{-1}s) \in \mathcal{E}$ and $A^{-1}s' \in \mathcal{W}$. Since $(AT)s \perp \bar{s}'$ and $\bar{s}' \in C^{\infty}(\overline{\mathcal{W}})$, we obtain $AT \in \operatorname{Hom}(\mathcal{W}, \mathcal{E})$. - (2) For any $s, s' \in C^{\infty}(f^{-1}\mathcal{W})$, A(s) is a section of $(A \circ f)^{-1}\mathcal{W}$. Note that $(A \circ f)^{-1}\mathcal{W} = A(f^{-1}\mathcal{W})$. Then we have $$\partial'' A(s) = A(\partial'' s) \in AC^{\infty}(f^{-1}\mathcal{W}) = C^{\infty}((A \circ f)^{-1}\mathcal{W})$$. Hence $A \circ f$ is holomorphic. Also we have $$\langle \partial' A(s), \overline{A(s')} \rangle = (A(\partial's), A(s')) = (\partial's, s') = \langle \partial's, \overline{s}' \rangle = 0$$ because $\partial' s = \partial' C^{\infty}(f^{-1}W)$ and $\bar{s}' \in C^{\infty}(f^{-1}\overline{W})$. Hence $A \circ f$ is horizontal. \square Next let us discuss another twistor space $Q_n(C)$. We define three tautological complex vector bundles over $Q_n(C)$ for $L \in Q_n(C)$ as follows; $\mathcal{L}_L = L$, $(\overline{\mathcal{L}})_L = \overline{L}$ and $CV_L = V$, where $C^{n+2} = L \oplus \overline{L} \oplus V$. The holomorphic tangent bundle of $Q_n(C)$ is given by $$TQ_n(C)^{1,0} = Hom(\mathcal{L}, \overline{\mathcal{L}})^{isot} \oplus Hom(\mathcal{L}, \mathcal{C})$$. Here $$\operatorname{Hom}(\mathcal{L},\overline{\mathcal{L}})^{isot.} = \coprod_{L \in \mathcal{Q}_n(\mathcal{C})} \{ T \in \operatorname{Hom}(L,\bar{L}) | (Tv,v) = 0 \text{ for each } v \in L \}$$ corresponds to the vertical subspaces of π and $\operatorname{Hom}(\mathcal{L}, \subset V)$ corresponds to the horizontal subspaces of π for $\pi: Q_n(C) \to Gr_2(R^{n+2})$. A smooth map $g: \Sigma \to Q_n(C)$ of a Riemann surface is said to be a holomorphic map if $dg(T\Sigma^{1,0}) \subset TQ_n(C)^{1,0}$. It suffices to consider the holomorphicity condition, because the projection $Q_n(C) \to Gr_2(R^{n+2})$ is a covering map. This condition is written as $$\partial'' C^{\infty}(g^{-1}\mathcal{L}) \subset C^{\infty}(g^{-1}\mathcal{L})$$. Then the following fact holds. LEMMA 1.2. (1) This action of G^c on $Q_n(C)$ preserves the complex structure of $Q_n(C)$. (2) Let $A \in G^c$ and $g: \Sigma \to Q_n(C)$ be a holomorphic map. Then $A \circ g: \Sigma \to Q_n(C)$ is a holomorphic map. DEFINITION ([BW1]). A map $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ is called a real mixed pair if there exists a holomorphic map $g: \Sigma \to Q_n(\mathbf{C})$ such that $\varphi = \pi \circ g$, namely, if $\underline{\varphi}$ denotes the corresponding subbundle to φ , then $\underline{\varphi} = \underline{g} \oplus \underline{g}$. Now we mention the relation between the classification of harmonic maps $\Sigma \to Gr_2(\mathbf{R}^{n+2})$ and the lift to the twistor space $\mathcal{Z}_m(\mathbf{C}^{2m+2})$ over $Gr_2(\mathbf{R}^{n+2})$. In [GI] and [BW1], it was shown that $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ is strongly isotropic if and only if there exists a horizontal holomorphic map $f: \Sigma \to \mathcal{Z}_m(\mathbf{C}^{2m+2})$ such that $\varphi = \pi \circ f$, namely $\underline{\varphi} = (\underline{f} \oplus \underline{f})^{\perp}$. In this case, it is known that if a harmonic map $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ is strongly isotropic, then $\varphi(\Sigma) \subset Gr_2(\mathbf{R}^{2m+2}) \subset Gr_2(\mathbf{R}^{n+2})$ for some (2m+2)-dimensional real subspace $R^{2m+2} \subset R^{n+2}$. REMARK. (1) Throughout this paper, for a k-dimensional complex subspace W of C^{n+2} , we define $$\mathbb{C}P^{k-1}(W) = \{L | L \text{ is a 1-dimensional subspace of } W\}.$$ - (2) If we let F^{m+1} an (m+1)-dimensional complex isotropic subspace of C^{2m+2} , then $\varphi: S^2 \to \{(L \oplus \bar{L})_R | L \in CP^m(F)\} \cong CP^m \subset Gr_2(\mathbb{R}^{2m+2})$ is a holomorphic map if and only if φ is both a strongly isotropic harmonic map and a real mixed pair. - (3) If $\varphi: S^2 \to Gr_2(\mathbf{R}^4)$ is a harmonic map, then φ is strongly isotropic or a real mixed pair (see [BW1]). ### 2. Deformations of strongly isotropic harmonic maps into $Gr_2(\mathbf{R}^{n+2})$ (A) Morse-Bott theory over twistor space $\mathcal{Z}_m(C^{2m+2})$. Let G = SO(2m+2) and g denote its Lie algebra. Then we can regard $\mathcal{Z}_m(C^{2m+2})$ as an orbit of the adjoint representation of G as follows: If we let W_0 a fixed element of $\mathcal{Z}_m(C^{2m+2})$ and set $\xi = \sqrt{-1}\pi_{W_0} - \sqrt{-1}\pi_{\overline{W}_0}$, then we have $\mathcal{Z}_m(C^{2m+2}) \cong Ad(G)\xi$. Here π_{W_0} denotes the Hermitian projection in C^{2m+2} onto E_0 . Fix a element $L \in Q_{2m}(C)$ and put $P = \sqrt{-1}\pi_L - \sqrt{-1}\pi_{\bar{L}} \in \mathfrak{g}$. For $X = \sqrt{-1}\pi_W - \sqrt{-1}\pi_{\bar{w}} \in Ad(G)\xi$, with $W \in \mathcal{Z}_m(C^{2^{m+2}})$, we define the height function $h^P: Ad(G)\xi \to \mathbf{R}$ by $$h^{P}(X) = \langle \langle X, P \rangle \rangle$$. Here $\langle\langle , \rangle\rangle$ is an Ad(G)-invariant inner product on \mathfrak{g} . Then it is known that h^P is a Morse-Bott function. Let $\operatorname{grad} h^P$ be a gradient vector field of h^P with respect to the Kähler metric. The following fact is due to Frankel; the flow of $-(\operatorname{grad} h^P)$ is given by the action of $\{\exp \sqrt{-1}tP\}$. We shall describe non-degenerate critical manifolds of h^P . It is known that a point $X \in Ad(G)\xi$ is a critical point of h^P if and only if [X, P] = 0, i. e. $$[\sqrt{-1}\pi_W - \sqrt{-1}\pi_{\overline{W}}, \quad \sqrt{-1}\pi_L - \sqrt{-1}\pi_{\overline{L}}] = 0.$$ Then a critical point X of h^P is characterized by $W = W_1 \oplus W_2 \oplus W_3$ with $W_1 \subseteq L$, $W_2 \subseteq \bar{L}$, $W_3 \subseteq (L \oplus \bar{L})^{\perp}$, where $C^{2m+2} = L \oplus \bar{L} \oplus (L \oplus \bar{L})^{\perp}$. We obtain the following lemma. LEMMA 2.1. There are three connected non-degenerate critical manifolds of h^P ; $$\mathcal{C}_{+} = \{ W \in \mathcal{Z}_{m}(\mathbf{C}^{2m+2}) | L \subset W \} \cong \mathcal{Z}_{m-1}(\mathbf{C}^{2m}) ,$$ $$\mathcal{C}_{0} = \{ W \in \mathcal{Z}_{m}(\mathbf{C}^{2m+2}) | W \subset (L \oplus \bar{L})^{\perp} \} \cong \mathcal{Z}_{m}(\mathbf{C}^{2m}) ,$$ $$\mathcal{C}_{-} = \{ W \in \mathcal{Z}_{m}(\mathbf{C}^{2m+2}) | \bar{L} \subset W \} \cong \mathcal{Z}_{m-1}(\mathbf{C}^{2m}) .$$ PROOF. Assume that $W_1 \neq \{0\}$. We see that $W_1 = L$ and so $W_2 = \{0\}$. Hence we get the critical manifold \mathcal{C}_+ of h^P . Next assume that $W_1 = \{0\}$. Then $W = W_2 \oplus W_3$. If we let $W_2 = \{0\}$, then we get the critical manifold \mathcal{C}_0 , and if we let $W_2 \neq \{0\}$, then we get the critical manifold \mathcal{C}_- in the same way as \mathcal{C}_+ . Now it is easy to show that \mathcal{C}_+ , \mathcal{C}_0 and \mathcal{C}_- are diffeomorphic to $\mathcal{Z}_{m-1}(\mathbb{C}^{2m})$, $\mathcal{Z}_m(\mathbb{C}^{2m})$ and $\mathcal{Z}_{m-1}(\mathbb{C}^{2m})$, respectively. \square We set $G_P = \{A \in G^c | A(L) = L\}$. In general, we know that the stable manifold for a connected non-degenerate critical manifold N is given by $S^P(N) = G_P X$ for $X \in N$. In our case we shall determine the corresponding stable manifolds. LEMMA 2.2. For three non-degenerate critical manifolds in Lemma 2.1, the corresponding stable manifolds $S^P(C_+)$, $S^P(C_0)$, $S^P(C_-)$ are $$S_{+}\!=\!\mathcal{C}_{+}$$, $S_{0}\!=\!\{W\!\in\!\mathcal{Z}_{m}\!(C^{2m+2})|\,W\!\cap\!L\!=\!\{0\},\,W\!\subset\!\bar{L}^{\perp}\}$, $S_{-}\!=\!\{W\!\in\!\mathcal{Z}_{m}\!(C^{2m+2})|\,W\!\cap\!L\!=\!\{0\},\,W\! ot\subset\!\bar{L}^{\perp}\}$, respectively. PROOF. It is clear that $S^P(C_+)$ coincides with S_+ . For $A \in G_P$, we have $\langle W, \bar{L} \rangle = (W, L) = (A(W), A(L)) = (A(W), L) = \langle A(W), \bar{L} \rangle$. Thus we get $A(W) \subset \bar{L}^\perp$ (respectively, $A(W) \not\subset \bar{L}^\perp$), because $W \perp \bar{L}$ (respectively, $W \not\subset \bar{L}^\perp$). On the other hand, since $W \perp L$, we have $A(W) \cap L = \{0\}$. Then we have $S^P(C_0) \subset S_0$ (respectively, $S^P(C_-) \subset S_-$). Since $$\mathcal{Z}_{m}(C^{2m+2}) = S^{P}(C_{+}) \coprod S^{P}(C_{0}) \coprod S^{P}(C_{-})$$ $$= S_{+} \coprod S_{0} \coprod S_{-}$$ are two decompositions of $\mathcal{Z}_m(C^{2m+2})$, we obtain $S^P(\mathcal{C}_+) = S_+$, $S^P(\mathcal{C}_0) = S_0$ and $S^P(\mathcal{C}_-) = S_-$. \square REMARK. For $S^{P}(C_{\cdot})$, we see that if $W \not\subset \bar{L}^{\perp}$, then $W \cap L = \{0\}$. (B) Deformations of harmonic maps. Let $\varphi: \Sigma \to Gr_2(\mathbb{R}^{2m+2})$ be a strongly isotropic harmonic map, and $f: \Sigma \to \mathcal{Z}_m(\mathbb{C}^{2m+2})$ be a horizontal holomorphic map corresponding to φ . If $f(\Sigma) \subset S^P(\mathcal{C}_-)$, then $\{(\exp \sqrt{-1}tP) \circ \mathbb{C}^{2m+2}\}$ $f\}_{0 \le t \le \infty}$ provides a continuous deformation to a horizontal holomorphic map into C_- . We shall show that there exists some $L \in Q_{2m}(C)$ such that $f(\Sigma) \subset S^P(C_-)$. We set $\mathcal{Q}^f = \{L \in Q_{2m}(\mathbf{C}) | f(z) \not\subset S^P(\mathcal{C}_-) \text{ for some } z \in \Sigma\}$. Then we have $\mathcal{Q}^f = \{L \in Q_{2m}(\mathbf{C}) | \bar{L} \perp f(z) \text{ for some } z \in \Sigma\}$. It suffices to show that \mathcal{Q}^f cannot be equal to $Q_{2m}(\mathbf{C})$. We define $$\mathcal{Q} = \{(L, W) \in Q_{2m}(C) \times \mathcal{Z}_m(C^{2m+2}) | \bar{L} \perp W \}$$. Let p_1 and p_2 be the projections to $Q_{2m}(C)$ and $\mathcal{Z}_m(C^{2m+2})$, respectively. Then we get $\mathcal{Q}^f = p_1(p_2^{-1}f(\Sigma))$. We shall estimate the fibre $p_2^{-1}(W) = \{L \in Q_{2m}(C) | L \perp \overline{W}\}.$ Let us consider two cases; $L \subset W^1$ or $L \not\subset W^1$. Hence we get $p_2^{-1}(W) = \mathcal{H}_1 \coprod \mathcal{H}_2$, where $$\mathcal{H}_1 = \{ L \in Q_{2m}(\mathbf{C}) | L \perp \overline{W}, L \subset W^{\perp} \},$$ $$\mathcal{H}_2 = \{ L \in Q_{2m}(\mathbf{C}) | L \mid \overline{W}, L \not\subset W^{\perp} \}.$$ First we deal with the space \mathcal{H}_1 . LEMMA 2.3. The space \mathcal{H}_1 is diffeomorphic to O(2)/U(1). In particular, $\dim_{\mathcal{C}}\mathcal{H}_1$ is equal to 0. PROOF. Since $L \perp W$ and $L \perp \overline{W}$, we have $L \subset (W \oplus \overline{W})^{\perp}$. Note that $(W \oplus \overline{W})^{\perp}$ is a 2-dimensional real subspace of C^{2m+2} . Then we can write $(W \oplus \overline{W})^{\perp} = I \oplus \overline{I}$, where I is a 1-dimensional complex isotropic line. Thus $\mathcal{H}_1 = \{I, \overline{I}\} \cong O(2)/U(1)$. \square Next we consider the space \mathcal{H}_2 . LEMMA 2.4. The space \mathcal{H}_2 is diffeomorphic to the space attached along zero sections of two vector bundles $$\mathcal{B} := \left(\coprod_{V \in \mathcal{CP}^{m-1}(W)} \operatorname{Hom}(V, I) \right)_{\mathcal{CP}^{m-1}(W)} \left(\coprod_{V \in \mathcal{CP}^{m-1}(W)} \operatorname{Hom}(V, \bar{I}) \right)$$ over $CP^{m-1}(W)$ with the fibres Hom(V, I) and $Hom(V, \tilde{I})$ at $V \in CP^{m-1}(W)$ respectively. REMARK. In particular, $\dim_c \mathcal{D} = (m-1)+1=m$. PROOF. Let μ and ν be the Hermitian orthogonal projections from L to W and $(W \oplus \overline{W})^{\perp}$, respectively. Set $V = \mu(L)$ and so V is a line of W. We see that $\nu(L)$ is a complex isotropic subspace of $(W \oplus \overline{W})^{\perp}$, indeed, for any $v = \mu(v) + \nu(v)$, $w = \mu(w) + \nu(w) \in L$, we have $0 = \langle v, \overline{w} \rangle = \langle \nu(v), \overline{\nu}(w) \rangle$. Assume that $\nu(L) \neq \{0\}$. Then it must be $\nu(L) = I$ or \bar{I} where $(W \oplus W)^{\perp} = I \oplus \bar{I}$. If $\nu(L) = I$, then we see that for all $x \in V$, there is unique $y \in I$ satisfying $x + y \in L$. Indeed, using a linear isomorphism $\mu: L \to W$, since we can write $z = x + \nu(z) \in L$ for any $x \in V$, then we take $\nu(z) = y$. Then we have a linear map $\delta_I: V \to I$ defined by $\delta_I(x) = y$ for $x \in V$. If $\nu(L) = \bar{I}$, then we have a linear map $\delta_{\bar{I}}: V \to \bar{I}$ similarly. Next assume that $\nu(L) = \{0\}$. Then L = V is a 1-dimensional space of W. Hence we get a smooth map $\mathcal{H}_2 \ni L \to (V, \delta_I)$ or $(V, \delta_{\bar{I}}) \in \mathcal{B}$. Now let us examine its inverse map. First for any $V \in CP^{m-1}(W)$, we put L = V, then we get $L \in \mathcal{H}_2$. For any $(V, \delta) \in \coprod_{V \in CP^{m-1}(W)} \operatorname{Hom}(V, I)$, we put $L = \{x + \delta(x) | x \in V\}$. Then we show that $L \in \mathcal{H}_2$. Indeed, it is clear that $L \perp \overline{W}$ and $L \not\subset W^{\perp}$, and we see that L is complex isotropic because for any $x, x' \in V$ we get $\langle x + \delta(x), x' + \delta(x') \rangle = 0$. For any $(V, \delta') \in \coprod_{V \in CP^{m-1}(W)} \operatorname{Hom}(V, \overline{I})$, if we put $L = \{x + \delta'(x) | x \in V\}$, then we see that $L \in \mathcal{H}_2$ as above. Thus we get the inverse map $\mathcal{B} \ni (V, \delta)$ or $(V, \delta') \rightarrow L \in \mathcal{H}_2$. Hence we obtain a diffeomorphism $\mathcal{H}_2 \longleftrightarrow \mathcal{B}$. \square It is sufficient to estimate the dimension of the fibre of p_2 from above by the larger dimension of \mathcal{H}_1 and \mathcal{H}_2 . Hence we have $$(2.1) \qquad \dim_{c} \mathcal{Y}^{f} \leq \dim_{c} p_{2}^{-1} f(\Sigma) \leq \dim_{c} \mathcal{H}_{2} + \dim_{c} f(\Sigma) \leq m+1.$$ From (2.1) and $\dim_{\mathbb{C}}Q_{2m}(\mathbb{C})=2m$, if $m\geq 2$, the space \mathcal{Y}^f cannot be equal to $Q_{2m}(\mathbb{C})$. It suffices to choose $L\in Q_{2m}(\mathbb{C})\setminus \mathcal{Y}^f$. It follows that if $m\geq 2$, then any horizontal holomorphic map into $\mathcal{Z}_m(\mathbb{C}^{2m+2})$ can be deformed continuously through horizontal holomorphic maps to a horizontal holomorphic map into $\mathcal{Z}_{m-1}(\mathbb{C}^{2m})$. Thus by induction on dimension m, we obtain the proposition. PROPOSITION 2.5. If $m \ge 2$, then any horizontal holomorphic map $\Sigma \to \mathcal{Z}_m(C^{2m+2})$ can be deformed continuously through horizontal holomorphic maps to a horizontal holomorphic map into $\mathcal{Z}_1(C^4)$. Thus we obtain the following statement for harmonic maps. THEOREM 2.6. If $m \ge 2$, then any strongly isotropic harmonic map $\varphi: \Sigma \to Gr_2(\mathbf{R}^{2m+2})$ can be deformed continuously through strongly isotropic harmonic maps to a strongly isotropic harmonic map $\Sigma \to Gr_2(\mathbf{R}^4)$. #### 3. Deformations of harmonic maps of real mixed pairs (A) Morse-Bott theory over twistor space $Q_n(C)$. Let G = SO(n+2) and $\mathfrak g$ denote its Lie algebra. Then we can regard $Q_n(C)$ as an orbit of the adjoint representation of G. To consider the height function as Section 2, we fix an useful element P of $\mathfrak g$. However we note that the choice of P is different in each case when n is odd or even. First we treat the case when n=2l-1. Let $\mathcal{F}_l=\{F\in Gr_l(\mathbb{C}^{n+2})|(F,F)=0\}$. Then we have $\mathcal{F}_l=SO(2l+1)/U(l)$ and the complex dimension of \mathcal{F}_l is (n+1)(n+3)/8. Fix $F\in \mathcal{F}_l$ and put $P=\sqrt{-1}\pi_F-\sqrt{-1}\pi_{\bar{F}}\in\mathfrak{g}$. For $X=\sqrt{-1}\pi_L-\sqrt{-1}\pi_{\bar{L}}$ with $L\in Q_n(\mathbb{C})$, we define the height function $h^P(X)=\langle\langle X,P\rangle\rangle$. Then a critical point X of h^P is characterized by $L=L_1\oplus L_2\oplus L_3$ with $L_1\subseteq F, L_2\subseteq \overline{F}, L_3\subseteq (F\oplus \overline{F})^{\perp}$, where $C^{n+2}=F\oplus \overline{F}\oplus (F\oplus \overline{F})^{\perp}$. We obtain the following lemma. LEMMA 3.1. In the case n=2l-1, there are two connected non-degenerate critical manifold of h^P : $$C_{+} = \{L \in Q_{n}(\mathbf{C}) | L \subset F\} \cong \mathbf{C}P^{l-1},$$ $$C_{-} = \{L \in Q_{n}(\mathbf{C}) | L \subset \overline{F}\} \cong \mathbf{C}P^{l-1}.$$ We set $G_P = \{A \in G^c | A(F) = F\}$. In general, we know that the stable manifold for a connected non-degenerate critical manifold N is given by $S^P(N) = G_P X$ for $X \in N$. Then we determine the corresponding stable manifolds by the same way as Lemma 2.2. LEMMA 3.2. In the case n=2l-1, for two non-degenerate critical manifolds in Lemma 3.1, the corresponding stable manifolds are $$S^P(\mathcal{C}_+) = \mathcal{C}_+,$$ $$S^P(\mathcal{C}_-) = \{ L \in Q_n(\mathbf{C}) | L \cap F = \{0\} \},$$ respectively. Next we treat the case when n=2l. Let $$\mathcal{K}_{t+1} = \{K \in Gr_{t+1}(C^{n+2}) | (K, K) = 0\}.$$ Then we have $\mathcal{K}_{l+1}=SO(2l+2)/U(l+1)$ and the complex dimension of \mathcal{K}_l is n(n+2)/8. Fix $K\in\mathcal{K}_{l+1}$ and put $P=\sqrt{-1}\pi_K-\sqrt{-1}\pi_{\overline{K}}\in\mathfrak{g}$. For $X=\sqrt{-1}\pi_L-\sqrt{-1}\pi_{\overline{L}}$, where $L\in Q_n(C)$, in this case, a critical point X of h^P is characterized by $L=L_1\oplus L_2$ with $L_1\subseteq K$, $L_2\subseteq \overline{K}$, where $C^{n+2}=K\oplus \overline{K}$. We obtain the following two lemmas as above. LEMMA 3.3. In the case n=2l, there are two connected non-degenerate critical manifolds of h^P ; $$C_{+} = \{L \in Q_{n}(\mathbf{C}) | L \subset K\} \cong \mathbf{C}P^{t},$$ $$C_{-} = \{L \in Q_{n}(\mathbf{C}) | L \subset \overline{K}\} \cong \mathbf{C}P^{t}.$$ LEMMA 3.4. In the case n=2l, for two non-degenerate critical manifolds in Lemma 3.3, the corresponding stable manifolds are $$S^{P}(C_{+}) = C_{+},$$ $$S^{P}(C_{-}) = \{L \in Q_{n}(C) | L \cap K = \{0\}\},$$ respectively. REMARK. In Lemma 3.1 and 3.3, the twistor fibration $\pi: Q_n(C) \rightarrow Gr_2(\mathbf{R}^{n+2})$ induces a biholomorphic diffeomorphism $$C = CP^m \ni L \longmapsto (L \oplus \bar{L})_R \in Gr_2(\mathbf{R}^{n+2})$$ where m=(n-1)/2 when n is odd and m=n/2 when n is even. (B) Deformations of harmonic maps. Let $\varphi: \Sigma \to Gr_2(\mathbb{R}^{n+2})$ be a real mixed pair, and $g: \Sigma \to Q_n(\mathbb{C})$ be a holomorphic map corresponding to φ . If $g(\Sigma) \subset S^P(\mathbb{C}_-)$, then $\{(\exp \sqrt{-1}tP) \circ g\}_{0 \le t \le \infty}$ provides a continuous deformation to a holomorphic map into \mathbb{C}_- . We shall show that there exists some $F \in \mathcal{F}_t$ in the case n = 2l - 1 or $K \in \mathcal{K}_{t+1}$ in the case n = 2l, such that $g(\Sigma) \subset S^P(\mathbb{C}_-)$. In the case n=2l-1, we set $\mathcal{Q}_1^g=\{F\in\mathcal{F}_t|g(z)\notin S^P(\mathcal{C}_-)\text{ for some }z\in\Sigma\}$. Then we have $\mathcal{Q}_1^g=\{F\in\mathcal{F}_t|g(z)\in F\text{ for some }z\in\Sigma\}$. It suffices to show that \mathcal{Q}_1^g cannot be equal to \mathcal{F}_t . We define $\mathcal{Q}_1=\{(F,L)\in\mathcal{F}_t\times Q_n(C)|L\subset F\}$. Let p_2 be the projection on the second factor of this product. Since the fibere of p_2 is \mathcal{F}_{t-1} , we have $\dim_{\mathcal{C}}\mathcal{Q}_1^g\leq((n-1)(n+1)/8)+1$. If n is odd greater than or equal to 3, then the space \mathcal{Q}_1^g cannot be equal to \mathcal{F}_t . Therefore we can choose $F\in\mathcal{F}_t\setminus\mathcal{Q}_1^g$. In the case n=2l, we set $\mathcal{Q}_2^g = \{K \in \mathcal{K}_{l+1} | g(z) \not\subset S^P(\mathcal{C}_-) \text{ for some } z \in \Sigma\}$. Then we have $\mathcal{Q}_2^g = \{K \in \mathcal{K}_{l+1} | g(z) \in K \text{ for some } z \in \Sigma\}$. We define $\mathcal{Q}_2 = \{(K, L) \in \mathcal{K}_{l+1} \times Q_n(C) | L \subset K\}$. Let p_2 be the projection on the second factor of this product. Since the fibre of p_2 is \mathcal{K}_l , we have $\dim_{\mathcal{C}} \mathcal{Q}_2^g \leq (n-2)n/8 + 1$. If n is even greater than or equal to 4, then the space \mathcal{Q}_2^g cannot be equal to \mathcal{K}_{l+1} . Then we can choose $K \in \mathcal{K}_{l+1} \setminus \mathcal{Q}_2^g$. Hence we obtain the following proposition. PROPOSITION 3.5. If $n \ge 3$, then any holomorphic map $\phi: \Sigma \to Q_n(C)$ can be deformed continuously through holomorphic maps to a holomorphic map into $\mathbb{C}P^m$, where m=(n-1)/2 when n is odd and m=n/2 when n is even. Moreover, ϕ can be deformed continuously to a holomorphic map into $CP^1 \subset CP^m$. Thus we obtain the following statement for harmonic maps. THEOREM 3.6. If $n \ge 3$, then any real mixed pair $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ can be deformed continuously through real mixed pairs to a holomorphic map $\Sigma \to \mathbf{C}P^1 \subset Gr_2(\mathbf{R}^4)$. #### 4. Energy and Degree We shall give the formula of the energy and the degree for a smooth map $\phi: \Sigma \to Q_n(C)$ of a compact Riemann surface. In the case $n \ge 2$, we suppose that $Q_n(C)$ has the maximum c of the sectional curvatures. First we consider the degree $\deg(\phi)$ of ϕ . There is a natural inclusion $i: Q_n(C) \hookrightarrow CP^{n+1} = Gr_1(C^{n+2})$. We also denote by \mathcal{L} a tautological bundle over $Q_n(C)$ pull-backed from the tautological bundle \mathcal{L} over CP^{n+1} by i. In the case $n \geq 3$, since $\pi_2(Q_n(C)) = \mathbb{Z}$, the degree of ϕ can be defined for a smooth map $\phi: S^2 \to Q_n(C)$ by (4.1) $$\deg(\phi) = -c_1(\phi^{-1}\mathcal{L})$$ and that the $\deg(\phi)$ determines the homotopy class of ϕ , namely, for smooth maps $\phi, \phi' : \Sigma \to Q_n(C)$, $\deg(\phi) = \deg(\phi')$ if and only if ϕ is homotopic to ϕ' . Next we consider the energy of ϕ , in the case when ϕ is a holomorphic map and in the case when ϕ is a strongly isotropic harmonic map respectively. Let gc_P be the Kähler metric on $CP^{n+1}=Gr_1(C^{n+2})$ induced from the standard Hermitian inner product \langle , \rangle through $(TCP^{n+1})^{1,0}\cong \operatorname{Hom}(\mathcal{L},\mathcal{L}^1)$. Set $\omega_{c_P}(X,Y)=gc_P(JX,Y)$ for $X,Y\in TCP^{n+1}$ where J is a complex structure tensor of CP^{n+1} . Then it is known that the first Chern class of \mathcal{L} is given by $c_1(\mathcal{L})=[-(1/2\pi)\omega_{c_P}]$. On the other hand, let $\omega_{c'}$ denote the Kähler form on CP^{n+1} of constant holomorphic sectional curvature c'. We remark that in the case $n\geq 2$, the maximum of sectional curvatures of $Q_n(C)$ is the same value c' relative to the Riemannian metric induced through the inclusion $Q_n(C)\subset CP^{n+1}$. Then we restrict the Kähler form $\omega_{c'}$ on $Q_n(C)$. We know that the first Chern class of \mathcal{L} is $c_1(\mathcal{L})=[-(c'/4\pi)\omega_{c'}]$. Assume that ω_{c_P} is equal to $\omega_{c'}$ on $Q_n(C)$. As $(1/2\pi)\omega_{c_P}$ and $(c'/4\pi)\omega_{c'}$ are harmonic forms in the same cohomology class, we have $(1/2\pi)\omega_{c_P}=(c'/4\pi)\omega_{c'}$. Then we get c'=2. Hence we obtain the energy of a holomorphic map ϕ $$\mathcal{E}(\phi) = \frac{2}{c} \int_{\Sigma} \phi^* \omega_{CP} = -\frac{4\pi}{c} c_1(\phi^{-1} \mathcal{L}) = \frac{4\pi}{c} \deg(\phi).$$ Then we obtain the following. PROPOSITION 4.1. Let $\phi: \Sigma \to Q_n(\mathbb{C})$ be a holomorphic map of a compact Riemann surface. Then the energy of ϕ is $$\mathcal{E}(\phi) = \frac{4\pi}{c} \deg(\phi) \in \frac{4\pi}{c} Z.$$ Next suppose that ϕ is a strongly isotropic harmonic map. There is a natural inclusion $j: \mathcal{Z}_m(C^{2m+2}) \hookrightarrow Gr_m(C^{2m+2})$. We also denote by \mathscr{W} a tautological bundle over $\mathcal{Z}_m(C^{2m+2})$ pull-backed from the tautological bundle \mathscr{W} over $Gr_m(C^{2m+2})$ by j. Let g_{Gr} be the Kähler metric induced from the standard Hermitian inner product $\langle \ , \ \rangle$ through $TGr_m(C^{2m+2})^{1,0} \cong Hom(\mathscr{W}, \mathscr{W}^{\perp})$. Set $\omega_{Gr}(X,Y) = g_{Gr}(JX,Y)$. The Kähler metric g_{Gr} induces a Kähler metric on $\mathcal{Z}_1(C^4)$ and we also denote by ω_{Gr} the Kähler form induced on $\mathcal{Z}_1(C^4)$. It is known that the first Chern class of \mathscr{W} is given by $c_1(\mathscr{W}) = [-(1/2\pi)\omega_{Gr}]$. On the other hand, for $\mathcal{Z}_1(C^4) \subset CP^3$, let ω_{cr} denote the Kähler form on CP^3 of constant holomorphic sectional curvature c', and we restrict the Kähler form ω_{cr} on $\mathcal{Z}_1(C^4)$. We know that the first Chern class of \mathscr{W} is $c_1(\mathscr{W}) = [-(c'/4\pi)\omega_{cr}]$. If we suppose that ω_{Gr} is equal to ω_{cr} on $\mathcal{Z}_1(C^4)$, then by a similar argument we get c'=2. Since $g: \Sigma \to \mathcal{Z}_m(C^{2m+2})$ is horizontal holomorphic, we obtain the energy of a strongly isotropic harmonic map ϕ $$\mathcal{E}(\phi) = \mathcal{E}(g) = \frac{2}{c} \int_{\Sigma} g^* \omega_{G\tau} = -\frac{4\pi}{c} c_1(g^{-1} \mathcal{W}).$$ Then we obtain the following. PROPOSITION 4.2. Let $\phi: \Sigma \to Q_n(\mathbb{C})$ be a strongly isotropic harmonic map of a compact Riemann surface. Then the energy of ϕ is $$\mathcal{E}(\phi) = -\frac{4\pi}{c} c_1(g^{-1}\mathcal{W}) \in \frac{4\pi}{c} \mathbf{Z}.$$ From the above results we can give the energy formula of a harmonic map $\varphi: \Sigma \rightarrow Gr_2(\mathbf{R}^{n+2})$ as follows. PROPOSITION 4.3. (1) Let $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ be a real mixed pair of a compact Riemann surface. Then the energy of φ is $$\mathcal{E}(\varphi) = \mathcal{E}(\phi) = \frac{4\pi}{c} \deg(\phi) \in \frac{4\pi}{c} Z$$, where $\phi: \Sigma \to Q_n(C)$ is a lift of φ , which is a holomorphic map. (2) Let $\varphi: \Sigma \to Gr_2(\mathbf{R}^{n+2})$ be a strongly isotropic harmonic map of a compact Riemann surface. Then the energy of φ is $$\mathcal{E}(arphi) \!=\! \mathcal{E}(\phi) \!=\! - rac{4\pi}{c} c_1(g^{-1}\mathcal{W}) \!\in\! rac{4\pi}{c} oldsymbol{Z}$$, where $\phi: \Sigma \to Q_n(\mathbb{C})$ is a lift of φ , which is a strongly isotropic harmonic map. In the case n=2m=2, we have that $\mathcal{Z}_1(C^4)\cong Q_2(C)\cong CP^1\times CP^1$. These identifications are as follows: $CP^1\times CP^1\ni (u,v)\mapsto (u,v)\in Q_2(C)$ and $CP^1\times CP^1\ni (u,v)\mapsto (u,\bar{v})\in \mathcal{Z}_1(C^4)$. We note that for any $L\in Q_2(C)$, a 1-dimensional complex isotropic subspace W of C^4 is determined uniquely where $C^4=L\oplus \bar{L}\oplus W\oplus \bar{W}$. Then for $L\in Q_2(C)$, we may give two line bundles \mathcal{L} and \mathcal{W} over $Q_2(C)$ defined by $(\mathcal{L})_L=L$ and $(\mathcal{W})_L=W$. Denote \mathcal{L}_1 and \mathcal{L}_2 by the tautological bundle over each factor of $CP^1\times CP^1$. Then we see that $\mathcal{L}=\mathcal{L}_1\otimes \mathcal{L}_2$ and $\mathcal{W}=\mathcal{L}_1\otimes \overline{\mathcal{L}}_2$. The bi-degree $(\deg_{\mathcal{L}}(\phi), \deg_{\mathcal{W}}(\phi))$ can be defined for a smooth map $\phi = (\phi_1, \phi_2) : S^2 \to Q_2(\mathbf{C}) \cong \mathbf{C}P^1 \times \mathbf{C}P^1$. If we define $\deg_{\mathcal{L}}(\phi) = -c_1(\phi^{-1}\mathcal{L})$ and $\deg_{\mathcal{W}}(\phi) = -c_1(\phi^{-1}\mathcal{W})$, then $$\deg_{\mathcal{L}}(\phi) = \deg(\phi_1) + \deg(\phi_2), \qquad \deg_{\mathcal{W}}(\phi) = \deg(\phi_1) - \deg(\phi_2).$$ Since $\pi_2(Q_2(C)) = \pi_2(CP^1 \times CP^1) = Z \oplus Z$, for smooth maps ϕ , ϕ' : $\Sigma \to Q_2(C)$, $\deg_{\mathcal{L}}(\phi) = \deg_{\mathcal{L}}(\phi')$ and $\deg_{\mathcal{W}}(\phi) = \deg_{\mathcal{W}}(\phi')$ if and only if ϕ is homotopic to ϕ' . # 5. On connectedness of the space of harmonic maps into $Q_n(C)$ (Proof of Theorem A) Suppose that $\Sigma = S^2$. Before we mention the connectedness of the space of harmonic maps $S^2 \to Gr_2(\mathbf{R}^{n+2})$, we shall treat the case of harmonic maps $S^2 \to Q_n(\mathbf{C})$. First we shall consider the case n=2. [BW1] showed that for a harmonic map $\phi = (\phi_1, \phi_2) : S^2 \rightarrow Q_2(C)$ with $\phi_1, \phi_2 : S^2 \rightarrow CP^1$, since ϕ_1 and ϕ_2 are holomorphic or antiholomorphic, the pairs $\{\phi_1, \phi_2\}$ or $\{\phi_1, \bar{\phi}_2\}$ are both holomorphic or both antiholomorphic. If we fix $\deg_{\mathcal{L}}(\phi)$ and $\deg_{\mathcal{W}}(\phi)$, then they determine $\deg(\phi_1)$ and $\deg(\phi_2)$. Then we obtain Theorem A(1). We know that in general the energy of ϕ is $\mathcal{E}(\phi) \ge |(4\pi/c)\deg(\phi)|$ and the equality holds if and only if ϕ is holomorphic or antiholomorphic. Now we consider the case $n \ge 3$. Suppose that $\phi: S^2 \to Q_n(C)$ is a holomorphic map. Then combining Proposition 3.5 and the fact the space of holomorphic maps of S^2 into CP^1 with fixed degree is path-connected, we obtain Theorem A(3). Next suppose that $\phi: S^2 \to Q_n(C)$ is a strongly isotropic harmonic map. We may assume that ϕ is neither holomorphic nor antiholomorphic. Let $g: S^2 \to \mathcal{Z}_m(C^{2m+2})$ corresponding to φ be a horizontal holomorphic map and $g' = (g_1', g_2'): S^2 \to \mathcal{Z}_1(C^4) \cong Q_2(C) \cong CP^1 \times CP^1$ be a horizontal holomorphic map which is obtained by continuous deformation of g in Proposition 2.5. Then we can restate the energy $\mathcal{E}(\phi)$ and the degree $\deg(\phi)$ of ϕ in (4.1) and Proposition 4.2, using $g' = (g'_1, g'_2)$ as follows: $$\mathcal{E}(\phi) = -\frac{4\pi}{c}c_1(g^{-1}\mathcal{W}) = -\frac{4\pi}{c}c_1(g'^{-1}\mathcal{W}) = \frac{4\pi}{c}(\deg(g_1') - \deg(g_2'))$$ and $$\deg(\phi) = -c_1(\phi^{-1}\mathcal{L}) = -c_1(g^{-1}\pi^{-1}\mathcal{L}) = -c_1(g'^{-1}\pi^{-1}\mathcal{L}) = \deg(g_1') + \deg(g_2') \;.$$ From the assumption of ϕ , $\mathcal{E}(\phi) \neq |(4\pi/c)\deg(\phi)|$. Then the energy $\mathcal{E}(\phi)$ and the degree $\deg(\phi)$ determine $\deg(g_1)$ and $\deg(g_2)$. Thus Theorem A(2) follows from Theorem A(1). This completes the proof of Theorem A. ## 6. On connectedness of the space of harmonic maps into $Gr_2(\mathbf{R}^{n+2})$ (Proof of Theorem B) In this section, we consider connectedness of the space of harmonic maps $\varphi: S^2 \to Gr_2(\mathbf{R}^{n+2})$ which are strongly isotropic or real mixed pairs. We remark that any Kähler form cannot be defined entirely on $Gr_2(\mathbf{R}^{n+2})$, because the second cohomology group of $Gr_2(\mathbf{R}^{n+2})$ is $H^2(Gr_2(\mathbf{R}^{n+2}), \mathbf{Z}) = \mathbf{Z}_2$. Then to introduce a homotopy invariant as degree for φ , using a lift ϕ of φ to $Q_n(C)$ which is a Kähler manifold, we define $d(\varphi) := |\deg(\phi)|$. Now we must note the following. For a smooth map $\phi: S^2 \to Q_n(C)$ with $\deg(\phi) \neq 0$, $\bar{\phi}$ cannot be homotopic to ϕ , because $\deg(\phi) = -\deg(\bar{\phi})$. However, for smooth maps $\varphi = \pi \circ \phi$ and $\varphi' = \pi \circ \phi'$ with $\phi, \phi' : S^2 \to Q_n(C)$, if $\deg(\phi) = \pm \deg(\phi')$, i. e., $d(\varphi) = d(\varphi')$, then φ is homotopic to φ' . In the case n=2, if we fix $$d_{\mathcal{L}}(\varphi) = |\deg_{\mathcal{L}}(\phi)| = |\deg(\phi_1) + \deg(\phi_2)|,$$ $$d_{\mathcal{A}V}(\varphi) = |\deg_{\mathcal{A}V}(\phi)| = |\deg(\phi_1) - \deg(\phi_2)|,$$ and signature ε (=1 or -1) of $(\deg_{\mathcal{L}}(\phi) \cdot \deg_{\mathcal{W}}(\phi))$, then in the above sense, we can characterize the homotopy class for a smooth map $S^2 \to Gr_2(\mathbf{R}^4)$. Thus we obtain Theorem B(1). In the case $n \ge 3$, Theorem B(2) and (3) follow from Theorem A(2) and (3). Hence we have completed the proof of Theorem B. #### Remarks and Conjectures We shall remark the relation of our results with the construction theory of all harmonic maps $\varphi: S^2 \to Gr_2(\mathbf{R}^{n+2})$. According to the classification theory of [BW1], there are four classes of harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ as follows; (I) strongly isotropic and ∂' -reducible, (II) strongly isotropic and ∂' -irreducible, (III) finite isotropy order and ∂' -reducible, (IV) finite isotropy order and ∂' -irreducible. Bahy-El-Dien and Wood [BW1] showed that if a harmonic map φ : $S^2 \to Gr_2(\mathbf{R}^{n+2})$ is of class (III), then φ is a real mixed pair. If a harmonic map $\varphi: S^2 \to Gr_2(\mathbf{R}^{n+2})$ is of class (IV), then φ can be lifted to a horizontal holomorphic map into neither $Q_n(\mathbf{C})$ nor $\mathcal{Z}_m(\mathbf{C}^{2m+2})$. However they showed that φ of class (IV) can be transformed to a map of class (III) after a finite number of forward and backward replacements. Theorem B implies the connectedness of the space of harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ of class (I), (II) or (III). Then it is very interesting to investigate the deformations of harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ of class (IV) and to determine the connectedness problem of the space of all harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$. Conjecture. Is the space of all harmonic 2-spheres in $Gr_2(\mathbf{R}^{n+2})$ (resp. $Q_n(\mathbf{C})$), $n \ge 3$, with fixed energy and fixed d (resp. degree) path-connected? The similar results have already obtained by [Mu] in the case HP^n . Conjecture. Is the space of all harmonic 2-spheres in HP^n , $n \ge 2$, with fixed energy path-connected? More generally let M be a compact Riemannian symmetric space of inner type and $\mathcal{I}(M)$ be the standard twistor space over M with the projection $\pi: \mathcal{I}(M) \to M$, which was classified by Bryant [Br] and Salamon [Sa]. We call a harmonic map $\varphi: \Sigma \to M$ which can be lifted to a horizontal holomorphic map into $\mathcal{I}(M)$ isotropic harmonic map, strongly pseudoholomorphic map or branched superminimal immersion. Especially, we obtained similar results on the connectedness of the isotropic harmonic 2-spheres in the classical Riemannian symmetric spaces M of inner type. We shall discuss these results elsewhere. Conjecture. Let M be a Riemannian symmetric space of compact type. Is the space of harmonic 2-spheres in M with fixed energy and fixed homotopy class path-connected? #### References [Bo] M.R. Bott: An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France 84 (1956), 251-281. - [Br] R.L. Bryant: Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223-261. - [BW1] A. Bahy-El-Dien and J.C. Wood: The explicit construction of all harmonic two-spheres in $G_2(\mathbb{R}^n)$, J. reine angew. Math. 398 (1989), 36-66. - [BW2] A. Bahy-El-Dien and J.C. Wood: The explicit construction of all harmonic two-spheres in quaternionic projective spaces, Proc. London Math. Soc. 62 (1991), 202-224. - [Fr] T. Frankel: Fixed points and torsion on Kähler manifolds, Ann. of Math. 70 (1959), 1-8. - [G1] J. Glazebrook: On isotropic harmonic maps to real and quaternionic Grassmannians, Contemporary Math. 49 (1986), 51-61. - [GO] M. A. Guest and Y. Ohnita: Group actions and deformations for harmonic maps, J. Math. Soc. Japan. 45 (1993), 671-704. - [Mu] M. Mukai: On connectedness of the space of harmonic 2-spheres in quaternionic projective spaces, Tokyo J. Math. (to appear). - [Sa] S. Salamon: Harmonic and holomorphic maps, Geometry Seminar "Luigi Bianchi" II-1984, Lecture Notes in Math. 1164, Springer-Verlag, Berlin, Heidelberg, New york, Tokyo, 1986, pp. 161-224.