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§1. Intsoduction

Let U be the unit disk in R% Fatou’s theorem asserts that for every
p=1 and f=L?(@U) the Poisson integral of f converges to f non-tangen-
tially on 9U except for a set of surface measure zero. Similar results
with respect to the harmonic measure at a fixed point have been obtained
for the upper half space, C'-domains and Lipschitz domains (cf. [6], [3], [4],
[5]).

On the other hand it is well-known that in R?¢™ the Poisson integral
of the Bessel potential G,.*xf of each fe L?(R% converges not only non-
tangentially but also tangentially except for a set of a suitably dimensional
Hausdorff measure zero (cf. [1]).

We are interested in the following problem :

Let D be a bounded domain in R* and d—1>8>0. Find a class of
functions on oD such that the Poisson integral Hf of each function jf in
the class converges to f non-tangentially on 0D except for a set of p-
dimensional Hausdorff measure zero.

We have treated this problem in [8] in case D is the upper half space,
by using a countably sublinear functional.

In this paper we will consider the same problem in case D is a C'-
domain or a Lipschitz domain.

More precisely, let D be a bounded open set in R?. The open ball with
center X and radius » is denoted by B(X,r). For P=dD the set B(FP,r)
NoD is denoted by A(P,r) and called a surface ball.

Let B be a positive real number such that 0<g=d—1. Recall that
the p-dimensional Hausdorff outer measure was introduced by L. Carleson
and defined by

Ms

M,g(E):inf{ vt ECUBX,, 7).
\

Jj=1

We regard M; as an outer measure on o) and define an ‘upper integral’
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7s with respect to M; as follows:
75(f)=inf {jf}lbjMﬁ(Ej) : b,eR*, E,CoD, ilb,-xgj_?;f}
- iz

for each extended real-valued nonnegative function f on oD.
Denote by J(0D) the family of all extended real-valued functions on
0D and define

7s(f)i=75(fD
for each f=J(0D). Further, set
B(rp)={feJ@D): 15(f)<+co}.

It is easy to see that %(ry) contains the family C(6D) of all continuous
real-valued functions on dD.

Let us denote by -L(rs) the family of all Borel measurable functions
fin SB(rs) such that 7:(f—f.)—0 for some sequence {f,}CC(aD).

The family L(y;) and the countably sublinear functional 75 play the
corresponding roles to L?(0D) and the LP-norm, respectively.

The Poisson integral Hf of a Borel measurable function f on oD is
defined by

Hf(X)=\dox,

if it is well-defined, where wy is the harmonic measure of D evalueted at
XeD.

In §4 we will prove that, if D is a bounded Lipschitz domain in R*
and 0<28<d—1, then the Poisson integral Hf of each f=_[(r;) converges
to f non-tangentially on 0D except for a set of A-dimensional Hausdorff
measure zero. We will also prove that, especially, if D is a bounded C!-
domain, the same conclusion is obtained for every real number B satisfying
0<p<d—1.

§2. A Fatou type theorem

Let D be an bounded open set in R? and let 0<B8<d—1. From the
definition of 7, in §1 it follows that

raH=inf S 0,20, S bitue,p= 1]
= j=1

The functional 7, has the following properties:
(e 75(N)=71s(lSD,
(c)) 75(bf)=1b|rs(f) for each b=R,
(e S, 220 [0 /=75() S Z0-175(f0).
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A subset E satisfying 7,;(yz)=0 is said to be 7z-polar. It is easy to
see that if 7,(f)<4co, then the set E:={Q=0dD : | f(Q)|= + oo} is 7s-polar.

Furthermore we introduce a set function pz on o0D. Define, for an
open set G relative to 0D,

ps(G)=sup {M4(K): K is compact, KCG}
and for a subset E of 0D
ps(B)=inf {ps(G): G=G,n0D, G, is open, ECG}.
We can easily show that
ECE\VE,= pus(E)< pp(E)+ ps(Ey) .

The relations of three set functions M,, s and the function E—7,(xz) are
as follows:

LEMMA 2.1. Let E be a subset of dD. Then
cps(B)=71s(e) = Mg(E),

where ¢ 1s a constant independent of F.

PROOF. The inequality of the right-hand side is an easy consequence
of the definitions. To show the inequality of the left-hand side, suppose
that xe=23;bxacr;rp and 0<e<1. Further, set

Gl——:{XERd: Z"’bij(Pj’Tj)>1—e} and GZGlf\aD.
J
Then G, is open and ECG. Choose A(P,,r,) such that eDcC A(P,,r,) and

let K be any compact subset of G. Then by [2, Theorem 1, §II] there
exists a positive measure v such that

supp vC K, My(K)=cw(K)
and
v(B(X, r)) <rf

for every X R® and >0, where ¢, is a constant depending only on d and
B. We have

My(B)Zeo(K) S0\ (Sbyace . p T elace, -y
J
§01(2 bj’}"g+€’l"f) »
J

which leads to

l,C‘B(E)gﬂﬂ(G)§C1(]2b]7§+57ﬂg) .

As ¢—0, we have ps(E)=<c,3;b,7% and hence
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pe(E)=ci75(xe)
for each EFCaD. Q. E. D.

Recall that for a Borel set & Mz(E)>0 if and only if My(K)>0 for
some compact subset of E (cf. [2, Theorem 3, § II]). From Lemma 2.1 we
deduce

LEMMA 2.2. For a Borel set EC 0D the following assertions are equiv-
alent :

(7v) LK 1s of B-dimensional Hausdorff measure zero,

(i) M(E)=0,

(t1) 75(E)=0,

(tw) ps(E)=0.

The functional 75 has the following property similar to the L?-norm.

LEMMA 2.3. Assume that 75(f5)—0 for a sequence {f,}C B(rs) (resp.
{fa}CC(@D)). Then there exists an subsequence {g;} of {f.} with the fol-
lowing property :

For each ¢>0 there is a subset (resp. a closed subset) I' of 0D such
that pg(0D\F)<e and {g;} converges to 0 uniformly on F.

PROOF. Noting that {f,.} is a Cauchy sequence in 4(7;) we can choose
a subsequence {g,} of {f,} such that

7] 8

2j7ﬁ(gj—gj+1) <Aoo,

Jj=1

Set
ﬁwn:{QEaD . ‘g;(Q)_gﬂ-l(Q)‘ gz—j, j:%) 7L+1, '”}

Then {g,;} has the desired property. In fact, since
8D\Fnc:j§n{Q H19,Q —g50(Q)]>277,
we have
HsOD\F,) S 7, @D\F) S 31277500, 6,00
by Lemma 2.1. Noting that for j=n
gj:éj(gwgm) on F,,

we see that {g,} converges to 0 uniformly on F',. Especially if {g,}cC(aD),
then F', is closed. Q. E. D.

If a property holds on 0D except for set vanishing ts, we say it
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holds x4-q.e. on aD.

We next consider a Fatou type lemma with respect to rs and 7,.
Suppose that to each XeD and f=_L(rs) thre corresponds a real number
?@,(X) satisfying the following properties :

(@) b= R*=0,,(X)=b0(X),

(@) fH+g=h psg-q.e. on 6D=0 (X)+ @, (X)=0,(X).

Moreover, assume that to each P=aD there corresponds a filter F, of
subsets of D, converging to P. Under these assumptions we have

LEMMA 2.4. Set

and suppose that there is a constant ¢ such that

poFr) =3 75(f) 2.1)
Jor every real number >0 and f=_L(rg). Moreover suppose that
Fp— lgrr;@f(X):f(P) ts-q.e. om oD (2.2)

for every f in a dense subset Y of C(0D) with respect to 75. Then (2.2)
holds for every f=. L(rg).

PROOF. Let f=_L(rs) and choose a sequence {f,,}C A such that 75(f— f.)
—0. On account of Lemma 2.3 we can assume that for each ¢>0 there is
a set I, such that pg(dD\F.)<e and {f,} converges uniformly to f on F..
Set

Ey= U Q: | £2(@] = + 0} UfQ: | AQ)] =+ )

and denote by F, the set of all points P=dD at which (2.2) does not hold
for f=f.. Then 75(xz)=0 for the set E defined by UZ_,E, and hence
1s(F)=0 by Lemma 2.1. For Pc F.\E we have

F p—1im sup [0,(X) — f(P)| £ F p—lim sup @, _,,,(X)|+|fu(P)— f(P)].

Put
Gy={P: SFP—lirQ)SPup |D(X)— f(P)| > b}

and set 0=27'6. There is a natural number =, such that |f,—f|<d on F.
for each n=n, If P=(F.N\G,)\E, then

Fp—limsup D, , (X)) >4,
X->P

which and (2.1) lead to
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/J@(Gb)éﬂp(Ff—fn,5)+yﬁ(aD\Fs)+#ﬂ(E)
< < Ta(f=fu)Fe.

As m—oco we heve uz(G,)<e and hence u;(G,)=0. Thus we see that (2.2)
holds. Q. E. D.

§3. Estimates for maximal functions

Hereafter we suppose that d=3 and D is a bounded Lipschitz domain
in R® Recall that a bounded domain D is called a Lipschitz domain if for
each P=aD there exists a ball B with center P, a coordinate system of R*
and a Lipschitz function ¢ with the Lipschitz constant r such that in these
coordinates,

BAD=Bn{x,t): xR, tc R, t>¢(x)}
and
BnoD=Bn~{(x, ¢(x)): x=R*"}.
Note that in the above definition it is assumed that the radius of the ball
B and the Lipschitz constant r are chosen independently of PedD. In
addition, if the function ¢ can be taken to be a C'-function, D is called a
C'-domain.

Let us denote by ¢ the surface measure of a bounded Lipschitz domain
D in R® and assume that DCB(0,2°'R). The fellowing estimate of a sur-
face ball with respect to ¢ is well-known.

LEMMA 3.1. There is a constant ¢>0 such that
a(A(P, r)) <crt!

for all P=aD and all positive real numbers r =K.
The maximal function Mf of f= L'(es) is defined as follows:

Mf(P):sup{W}_—,S Flda: »>01.

AP, 7>

We estimate the maximal function of y.w.., by 7;.

LEMMA 3.2. Let p, B be real numbers such that B<d—1, 1=p<
(d—1)/8 and A, be the surface ball with center P, and radius r. Then

75(Mya,)"?) <cr? (3.1

where ¢ 18 & constant, independent of P, and r.

PROOF. Putting 4,=A(P,,2r), we claim that
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2‘”(0)

(3.2)

for all P=oD\A,. Indeed, since
d(P, A,) :=Inf {|P—Q}: QE A} =(|P—P,|—7)

ZZ_IIP_POI )
we obtain

ao(A)  _ 2a(A)
d(P, A)" = [P=P

(Mya,)(P)=

which shows (3.2).
Next, set

Ey={PaD\A;: (My,,)(P)> 5]

for j=0 and the positive real number ¢ in Lemma 3.1. If P<E,, then,
by (3.2) and Lemma 3.1, we have

|P4P0!§21+j/(d_1>7' (3.3)

for all P F;. Denoting by r; the right-hand side of (3.3), we obtain

(MXA

\f\
nMS

< ) JCE,-\E]-_I“*‘CI/I)JCA1

Il
MMS

< > @YP—1)xp,+ """y

< §C1/p(21/p_1)2—j/pr(Po‘Tj)+cl/prl.
j=1
Therefore, setting ¢,=c¢"?(2Y?—1), we have

7o((Mpa,) ") S 0 D27 Pri4ct7(2)
j=1

ggﬁﬂi( §012<B/<d—1>—1/p>j+01/p> .

Jj=1

Noting that B8/(d—1)—1/p<0, we obtain (3.1). Q. E. D.

Furthermore we have an estimate of weak type for maximal functions
with respect to pg and 7;.

LEMMA 3.3. Let.p,B be positive real numbers satisfying B<d—1,
1=p<(d—1)/B and f= L(rg). Set

={Qe0D : (M| fI"}Q)"?>b}.
Then
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po(E)= 5 15(0),
where ¢ 18 a constant independent of f and b.
PROOF. We first claim

7s(MLfIM)VP) = er(f) (8.5)

for all f&=.L(rg). In fact, suppose that |f|=3;b,x4, Where A; are surface
balls with radius »;,, From

(M1F 177 53 b, (M)
and Lemma 3.2 we have
m((M\fi")”’“’)écl?bﬂ’i,
which implies (3.5).
We next show (3.4). Noting that 7y (M| f|*)*>1 on E,, we have
s B = sl = 15 (1L F199) = 7 5(7)

by (3.5) and Lemma 2.1. Thus we obtain (3.4). Q. E. D.

§4. Non-tangential limits of harmonic functions

Let D be a bounded Lipschitz domain and suppose that to each I’ oD
there is associated a cone I'(P) with vertex a P. According to B.E.J.
Dahlberg we say that {/'(P)}pesp is a regular family of cones if we can
partition 00 into finite many subsets {F;} with the following property:

To each K, there are cones /';; (j=1,2,3) with vertex at 0 such that
for each P K,

I'y+Pcl(P)YL N0+ PC '3+ PCD.

Using Lemmas 3.4 and 3.5 in [4] and a patching argument, we can show
the following theorem (cf. Proof of Lemma 3.1 in [4]).

THEOREM A. Suppose {I'(P)}pcop 18 a regular family of cones. If
2<p<+4oo and feLP(g), then there are positive real numbers 0,c¢ such
that

SHP) :=sup {|Hf(X)|: XeI'(P), |X—P|<d} (4.1)
= c(M[fI7)(P)""

for every P=0oD. KEspecially, if D is a C'-domain, then (4.1) holds for
every positive real number p and fe L?(q).

Our theorem is as follows:
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THEOREM. Let D be a bounded Lipschitz domain in R¢ and {'(P)}pcap
be a regular family of cones. Further, let 0<28<d—1. Then for each
feL(rg) there ewists a setl E of B-dimensional Hausdorff measure zero
such that

lim HAX)=f(P)

X-P.Xel'(P)

for every P=oD\E. Especially, if D is a C'-domain, then we have the
same conclusion for every B satisfying 0<g<d—1.

PROOF. Set E,={Q=0dD: f*(Q)>b}, where f* is the function defined
in (4.1). By (4.1) and Lemma 3.3 we see that there is a constant ¢ such
that

pe(En = 3 75()

for every f= L(1p).

On the other hand, it is well-known that every boundary point of D
is a regular point with respect to the Dirichlet problem. Therefore we
have

lim Hf(X)=f() (4.2)

X-P.X€l'(P)

for every f=C(@D). Since C(dD) is dense in L'(7p), Lemma 2.4 yields that
for every fe.L(rs) there is a subset £ of a0 such that (4.2) holds at
every P=0dD\E and ps(E)=0. Thus we have the conclusion by Lemma 2.2.

Q. E. D.

§5. Properties of L(75)

In this section we will study what functions belong to -L(ys). A func-
tion f on oD is called M;-quasicontinuous (resp. pp-quasicontinuous) if for
each ¢>0 there is a closed set FaD such that the restriction of f to
is continuous and Ms(aD\F')<e (resp. us(0D\F)<e). We have

PROPOSITION 5.1. If fe L(7p), then 15(f)<+o and fis ps-quasicon-
tinuwous. Conversely, if a Borel measurable function f 1is Mg-quasicon-
tinuous and 7p(f)<-+oo, then feL(rs).

PROOF. Let fe L(rs) and choose a sequence {f,}CC(dD) such that
7s(f—f2)—0. By Lemma 2.3 we can assume that there is, for esch ¢>0,
a closed set FCoD such that ps(dD\F)<eand {f,} converges to f uniformly
on F. Therefore the restriction of f to I is continuous and hence jf is
(tg-quasicontinuous.

Conversely, suppose that a Borel measurable function f is Mjg-quasi-



10 H. WATANABE NSR. 0.U., Vol. 42

continuous and 75(f)<+co. We can assume f=0 and f#0. Choose u=
23;bx4; such that

f=u and XDbrf<4oo,
J
where A; are surface balls with radius »,. If we set
fn:min<f; ébj)}
j=1

then f, is also Mjg-quasicontinuous. Therefore there is a nonnegative con-
tinuous function g, such that

. 1
HgnHmé”fn”oo and Mﬂ(Gn)§MJ

where | [. is the sup-norm on 0D and G,={Q<= oD : f,(@)#g.(@)}. Noting
that
Sofls B b, and 1fa=gu S 1F0laa,

we have, together with Lemma 2.1,

ZEET BT E SRR VRS [ e

Jj=n+l1

which shows that f=_L(r;). Q. E.D.

Let us next show that the restriction of ¢xf to 8D for a suitable
g=LY(R% and f=L?(R% belongs to L(rs). We prepare the following
lemma, which can be proved by using a covering lemma (cf. [7, Lemma,
p. 9)).

LEMMA 5.1. If feL*R%), then theré 18 a function 27-1bjxs, such
that
J

where b;c R*, B; is an open ball in R® and m is the Lebesque measure on
R

LEMMA 5.2. Let 8,P positive real numbers such that B<d—1 and
p=1. Suppose that g is a function in L'((R%) such that

9= Dags, ond Sarf<+oo

Jor a;,= R* and open balls E, with radius r,.  Then the restriction of gxf
to 0D belongs to L(15) for every fe=LP(RY).

PROOF. We may assume that both f and ¢ are nonnegative and fe&
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LY(R%. Indeed every function fe& L?(R%) can be written as f=/fi+f,, where
fie LN(RY), f,=L”(R%, and hence gxf, is continuous.
Set

g,=min <g, ig“““) .

Then ¢,*f is continuous and 0<g—¢,= 271 +1Q)zn,
We shall show that

75(hy) —> 0 as n— oo, (5.2)

where h, is the restriction of (¢9—g,)*f to 0D. By Lemma 5.1 there is a
function 2,b,1s, satisfying (5.1), where B; are open balls with radius p;.
Setting s=d/B and t=s/(s—1), we have

=

i/

(9—9n) *f\( :§;J+1aim>*<ébjxsj>

oo

i-—vé—#lai]‘; NE; +Bjm1n( m(B;), m(E ) Em(B)Y),

li

where E,+B;={X+X: X<E, YeB;}. If (E;+B)noD+ @, then we take
the surface ball F;; with center P,,=(E,+B;)ndD and radius 2(g;+g;).
From

(g—gn)*f= > azEbep cmin (m(B;), m(E)" *m(B;)"")

i=n+1

it follows that

7s((g—gn)xf)=2° S a Zb(v +0,)% min (m(B;), m(E;)"*m(B,)"")

t=n+l

<45 3 a, Eb (rfm(B;)+ pSm(E)*m(By)'"),

t=n-+1 Jj=1

where ¢ is a constant depending only on d and 8. Thus we have shown
that (5.2) holds and the restriction of g*f to D belongs to L(7gs).
Q. E. D.

Especially we have

PROPOSITION 5.2. Let a, B, p be positive real numbers such that a<d,
B<d—1, d<a+p and p=1. Further, let g be a radial nonnegative, de-
creasing, lower semicontinuous fumction in L'(R?) such that |g|=0(X|*")
as | X|—0. Then the restriction of g+f to 0D belongs to L(ys) for every
fe LP(RY).
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PROOF. Set
E,={X:|X]*>2")
for n=1. Then E, is an open ball with radius 7,=2""“"* and g can be
written as g=g,+g¢, where ¢, is bounded and g, satisfies

O=gi=c 22"y,

n=1

for some constant ¢. Therefore we obtain

M3

Telg)=c D 2"rf<¢ 212<1~/3/<d—a>>n<+00’

n

1

because 1— B/(d—a)<0. On account of Lemma 5.2 we see that the restric.
tion of g,xf to 0D belongs to _L(rs). Since g,+f is continuous, we have the
conclusion. Q. E. D.

From the above proposition we deduce

COROLLARY. Let a, B, be positive real numbers satisfying the same
conditions as in Proposition 5.2. If G, in the Bessel kernel with order
a, v.e., the function which belongs to L'(R?Y) and whose Fourier transforma-
tron is (14 [61%)7%%, then the restriction of Guxf to 0D belongs to Lrs)
for every fe’—,z LY R?Y). In addition, if ap<d, then the same conclusion is
obtained for the Riesz kermel R, with order a, i.e., R (X)=|X]|*""

REMARK. Let 8,2 be real numbers such that 0<g<d-—1, A> .
Then we can show, by similar methods to those in the proofs of Lemma
5.2 and Proposition 5.2, that the function

P S\P~Q1*f(@)d«:(@>

belongs to .L(75) for every fe L'(o).
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