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Numerical Evaluation of Path Integrals

Fumiaki Shibata, Miki Watabe, Harumi Kawasaki
and Natsuki Hashitsume

Department of Physics, Faculty of Science, Ochanomizu University,
Bunkyo-ku, Tokyo 112, Japan

A simple path integral formulation of Brownian motions is made on
the basis of stochastic differential equations and the fundamental Cameron-
Martin-Maruyama theorem. Besides a formal manipulation to relate the
mathematical formulation with problems in nonequilibrium statistical
physics, a numerical method is proposed to evaluate the path integrals ex-
plicitly. Models of linear and nonlinear diffusion processes are used to
verify the usefulness of the numerical method.

1. Introduction

The path integral formulation of Brownian motions has been discussed
by many authors [1-11]. However, there have been delicate problems in
defining the probability measure for the integral.

As will be shown in this paper, it may be the most transparent way
to formulate the theory of path integral on the basis of the Cameron-
Martin-Maruyama theorem [12-13] on stochastic differential equations.
After establishing a path integral theory, we give a numerical method to
evaluate path integrals. This is a kind of Monte-Carlo method based on an
importance sampling with using an interpolation formula which was
devised in solving nonlinear ordinary differential equations [14].

To show the usefulness of our numerical method, we selected two ex-
amples, one from statistical physics and the other from theoretical biology.
Analytic solutions are known for these examples, so that we can compare
our numerical results with the exact solutions.

2. Basic theorem

As the preliminary for our formulation of path integrals, we sum-
marize here mathematical notations and a Dbasic result obtained in the
theory of stochastic processes. Consider first a diffusion process

dX (¢)=a(X (¢))dB(t), (2.1)
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where B(t) represents the Brownian motion, i.e. the Winer process. For
the process X (t) of (2.1), we have a corresponding equation

S P f @)= O@p.f @), 2.2)
where
F“”(oc)————%o(x)z% 2.3)
is the generator of the process. In (2.2), ».f(x) is given by
pf @)=\ pu(e, 42,) £ () (2.4a)
—\p(@, 01, 1) f (@), (2.4b)

where p,(x,¢) is a transition probability to find X in a region ¢ at a time
t with the initial condition X (0)=x. The function p(z, 0|x,, t) is the cor-
responding probability density.

According to the theorem due to Cameron-Martin and Maruyama [12-
13], the following equation, a slight generalization of (2.2),

2 Pf@)=T @P.f(x) @.5)
with
1 9 0
I(@)= 5 ola)f g +bla) - (2.6)
can be solved to give
P, f(x)=E {U(t)f(X(t))}, (2.7)
where
U(t)zexp[S:a(X(r))dB(r)— %S:a(X(T))ZdT] , (2.8)
a(x) being defined by
_ b(x)
ale)= 05 2.9)

In (2.7), E.{-} is the symbol to take a conditional average with X (0)=x
over the process of (2.1): Namely, the solution of (2.2) is used to represent
E_{-} operation.

3. Formulation

(i) Case of Ito equation
According to the basic theorem of the previous section, the solution of
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an Ito type stochastic differential equation
dX (t)=a(X (¢))dB(t)+b(X (t))dt, (3.1)

which is equivalent to (2.5), is given by (2.7). In (2.7) and (2.8), X(¢) and
B(t) are related with each other through (2.1), and E.{-} is the operation
defined within a space spanned by solutions of the equation (2.1).

Our next task is to rewrite (2.7) into a more familiar form. The
operation F, {-} can be written in the form of path integral:

E.{-}=lim Hgdm, (@0, 05 @y oy ooy T, E){-}

N—ooo j
(=2, xy=1:, ty=1), (3.2)
where w(x, 0; 2, ¢,; -+ ; %y, ty) is the n-point joint probability: We have

divided the time interval (0, ¢) into N pieces with time points (0, i, ¢y, -+-, tx)
and corresponding values of X are denoted by (g, %y, %5, <+, Tx).

The n-point joint probability is nothing but the solution of (2.2). With
the use of the path integral form of FE.{-}, and after rewriting its in-
tegrand into the Stratonovich integral, we finally obtain

Ptf(w):S.g)xeXpli-—S:L (B 23 |F(@2), (3.3)
where
S‘@”' =lim ﬁg'v”z}if_é,)w (3.4)
and
L, )= g5 55 b= @)+ 5 o @) (k@)@ (3.5)

h(x) being given by
h(x):b(m)———;—o’(x)o(w). (3.6)

The transition probability density is obtained from (3.3) by putting f(x,)
to be a delta function:

&
P (2, 01, t) =\ 9w exp [— L, m,)dr] , (3.7)
where '
o 1 N- da; «
S"CD v = e 1 S\/Zno( at, (3.8)

(ii) Case of Stratonovich equation
A Stratonovich type stochastic differential equation

dX (t)=0a(X (t))odB(t)+b(X (t))dt ' - (3.9)
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is transformed into an Ito type equation

dX (t)=0(X (£))dB(t) + {b(X(t)) + %a’(X(t))a(X(t))}dt . (3.10)

The latter is equivalent to an equation of the form
0

Wsz(x)=F(x)Pcf(x) (8.11)
where
I'(0)= 5 o) s+ {bla) + 50 (D)o(@)| - (3.12)

Thus we can obtain a solution of (3.11) from (3.3)~(3.5) by a simple sub-
stitution of

b(z) —> () - o' (2)o(a) .

7
The result is as follows:

Pf@)=\Doexp| —\ Lot mdr £ (3.13)
and |

Pz, Ola,, t)= S@'m exp [~— S:Ls(o'c,, x,)dz'} , (3.14)
where

. 1 (. > 1 )

Ls(i, x):-m)—z{x—b(oc)} + = (o) b@)/o (@) (3.15)

4. Numerical evaluation of path integrals

We have formulated a path integral theory in the previous sections.
However, it is difficult to perform the path integrals explicitly. Usual
treatments of the path integrals are, therefore, more or less approximate:
Most of them are confined to the so-called extremum approximation where
various possible paths are replaced by a single most probable path. This
is a sort of mean field theory.

. Instead, we propose here a numerical method to evaluate path integrals
precisely. As is seen in the following examples, our method gives satis-
factory results. Although the following procedure is equally applicable to
the quantity P,f(x), we shall give explicit formulae for the probability
density P (o, 0|z, ). -

It is convenient to transform the variable « into z such that

dz=dz/ao(x) . : (4.1)

Then we choose the probability density corresponding to an unperturbed
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part as

3 1
WQ(Z, t)= R q(z, t). (4.2)

(i) Case of Ito equation
For the generator I, (2.6), of the Ito equation we have

2 Qe 1) ={ 525 +eu) Qe 1), (4.3)
where
¢ (z)=h(x)/o(x), (4.4)

h(x) being defined by (3.6).
The quantities P(z, 0|x;, t) and Q(z, 0|z, t) are related with each other
through the relation:

o(x) Pz, 0|, 1) =Q(z, 0]z, t) . (4.5)

According to the theorem in section 2, (4.3) has a solution of the fdrm
Q(ze, 0l2:, ) =1im Sdzlgdzg SdzN_l
N-oo
X q(2o, 0121, t1) =+ @2y -1, ty-1lZw, t)
N 1 N
xexp| Berles)zs—2,)—g Deilelt—t) |, (@6)
J= J=

where we have put

EN—=R:, tN:t (4.7)
and

1
(2j-1, tjoi|2), t))= —F——e€x [——(z-——z-_ (24t ~):| (4.8
q11 ]1‘] ]) '\/27fdtj P J Jj-1 J )
is a solution of (4.2) and 4t; is given by
Atj:tj_tj_l. (4-9)

These relations, (4.6)~(4.8), provide a convenient basis for the numerical
evaluation.

(ii) Case of Stratonovich equation
The probability density corresponding to (3.11) evolves in time accord-
ing to
0 1 0%

0
2QM )= {553 Fesd) 5 |Qlz 1), (4.10)

where S
cs(z)=b(x)/o(x). (4.11)
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Similarly, we have a basic expression for the numerical evaluation in case
of the Stratonovich equation (3.9):

Q(zo, 0]z, t):}vim Sdz1sdzz i Sdzzv-l
X (2, 0121, 1) =+ @(2y-1, tw-1l2w, tw)
N 1 ¥ _
Xexp[Z)]CS(zj—l)(zj-zj—l)_—g Z)lcs(zj—l)z(tj_tj—l)]- (4.12)
j= j=

If we can evaluate either (4.6) or (4.12) depending on the type of a
stochastic differential equation, we find the probability density of the
relevant variable X, namely, P(x, 0|x;, t) with the aid of (4.5).

In the following, a method to evaluate the basic formulas (4.6) and/or

(4.12) is given:
In these expressions, (4.6) and (4.12), we find a product of transition
probabilities {q(z;-i, t;-1|2;,t;)} each of which has a Gaussian distribution
(4.8).. Thus it seems at first that we have only to generate the Gaussian
random numbers to produce random paths. However, this is an ineffective
procedure because the final point (¢, ;) is fixed as well as the initial point
(0, 2). Therefore, a desired random path must have the Gaussian property
in each step and moreover must reach the final point.

These requirements are satisfied by adopting the following interpola-
tion formula, which was used in solving nonlinear ordinary differential
equations [14]: '

2j-i(ty—t;)tant;—t;-0) +§[ (ty—t)(t;—2;-1) ]1’2 (4.13a)
ty—1t;1 :

2i (N—j)+zn At(N—7) v
ai == b=l (4.130)
where £ is a Gaussian random number of zero mean with <&*»=1. It is
seen from (4.13a) that the point (¢, z;) is determined by the previous point
(t;-1,2;,-1) and the final point (ty, zx)=(t, ;) in the following way: The first
term of r.h.s. of (4.13) determines an average position <{Z,> on a line con-
necting (¢;-1, 2;-1) and (ty, zy). Fluctuations around {Z;> is represented by
the second term of (4.13) which is of the order (4t)'2 '

The true probability density should be given by (4.8), whereas the path
represented by (4.13) is generated by the random number & assumed to
have Gaussian distribution:

z'i: tN—tj~1

1 _52/2

Vet

In order to obtain the correct weight for a path, we must multiply the
following correction factor for eaczh step of the path:
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exp[—(z;,—2;-1)%/(24¢)][exp (—£/2) .
Thus we can evaluate the transition probability density as
Q(2o, 0]2,, 1) —hm lim —— Z H exp [ Vi(z;%%, z;_,®)], (4.14)
Moo Neoo M h=1j= ‘
where

1
Vizp 25 =exp| aley )z, 25— ale Pt

1 { ov—25 }t zN;zj_l .5[ At(N~j)) }w

24t | N—(j—1) t N—(—1
&
+ 2(N—-(j—-1))] (4.15)

In (4.14), M is the total number of generated paths. In principle, this is
a correct procedure. But in practice, we have to confine ourselves to finite
values of M and N, so that it is better to normalize further by a quantity
thus obtained

ng, 0l2,, t)dz, .

The final result for P(x, 0|z, t) is derived from (4.5).
Once the probability density is obtained, it is straightforward to find
such a quantity like the time correlation functions.

5. Examples

It is instructive to apply the method of the path integral to physical
and biological problems.

5-1. Quasi-fixation model of genes
We give here, as the first example, a model of the quasi-fixation of
genes in the theory of genetics [15]. This is expressed by the following
equation : o
Xt)=~vVX)[1—X(t)]dB(t), ' (5.1)
where X represents the relative frequency of a relevant gene; (5.1) is
equivalent to the following forward equation

0 \4 32 2 2
3 P(t)= 5 2*(1—2x)?P(t), - (5.2)
which can be solved to give
1 Xo(1— 20) }72 1% L*
Plaw Ol )= 75 57 §m3(1 P i‘”z ex p[—_s"— ZVJ (5.3)

where

w(1— )

L=In sol—a,) °

(5.4)
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PROGRAM NONLINEAR TRANSITION PROBABILITY j

DECLARATION |

{INPUT OF DATA]

LPATH INTEGRATION

DECLARATION FIDECLARATIONH

REAL*8 KI ;

DIMENSION XT(101),YT(101),TP(101),SR(10001);
DIMENSION ML(10),NL(10),XIL(10),TL(10);
PARAMETER (VS$=0.0483,1B=51)

[INPUT OF DATAJH (15, *)ND]

LL=1,ND,1H (15,%)ML(LL) ,NL(LL),XIL(LL),TL(LL))

(PATH_INTEGRATIONIF]KK=1,ND, 1 H[EXCHANGE OF DATA]
[OUTPUT OF DATA|
PARAMETER

CHANGE OF VARIABLE]
[TRAN.PROB. AT POINTS]|

[(WRITE NORMARIZATION]

EXCHANGE OF DATA__I{M=ML(KK); N=NL(KK);
XI=XIL(KK); T=TL(KK)

[OUTPUT OF DATA __ JH (16,%)M,N,XI,T J

(16,%)IB

(PARAMETER I XK1=0.0; DT=T/N;
DVS=DSQRT(VS);

(CHANGE OF VARIABLEF] Y0=0.0 |

IK=1,IB-2 F‘XT(K)=1.0*K/(IB-1):

DL=XT(K)*(1-XI)/((1-XT(K))*XI);
YT (K)=DLOG(DL)/DVS

Fig. 1 PAD diagram for the quasi-fixation model of genes.

We compare the analytic solution (5.3) with our numerical path integral
solution. Details of the numerical method are found in Fig. 1, where PAD
(Problem Analysis Design) diagram is shown, and we list the FORTRAN
source program below :
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[TRAN.PROB. AT POINTSII1=1,1B-2H (%, %' 1= ' .11}

—
TP(I1)=0.0

l1=1,M,1H

BY=Y0;P=1.0|

GAUSS(SR,.N) |

P=P%DEXP (V) ;
BY=Y

TP(I[)=TP(II)+P]

YA=DVSx*X
TP(I1)=T
KI=KI+TP

1-XT(II));
Aj
B-1)

TCID)*
P(II)Y/
(Ir1y/s«¢

— o~

[paTH _|H

JJ=N-J;

W=SR(J)*DSQRT(DT*JJ/ (JJ+1));
DYY=(YT(II)-BY)/(JJ+1);
DY=DYY+W; Y=BY+DY

WE [ GHTJH

V1=DR(BY)*DY;
V2=-DR(BY)*DR(BY)*DT/2;
V3=-DYY*DYY/ (2%DT);
V4=-WxDYY/DT;
V5=SR(J)I*SR(JI)/ (2% (JJ+1));
V=V1+V2+V3+V4+V5

(WRITE NORMARIZAT[ONJ[K=1,IB-2,1H

TP(X)=TP

(K) /K1]

(16, %) XT

(K),TP(K)J

DOUBLE PRECISION FUNCTION DR(Yi

DECLARATIONI
RUN1

RETURN

DECLARATION1

IMPLICIT REAL%*8 (A-H,0-2);
OMMON  XI,DVS

RUN1

EY=Y%DVS;
DRR=XI*DEXP(EY);
DR=DVS#(XI-1.0+DRR)/(2.0%(1.0-XI+DRR))

Fig. 1 (continued

D

65
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[SUBROUTINE GAUSS(SR,N) ]

(DECLARAT IONZ2||

RUN2

RETURN
DECLARATIONZF:IMPLICIT REAL*8 (A-H,0-2);

DIMENSION X(15),SR(10001),SR2(10001);
SE=80629.0

ruNzf-L=1,N,1H UNTIL(GG<1.0) |- DURAND(SE 3. %) ]

G1=2.0%X(1)=-1.0;
G2=2.0%X(2)-1.0;
GG=G1l»G1+G2*G2;
SE=SE+50

SR(L)=G1*DSQRT (-2.0*DLOG(GG)/GG);
SR2(L)=SR(L)*G2/Gl

Fig. 1 (continued 2)
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Program v

o oo ko
FRERX

3¢
-)(-

3¢ 46 3¢ 3¢

¢
113
"
3¢
~)(-

e e
"

12
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st for quasi-fixation model

saxxxxsTRANSITION PROBABILITY IBMixs:xssrssrssrssst
GAUSSIAN RANDOM NUMBER BY SHIBUYA METHOD
UNIFORM RANDOM NUMBER BY IBM LIBRARY

\b\l'\l-\h\lo\b\b‘b\b-h\b-bdt-bdv**\b\b\bda\b\b\h\b*ddw*\b«b\b*&nhd-nl-wlt bed
BAR AR R R R B R AR R AL R R LI R IR T IR PAP DI IR T INIR NI

IMPLICIT REAL%8 (A-H,0-Z)

REAL%8 KI

DIMENSION XT(1001),YT(1001),TP(101),SR(10001)
DIMENSION WL (10),HNL(10),XIL(10), TL(lO)
PARAMETER (VS=0.0483)

COMMON XI,DVS

READ (15,%) ND

READ (15,%) IB

DO 12 LL=1,ND. e
READ (15,%) ML(LL),NL(LL),XIL(LL),TL(LL)

CONTINUE R ,

DO 14 KK=1,ND

M=ML (KK)

N=NL (KK)

XI=XIL (KK)

T=TL (KK)

WRITE(16,%) M,N,XI,T

WRITE(16,%) IB

KI=0.0

3¢ 36 3¢ 3¢

- DT=T/N

DVS=DSQRT (VS) -

- DO 30-K=1,1B-2

30

10

XT(K)=1.0%K/ (IB-1)
DL=XT(X)%(1.0-XI)/((1.0~ XT(K))*XI)
YT (K) =DLOG (DL) /DVS
CONTINUE
Y0=0.0
DO 40 II=1,I1B-2
VRITE (5. I= * .11
TP(11)=0.0
D0 20 I=1,M
BY=Y0
P=1.0
CALL GAUSS(SR,N)
DO 10 J=1,N
JJ=N-J
W=SR (J)*DSQRT(DT=JJ/ (JJ+1))
DYY=(YT(II)-BY)/(JJ+1)
DY=DYY+VW
Y=BY+DY
V1=DR(BY)=DY
V2=-DR (BY) «DR (BY)=*DT/2
V3=-DYY*DYY/ (2%DT)
V4=-YxDYY/DT
V5=SR(J)=SR(J)/ (2% (JJ+1))
V=y1+V2+V3+V4+y5
P=P%DEXP (V)
BY=Y
CONTINUE
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40

10

wkkkkksksksx GAUSSIAN RANDOM NUMBER BY SHIBUYA skkskikrxk

\\O\I-Jdw-lo-.Io-bsbdﬂ\l'\bnb\bxbsb-b\bd.\bdt\btb-bda&\b&\b\b\hdo\h\bdcnb\b\b-lodr-b-b\b Pt Bttt
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TP (I1)=TP(11)+P
CONTINUE
YA=DVS#XT (I1)%(1.0-XT(II))
TP(II)=TP(II)/YA
KI=KI+TP(II)/(IB-1)
CONTINUE
DO 50 K=1,IB-2
TP (K) =TP (K) /KI
WRITE(16,%*) XT(K),TP(K)
CONTINUE
CONTINUE
STOP
END

REAL FUNCTION DR=3(Y)

IMPLICIT REAL*8 (A-H,0-2)

COMMON XI,DVS

EY=YxDVS

DRR=XI*DEXP (EY)

DR=DVS:# (XI-1.0+DRR)/(2.0%(1.0-XI+DRR))
RETURN

UNIFORM RANDOM NUMBER BY IBM

36 46 3¢

R e R R R R R R R R R R R R R R R R R R R R R X

SUBROUTINE GAUSS (SR,N)

IMPLICIT REAL*%8 (A-H,0-Z)
DIMENSION X(15),SR(10001).SR2(10001)
SE=80629.0
Do 10 L=1,N

CALL DURAND(SE,2,%)
G1=2.0%X(1)-1.0

G2=2.0%X(2)-1.0

GG=G1%G1+G2%G2

IF(GG.GE.1.0) GO TO 5
SR(L)=G1%DSQRT (-2.0%DLOG (GG) /GG)
SR2 (L) =SR{L)*G2/G1

SE=SE+50.0

CONTINUE

RETURN

Eﬂp
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2.9

2.0F

1.5 (3)

1.0' (2)

O 1 —l
0 .2 .4 .6 .8 1

Xt

Fig. 2 Probability density in the case of example (i) ; V=

Pixo ,00x: ,t)

0.0483, %o=0.5. (1): t=10, (2): t=80, (8): t=50 for
M=50 and N=100 where M is the number of paths.

12.5

9.0j

2.9r

O 1 1 L 1
0 .2 .4 .b .8 1

Xt
Fig. 3 The same graph as in Fig. 2 for ¢=100.
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{3)

7.9

Plxe ,0)xt ,t)

5.0+ (2)
{1)

2.9¢

Xt
Fig. 4 Probability density in the case of example (i) ; V=
0.0483, 2,=0.2. (1): t=10, (2): t=30, (8): t=50
for M=50 and N=100.

50.0

40.0¢

30.0¢

Plxo ,0]x: ,t)

20.0}

10.01

0.0 asees”]
0o .2 4 .8 .8 1

Xt

Fig. 5 The same graph as in Fig. 4 for ¢{=100.
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In figures 2~5, we show results of evaluations: the solid lines re-
present the analytic solution (5.3), whereas the dots are obtained by our
method of numerical path integral, which gives excellent agreement with
the former.

5-2. ILanear relaxation model
The second example is afforded by a linear stochastic differential equa-
tion :

dX (t)=+2DdB(t)—rX (t)dt, (5.5)

which has a solution of the form [4]:

P (%, 0, t):wﬁéexp[—w‘—gﬁg@)—z], (5.6)
where
e(t)y=e™ 1 (5.7)
and
e()=(D[r){1—e(t)%. (5.8)

In figures 6 and 7, the solid lines represent the result from the analytic
solution (5.6), while the dots are obtained by our numerical method of path
integral. Irrespective of the initial conditions, our method gives satisfactory
-agreement with the analytic solution.
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1.5

P(Xo ,let vt)

Xt

Fig. 6 Probability density in the case of example (ii) ; y=1, D=1 and
20=0. (1): t=0.1 for M=10 and N=100. (2): t=0.5 for M=10
and N=100. (8): t=2.0 for M=10 and N=500.

1.5
< 1.0¢F
S
a
0.5
0.0 < X ]
-4 0 4
Xt

Fig. 7 Probability density in the case of example (ii); r=1, D=1 and
xo=1. (1): t=0.1, (2): t=0.5, (3): t=2.0 for M=10 and N=100.
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We also gives a program list of the model as follows:
Program list for linear relaxation model.

sxx22252TRANSITION PROBABILITY IBMsssssssss
IMPLICIT REAL#8 (A-H,0-Z)
REAL*8 KI
DIMENSION XT(1001),YT(1001),TP(101),SR(10001)
DIHENSION ML (10),ML(10),XIL(10),TL(10),IBL(10)
PARAMETER (TAU=1.0,DP=1.0)
READ (15, %) ND
DO 12 LL=1,ND |
READ (15,%) ML(LL),NL(LL),XIL(LL),TL(LL)
READ (15,%) IBL(LL)
12 CONTINUE
~ DO 14 KK=1,ND
M=ML (KK)
N=HL (KK)
XI=XIL (KK)
T=TL (KK)
1B=1BL (KK)
WRITE(16,%) M,N,XI,T
WRITE(16,%) IB
K1=0.0
DT=T/N
DDP=DSQRT (DP)
YA=DSQRT (2#DP)
YO=XI/YA
1B2=INT (0.5% (IB-1))
DYT=4.0%DDP/IB2
DO 40 II=1,1B
WRITE(¥,%) ' II= ',II
YT (II)=DYT# (II-1B2-1) /YA+X0
TP (11)=0.0
DO 20 1=1,M
BY=Y0
P=1.0
CALL GAUSS (SR, H)
DO 10 J=1,N
JI=N-J
W=SR (J) *DSQRT (DT*JJ/ (JJ+1))
DYY= (YT (I1)-BY)/ (JJ+1)
DY=DYY+V
Y=BY+DY
S1=-BY=DY/TAU
52=-BY#BY*DT/ (25 TAU*TAU)
$3=-DYY*DYY/ (2%DT)
S4=-WDYY/DT
$5=SR (J)#SR (J) /(2% (JJ+1))
S=S1+52+53+54+55
P=P*DEXP (S)
BY=Y
10 CONTINUE
TP (11) =TP (I1) +P
20 CONTINUE
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TP (11) =TP (I1) /YA
KI=KI+TP (II)*DYT
40 CONTINUE
DO 50 K=1,1B
TP (K) =TP (K) /K1
XT (K) =YT (K) *YA
WRITE(16,%) XT(K),TP (K)

50 CONTINUE
14 CONTINUE

STOP

END
Ckskksokkxkxxx GAUSSIAN RANDOM NUMBER BY SHIBUYA skkikskksksx
Cx UNIFORM RANDOM NUMBER BY IBM %
Colrsksgskskookaksk s deteodeob e seoteok st e ek e e ook sk ek ook Rkt koo ok kg

SUBROUTINE GAUSS(SR,N)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(15),SR(10001),SR2(10001)
SE=80629.0
DO 10 L=1,N

5 CALL DURAND(SE,3,X)
G1=2.0%X(1)-1.0
G2=2.0%X(2)-1.0
GG=G1%G1+G2*%G2
IF(GG.GE.1.0) GO TO 5
SR (L) =G1%DSQRT (-2. 0%DL0OG (GG) /GG)
SR2 (L)=SR (L) *G2/G1

C SE=SE+50.0
10 CONTINUE
RETURN
END

6. Summary and conclusion

We have formulated a path integral theory on the basis of a mathe-
matical theorem. We have presented not only the formalism but also the
practical method of numerical evaluation of path integrals.

As was explicitly ishown, our method gives satisfactory results for a
nonlinear diffusion process as well as for a linear relaxation process.
Usefulness of our theory will be further clarified when we apply the
method to unsolved problems in statistical physics and other area of re-
searches (for instance, the communication theory or the theoretical biology).
These are left for our future study.
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