Natural Science Report, Ochanomizu University, Vol. 38, No. 1, 1987 1
BROKEFARYE BRBEHRE F8E F15

A Method of Calculation for an Infinite Continued Fraction
— A particular reference to static limit of
exciton migration—

Itsuko SATO#*

The Doctoral Research Course in Human Culture, Ochanomizu University,
Bunkyo-ku, Tokyo 112
(Received 13 December, 1986)

In a stochastic model of exciton transfer, a method of dynamical co-
herent potential approximation (DCPA) is useful. In this treatment, a pro-
pagator (Green’s function) is expressed in terms of continued fraction.

"~ In the present paper, a method of calculating the infinite continued
fraction is given.

The method of DCPA gives very acculate results even in the static limit
compared with the conventional static CPA. Thus DCPA can treat the static
phenomena as well as the dynamical properties.

§ 1. Introduction

Sometimes we must treat problems of certain physical systems in a fluc-
tuating environment. For instance, when an exciton propagates in a crystal,
lattice viblations give rather profound effects destroying a phase coherence
of the exciton?. In treating optical properties of excitons, a useful method
of DCPA was employ by several authors?:® and extended by us®.

Quite complicated interactions of excitons with the environment have
been treated rather simply by introducing a stochastic model: The Hamil-
tonian is of the form

H () =H+H () (1.1)
Hy =3 T by bn
Gm,n) (1.2)
= Zk (O) a;j_a,k )
FAGEDIWHROWMS (1.3)

*) Present address: Toshiba R&D Center, Toshiba Corporation, Komukai, Saiwai-ku,
Kawasaki 210.
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where #, represents the coherent motion of excitons and /,,, is the transfer
integral between site m and site n. We assume a nearest-neighbor interaction
in (1.3), namely, /., takes the value /. We also put

wk=é§ e *0 (1.4)
where ¢ represents a vector which connects a single site to its nearest neigh-
bor site position. Moreover b:r,,, b, are the exciton creation and anihilation
operators in the site representation, and a_:, a, are the corresponding Fou-
rier transformed operators.

The coherent motion of excitons described by (1.2) are largely affected
by the presence of S (¢), where 4,.(¢) is a random function of time and
their process are assumed to be the Gaussian Markoffian. According to the
assumption, correlations of 4,(#)’s are determined by

<A”(t)>B:0 ] (1'5)
< Anlt) Au(8)>, = O AE 6 0170, (1.6)
<dn(®) 4n(y) - 4,(£j)>5 =0 (for j=3), (1.7)

where the subscript “C” in (1.7) denotes the cumulant. The relation (1.6) re-
presents the correlation of 4,(#)'s; 4, is a measure of strength of the fluctu-
ation, 7o the decay rate of the correlation. When 7, tends to zero, the corre-
lation time 7, ! becomes infinite, so that 4,(¢) at a definite site n takes a
certain constant value (static limit).

To discuss the optical absorption in the exciton problem, we need the
propagator or Green’s function. In the framework of these quantities are
solved in the form of infinite continued fraction. In actual numerical calcu-
lations, it is necessary to truncate the continued fraction at an appropriate
order. We present here a method to calculate these quantities and also dis-
cuss the behaviors in the static limit.

In the following we show the result of DCPA, and make clear the rela-
tion between the static limit of DCPA and the usual static CPA (Sec. 2).

Next we present a method to calculate the continued fraction, and dis-
cuss its convergent properties especially in the parameter region of the static
limit (Sec. 3).

We give the conclusion in Section 4.
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§ 2. The problem of exciton migration
2-1. The result of DCPAP~%

According to the DCPA method, the propagator (or Green’s function) is
given by

G(w) =~ G4 (w) (2.1)
N %
where
G ((1)) = 1 (2 2)
* ©— w5 — 2y (@) :
and
2gal@) = n'ff: (nz1) , (2.3)
Folo—inn) — 24,4 (@) |
Fol@) =6() + Xy @) . (2.4)

The self-energy >, (@) in (2.2) has been given by the recurrence relation
(2.3), that is, we have the infinite continued fraction; the number n taking
from 1 to infinity:

>, ()= 4o

- 247
Fo((!)_lro) 1_ AO

2

3 4o

Folw—2iro) - 2
’ YN 4 4
Folw=3ire)  — —°

(2.9)

2-2.  Continued fraction in the static problem and its integral represen-
tation.

In contrast to the result in Sec. 2-1., Sumi® formulated a theory on the
ground of the usual static CPA where the random potential is assumed to be
the Gaussian distribution. In this case the 4,(¢) in (1.3) is independent of ¢
which corresponds to 7o = 0. His result is
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A

20 (@)=
2 47

Folw—id) " —
340

Fo((o—ia)_l_ )
Fo (w—i8) " — 4.—{'(’—
(w; real, 0—>+0)
(2.6)

where 0 is a convergent factor. The expression (2.5) coincides with (2.6) if
we put 7, = 0. This fact has been confirmed by Sumi himself?, This is

shown by a relation®
(=S} '—tz
—1-‘( © —dr= 1
n)_ __Z t 1/2
> —
2/2
5 —
L 3/2
. 2.7
If we use (2.7) then (2.1), (2.2) and (2.6) are written by
6w 1 r e/
== d O
@ \/E do —co g Fo((t)) ' -8 . (2.8)
On the ground of the relation (2.4), (2.8) becomes
1 foo —s2/2 47
— ds e °* T(wss)=0 ,
Ve2rm dol_, (2.9)
- 20 (@)
T (ws5) = Al L (2.10)

1-(s—2n(0)6(w)
and thus these equations satisfy the usual condition of the static CPA;
“average of T-matrix is equal to zero”. In (2.9) ‘

1 —5*/2 4}

vVor Ao ©

represent a probability of the scattering by the potential.
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§ 3. Numerical calculation
3-1. The method for calculating the infinite continued fraction

In 2-1. we derived G(w) and G:(w) from with we have an absorption
spectrum /(w):

The spectrum line shape is characterized by two parameters ao,(=40/7,)
and o (=4,/B) where 2B is the original band width of excitons.

When the modulation speed is fast (o << 1 and/or o << 1) the usual
motional narrowing occurs. Convergence of the continued fraction is very
fast; practically we have only to calculate only the lowest order term.

In an intermediate stage (ao =~ 1 and &' =~ 1), we must calculate the con-
tinued fraction up to 10 ~ 20 orders.

While the modulation is slow (ae, o > 1), we have to calculate up to
very higher orders. This will be explained in more details in 3-2.

3-2.  The results of numerical calculation and treatment of static limit

We give here several examples of calculations of the spectra in fig. 1 and
fig. 2. In the static limit (7, — 0), we find the so-called Urbach tail:

800 K
d=3

1F /
OF
_1-
“2} Yo/B=1 19
o 1

01
-4} 0
1.8 21,4 1.0 0.8

Fig. 1  Optical absorption spectra for the space dimension d = 3 at T = 800K.
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800 K

-1.4 -1.0 -0.6
eV

Fig. 2 Optical absorption spectra for the space dimension d =1 at T'= 800K.

e—A(w'—(D) (3.2)

In the static limit, Schreiber and Toyozawa” made numerical simula-
tions which were included together with our theoretical predictions in fig. 3
and fig. 4. The agreement of the theory with the simulation is almost perfect
over the wide range of temperature and for any dimensions. In these figures,
we used the relation

4 = k5T (3.3)

following ref.7. We cannot obtain the Urbach tail in the usual perturbation
theory. So it becomes clear that DCPA can be applied not only to the fast
modulation case but also to the slow modulation case as is clear from fig.3
and fig.4.

In these calculations we solved (2.2), (2.5) making 7, tend to zero. On
the other hand, in the Sumi’s calculation based on the expression of the
static CPA, we cannot fit the numerical result with the simulation data by
Schreiber and Toyozawa” quantitatively. The fact is considered as follows.
The numerical calculations done by Sumi® are based on an approximate



July 1987 A method of Calculation for an Infinite Continued Fraction

RV A Y A N

-1.8 -1.4 -1.0 -0.6 eV

Fig. 3 Optical absorption spectra in the static limit for d = 3. The solid lines
represent our theoretical results (based on the expression (2.5)) while
the dots are taken from ref, 7.

_1F 800K
-2r 400K :

./ 200K

-1.4 -1.0 : -0.6 eV

Fig. 4 Optical absorption spectra in the static limit for d = 1. The solid lines

represent our theoretical results (based on the expression (2.5)) while
the dots are taken from ref. 7.
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expression [see (3.8) and figure caption of fig.4 in ref.5], or rather in his
expression the equation satisfied by self-energy >_,(w) or propagator G (w)
is written in a form of an integral equation and it may be a tedious task to
obtain the sufficiently convergent value of 25,(w) due to the difficulty in-
herent to the numerical calculations.

But if we use our representation (2.5), we have only to calculate the in-
finite continued fraction making 7, to vanish and truncating it at a certain
sufficiently convergent order. For example, in fig.3 and fig.4 the convergent
value of 23, (w) is obtained at 7,/B=1073 ~ 107* with the order of 3000.
We then identify these quantities as the optical absorption spectrum in the
static limit.

Indeed Sumi® himself calculated the optical absorption spectrum with
the use of (2.5), in which although the smallest value of 7,/B is 1072, and
he obtained the Urbach-like behavior. His result? is in fact more satisfactory
than the previous ones®. However, the value of 7,/B(=1072) is still too
large to regard the static limit behavior. In our calculation we make 7,/B
smaller (1072 ~ 107*) and find the convergent values at a suitable order at
which we truncate the infinite continued fraction. This is considered to be
the static limit. As a result we could get an excellent agreement with the
simulation data by Schreiber and Toyozawa?.

L d=3
400K
6 =.001
1..
D_
-1F
_2_
-3+
-4t
~-1.8 -1.4 -1.0 -0.6

ev

Fig. 5 Optical absorption spectrum in the static limit for d = 3 (based on the
expression (2.6)).
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On the other hand, we can also make a numerical calculation by means
of the expression (2.6), but the convergent property of the infinite contin-
ued fraction is not satisfactory. For the comparison’s sake, we give also a
calculation using (2.6). For example, when 7=400K, we have to consider the
continued fraction up to 10° order to obtain the convergent value for
8§=1073. Moreover, even for =103 the spectrum is out of linear property
(fig.5), so that the convergent property is quite bad. If we use (2.5), for
7o/B=10"%, the convergent order of continued fraction is 103, so that ex-
pression (2.5) is superior to (2.6).

8§4. Conclusion

In this work we discussed a method of the numerical calculation of the
infinite continued fraction.

First it is necessary to truncate it at a suitable order. This order is deter-
mined by the Kubo numbers ao, @. The standard truncating order ranges
from 2 to 20. But in the slow modulation case, it becomes order of 10% ~
10® which is equal to B/7, (= a0/ d).

Moreover, we give a precise discussion about the numerical treatment in
the slow modulation case together with the several analytic expressions in
the static case. These are summarized as follows:

(i) Putting 7, =0 formally in (2.5), we obtain the result of static CPA by
Sumi®, (2.6).

(ii) On the other hand, the expression (2.5) with r, = +0 is considered to
correspond to (2.6), but in the actual numerical treatments, (2.5) has a very
rapid convergent property of the continued fraction than (2.6).

(iii) Consequently, it is concluded that the expression of our formulation of
the DCPA is superior to that of the static CPA, not only in the treatment of
the dynamical behavior of the absorption spectrum and density of state but
also in the Urbach tail problem.

In this paper we discussed on the infinite continued fraction on the basis
of the result of DCPA in the problem of exciton migration. But the method
itself is not confined to the specific problem discussed here: In an extended
theory of exciton migration, we obtained the more complicated infinite con-
tinued fraction®. Moreover in the theory of the low field resonance®, we
solved the problem exactly in certain cases using the similar treatment and
obtained absorption spectrum in a form of the infinite continued fraction. In
the numerical calculations of the infinite continued fraction we have some
delicate problems. This will be discussed in the following paper.
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Appendix Programs list

We present here the programs list to calculate (2.5). In this program
first we make an input of the parameters 7,/B and 4o/B. Next we assign the
energy region: an initial value and a final value of @/B and division number
are determined. Finally we give the truncating order and the number of
iteration. |

When (2.6) is calculated, we should put K =1 in 41 of the following list.

H281

1 CxxxxGRUSSIAN(CPA METHOD) xxxxDIAGONAL

2 C M.N-TH RPPROXIMATION

3C

4 CxxxxABSORPTION AND DENSITY OF STATES**xx
SC

6 COMPLEX CP1,CP,E1,2

7 X ,DIM,DS

8 X » CARD

9 C

18 CABS (Z)=SQART (REAL (Z) *%2+AIMAG (Z) %x%2)
11 C
12 WRITE(2,188)
13 189 FORMART(1H ,'RB,DB=")
14 READ(1,181) RO,DO

15 181 FORMAT(2F10.08)

16 WRITE(2, 288)

17 208 FORMAT(1H ,"EB,EF,POINT=")

18 RERD(1,2081) E@,EF,IFF

19 281 FORMAT(2F10.8,13)
20 WRITE(2,388)
21 3PP FORMAT(1H ,"APPROXIMATION ORDER(M,N)=")
22 READ(1,381) MA,NAR
23 381 FORMAT (211@)
24 C
25 R1=D.
26 D1=0.
27 EH=(EF-EB)/ (IFF-1)

28 Mi=MA+1

29 N1=NA+1



July 1987

30
31
32
33
34
35
36
37
38
38
40
41
42
43
43
45
46
47
48
48
Se
51
52
53
54
S5
56
57
S8
58
60
61
62
63

64
65
66
67
68
69
/0
71

2P

3P

C

1

400

49
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REWIND 5

WRITE(5) R@,R1,D8,D1,IFF
DO 48 J=1,IFF
E=EB+EH%(J-1)

CP1=CMPLX(D.,B.)

DO 38 N=1,N1

CP=CMPLX(D.,0.)

DO 28 M=1,M1

K=M1+1-M

E1=CMPLX(E, -RB*K)

Z=E1-CP1

CP=DPxDPxK/ (1./CARD(Z)+CP1-CP)
CONTINUE

Z=CP-CP1
IF(CARBS(Z).LT.1.E-5) GO T0 1
CP1=CP

CONTINUE

DIM=1./(E+1.-CP)
GIM=RIMAG(DIM)
Z=E-CP
DS=CARD(Z)
DD=AIMAG(DS)

WRITE(2,4088) E,GIM,DD,N

FORMAT(1H ,F6.3,2(2X,E17.9),2X,13)
WRITE(S) E,GIM,DD

CONTINUE

ENDFILE S

STOP
END

COMPLEX FUNCTION CARD(Z)
COMPLEX CARD,Z,YSQ
YS@=CSART (ZxZ-1.)
YIM=AIMAG(YSA)
IF(YIM.GT.@.) YSQ=-YS@
CARD=(Z-YSQ) %2

RETURN

END

11
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