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§1. Introduction.

Throughout this paper, all groups are abelian and notations and termi-
nology mostly follow [3]. A torsion-free class is defined in [1] as a family
of finite rank torsion-free groups which is closed with respect to finite
direct sums, pure subgroups, and torsion-free homomorphic images. We
have to introduce “separable type” which will play an important role in
this paper. A type is said to be separable if in a hight-sequence which
belongs to this type, there does not appear symbol oo.

Our aim in this paper is to investigate the torsion-free class which is
generated by all rank 1 torsion-free groups of separable type.

The authors wish to express their gratitude to Professor Khalid
Benabdallah for his suggestion about 7-groups.

§2. T-groups.
If a group G satisfies that Hom(G, Z(p™)) is a torsion group for every

prime p, we call G a T-group.

PROPOSITION 1. The family of all T-groups is closed with respéct to
a finite direct sum, a homomorphic 1mage, a subgroup, and an extension
by a T-group.

PROOF. First part follows from Hom( E]_Bl Gy, Z(p™)) = E_Bl Hom(G;, Z(p™)).
Let 0—-K—-G—H—0 be an exact sequence. Then

0 — Hom(H, Z(p~)) — Hom(G, Z(p~)) — Hom(K, Z(p~)) — 0

is also an exact sequence since Z(p~) is injective. Consequently, Hom
(G, Z(p*)) is a torsion group if and only if Hom(H, Z(p~)) and Hom(K, Z(p))
are torsion groups. Thus the rest of our proposition has been proved.

LEMMA 1. Let G be a p-group. Then G is a T-group if and only
if G 1s bounded.



78 N. AsamoTo and T. KOYAMA " NSR. 0.U., Vol. 36

PROOF. Suppose G has an unbounded basic subgroup.. Then we can
choose a basic subgroup B such that G/B=®Z(p~)+0. Since Hom(Z(p™),
Z(p~)) is the additive group of p-adic integers, G is not a 7-group. The
sufficiency is obvious.

PROPOSITION 2. Let G be a torsion group. Then G is a T-group if
and only if the p-primary part G, of G s bounded for every prime p.

PROOF. This follows immediately from Lemma 1 and from the fact
Hom(G, Z(p~)) = I;I Hom(G,, Z(p™))=Hom(G,, Z(p~)).

COROLLARY. The notation of T-group s invariant under o quasi-
isomorphism, where the definition of quasi-isomorphism follows [1].

PROOF. Let G be a T-group and suppose G and G’ are quasi-isomorphic.
There exists a homomorphism f: G—G’ such that G'/f(G) is bounded. By
Propositions 1 and 2, G’ is a T-group.

PROPOSITION 3. Let G be a rank 1 torsion-free group. G is a T-
group if and only if type(G) is separable.

PROOF. Suppose type(G) is not separable. Then G is p-divisible for
some prime p. Let x be a non-zero elements of G and let f be a non-
trivial homomorphism from a free group <x> to Z(p~). Since Z(p~) is
injective, f can be extended to f': G—Z(p~). f'(G) is p-divisible because
G is p-divisible. Since non-trivial p-divisible subgroup of Z(»p~) is Z(p~)
itself, it follows that f'(G)=Z(p~). Hence f’ is a torsion-free element of
Hom(G, Z(p®)).

Conversely, suppose type((z) is separable. For any prime p, there
exists an element x of G such that 2,(x)=0. Let y be an arbitrary element
of G. There is a relation sy=tx where s and ¢ are integers with (s, t)=1.
Besides, (s, p)=1 follows from h,(x)=0. For any feHom(G, Z(p~)), p"f(x)
=0 for some integer n. Hence sp™f(y)=tp"f(x)=0. Invoking (s, p)=1, we
know p"f(y)=0 for each element y of <. Therefore Hom(G, Z(p~)) is a
torsion group.

LEMMA 2. Let G be a torsion-free T-group. Then, G is of finite rank.

PROOF. It is sufficient to show that G is not a T-group in case G is
a free group of countable rank. Suppose G=@<x,> where {x,>)=Z for i=
1,2,8,---. There is an element a; in Z(p~) whose order is p’. Define a
homomorphism f;eHom (Kz:>, Z(p™)) by fi(x)=a; Then f=(f,fp, ---)
belongs to Hom(G, Z(p*)) but its order is not finite.
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PROPOSITION 4. A torsion-free group is a T-group if and only if it
18 a subgroup of a finite direct sum of rank 1 T-groups.

PROOF. Let G be a torsion-free 7T-group. By Lemma 2, G can be
embedded in a finite direct sum of @’s. Let H,, ----, H, be the projections
of G in each Q. By Proposition 1, H,, ----, H, are rank 1 7-groups. Hence
G is isomorphic to a subgroup of H/®D:---PH, Sufficiency follows im-
mediately from Proposition 1.

§ 3. The torsion-free class which is generated by all rank 1
T-groups.

We will call the members of the least torsion-free class which contains
all rank 1 torsion-free groups “R-groups” following [1].

PROPOSITION 5. The family of all torsion-free T-groups is a torsion-
free class.

PROOF. This is an immediate consequence of Proposition 1 and Lemma 2.

PROPOSITION 6. The torsion-free class generated by all rank 1 torsion-
free groups of separable type coincides with the family of R-groups with
separable types.

PROOF. Let G be the member of the torsion-free class generated by
all rank 1 torsion-free groups of separable type. Clearly G is an R-group.
By Propositions 1 and 3, G is a T-group. For any xz+#0 in G, the pure
subgroup <z)yx of G generated by z is again a T-group. Hence type(x)
is separable.

Conversely let G be an R-group with separable types. We can write
G=A,+----+A, where A, is a pure rank 1 subgroup of G by Theorem
4.4 in [1}. Hence type(4; is separable. This completes the proof of
Proposition 6.

PROPOSITION 7. A torsion-free T-group is not necessarily an R-group.

PROOF. We will construct a rank 2 torsion-free T-group with infinite
type set, since an R-group must have a finite type set by Theorem 4.6 in [1].

Let A be a subgroup of @ such that 1= A4 and hight sequence of 1 in
Ais (1,1,1,---). Let t,=1,7)€ADPA,1=1,2,8,---- and let P be the set
of all primes. Write P=\UP; as the disjoint union of infinitely many in-
finite sets. A4(1)=(,1,1,----) implies (1/p)t,c APA for any prime p.
Define G' to be the subgroup of AGA generated by all (1/p,)t; where p, e
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P, and 1=1,2,3,----. G is clearly a T-group. Now we will show that
G has infinitely many different types.

Suppose type(t;)=type(t,) for some i+#j. That is hp(t)=h,(t;) for
almost all primens p. Fix j, then for any pe P;, h,(t;)=1. Hence for in-
finitely many p which belong to P,, h,(t,)=h,(t,)=1. That is

1 . 1 . n 1 .
—(1,)=r—( (1,44,
p(;?’) Tp(,3)+k§1rk qk(yq’k)
. . r 1 .
L)=r1,7)+p I ri—(1,1).
k=1 gz

Hence I—TZPZ%EZ. Since each ¢, is different from p, i}—/'qﬂiez,
k=1 B Pyue) i

And since ¢,’s are different from each other, r,/q,=Z for k=1,2,----,n.
Therefore 1=7(mod p) and i=7j(mod p) for infinitely many p. It follows
that 4=7. This contradicts the assumption 7#j. Hence G -has infinitely
many different types.
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