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§1. Introduction.

A simplex space can be expressed as a subspace of C(K), which is not
necessarily a Banach lattice, but whose dual space is an AL space. In contrast
to a lattice homomorphism of a Banach lattice, we define a simplex homomorphism
T of a simplex space E(CC(K),)) into a simplex space F(CC(K,)) [8]. In case of
a Markov operator, a Riesz homomorphism defined by F. Jellett [5] is equivalent
to a simplex homomorphism. In this paper, we investigate some properties of a
simplex homomorphism (Theorem 1). By using a function 7 on K, and a mapping
k: K;—K;, we can express a simplex homomorphism 7' as

Tf(x)=y(x)f k(x) for any f€FE

in a similar way to the case of a lattice homomorphism of C(K) [10]. In general,
k is not continuous. So we introduce a special topology on K; (and K, with
respect to which £ is continuous on {x<=K,; r(x)#0} and obtain a condition
which is equivalent to a simplex homomorphism (Theorem 2).

By using the continuity of 2 with respect to this topology, we shall obtain
some results about the spectrum of a simplex homomorphism in a forthcoming

paper [9].

§2. Simplex homomorphism.

Let E and F be simplex spaces, i.e. preduals of AL-spaces. Put X=
{x€E’; x=0, |x|<1} and Y={yeF’; y=0, |y|<1} endowed with the weak*-
topology. Then E [resp. F] can be expressed as a space of functions on 0X
[resp. 0Y ] (the weak*-closure of the set 0X [resp. Y] of all extreme points of

X [resp. Y1), namely {f€C@X); f(x)=|r dp. for all xTX and f(0)=0} [resp.
{geC@Y); g(y)zgg dy, for all yedY and g(0)=0}] where p, [resp. v,] is the

maximal probability measure on X [resp. Y] with resultant x [resp. y] [3,
§ 287].

We call TeQ(FE, F) a simplex homomorphism if for any f, g€F and any
ye0dY, there exists heE such that h=>f, g and Th(y)=max{T f(), Tg(»)}
[8]. We recall that a lattice homomorphism 7° of a Banach lattice E into a
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Banach lattice F' is an operator satisfying T(fVv0)=TfVvO0 for all feE. Then
we have

THEOREM 1. Let E, F be simplex spaces. For TeQ(E, F), the following
assertions are equivalent:

i) T is a simplex homomorphism.
Ty
7775 =%

iii) T” is a lattice homomorphism of E” into F”.

iv) For any f, geFE, peF satisfying Tf, Tg=p and any ¢>0, there exists
heE such that f, g<h and Th(y)<p(y)+e for all ycoy.

v) For any yedY, f, g€E and any e>0, there exists heE such that
hzf, g and Th(y)=max{T f(y), Tg(y)}+e.

ii) For any yedY, we have T'y=0 or

Before proving this theorem, we show the following lemma.

LEmMMA 1. Let f, g be upper semi-continuous affine functions on X such that
f10X=g|0X.¥ Then f=g on X.

PROOF. Suppose that there exists x,X such that f(x,)>g(x,). Since g(x)
=inf{h(x); heE, h=g} holds [1, Proposition I. 1. 2], there exists h&E such that
h=zg and f(x¢)>h(x,). Then f—h is upper semi-continuous affine on X,
(f—h)(x0)>0 and (f—h)|0X=Z(f—g)|0X=0. This implies a contradiction, since
an upper semi-continuous affine function attains its maximum on 0X. Therefore
f=gon X //

PROOF OF THEOREM 1. i)<—ii) follows from the definition and [6, Propo-
sition 4].

ii)—iii) At first, we show that for any feFE, T”(fVv0)=TfV0 holds, where
the sign “¥v” is used to denote the supremum of two elements in E” or F”. For
yedY with |T7y]|#0, we have

T”(fvo><y>=<fv0><T'y>:1|T'y1|<fvo>(%§’7“)

=17 ylmax{ (7). O} =max (T (3), 0 =(T £ ¥0)(3)

by the relation ”—;7;)—\!68)( and [6, Proposition 4]. Since T”(f¥v0) and (T f¥v0)
are both upper semi-continuous affine functions on Y [7, Lemma] and the rela-
tion T7(fv0)|0Y =(T fv0)|0Y holds, we have by Lemma 1,

T"(fv0)=Tfv0. ()

Next we show that [0, T/y]=T'[0, y] holds for any yeF’, y=0. Since T’
is positive, T'[0, y]JC[0, T’y] holds. If there exists z<[0, T’'y] such that

1) f|K is the restriction of f to K.
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z&T'[0, v], then there exists f=F such that
f)>c>sup{f(w); weT'T0, y1

since T'[0, y] is a weak*-closed convex subset of F’. So we have T7(fv0)(y)
=(f V0T y)=sup{f(w); 0=w=T’y} =f(z)>c. On the other hand, we have
(TFV0)y)=sup{T f(w); 0Sw=y} =sup {f(T"w); 0=Sw=y} <c. Hence Tfv0+
T"(fv0), which is a contradiction to (¥). Therefore for any ¢=E” and any
yeY, we have

T (¢ 0)(»)=(pVO)T'y)=sup {gp(w); 0=w=T"'y}

=sup{T"¢(w); 0=w=y} =(T"¢pv0)(y).

So we have T7(¢Vv0)=T"¢Vv0 for any ¢ E”.
iii)—iv) By [7, Lemma], we have for any f, gk

(TfvTg)Xy)=int{g(y); ¢€F, ¢=Tf, Tg}
for any y=0dY. Since T” is a lattice homomorphism,
(TfvTgN=T"(fvg)»)=(fVeg T y)
=inf{W(T'y); heE, h=f, g}.

Let peF satisfy Tf, Tg<p. Then for any ycoY and any £>0, there exists
h,eE such that h,=f, g and Thy(y)=h,(T'y)=p(y)+e/2. Since 90X is weak*-
compact and p is continuous, we have h€E such that h=f, g and A(T’'y)<
p()+¢ for all yeoY.

iv)—v) For any f, g€E and any y<dY, we have max{T f(y), Tg(y)}=
(TfvTg)y)=inf{q(y); g=F, q=Tf, Tg}. So for any e>0, there exists peF
such that p=Tf, Tg and p(y)S=max{T f(»), Tg(y)}+e. By iv), there exists
heE such that h=f, g and Th(y)<p(y)+e. Therefore

Th(y)=max{T f(y), Tg(y)}+2e.
v)—1) Fix f, g€FE and y€dY. Then we have
(fve T y)=mf{h(T'y); heE, h=f, gt =max{f(T"y), g(T'y)}

by using v). Let ¢=fvg. Then ¢ is upper semi-continuous affine on X [7,
Lemma]. Put '
Ty

max (|71, gl for x<X\(j7 Y (0})

M_l mex{f (7). ()} Tor <=7

0 for x=0.

Then ¢ is lower semi-continuous on X and ¢=¢. Put J(x)=sup{i(x); heE, h<d¢}
for xeX. Then by [2, Lemma 1.27], we have ¢(x)=inf {u(¢); peP,(X)}, where
P.(X) is the set of all probability measures on X with resultant x. Since ¢ is
upper semi-continuous affine on. X, we have ¢(x)=pu(¢) for any p=P,(X) and
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P(x)=¢(x) for any x=X. Therefore ¢§=¢ and ¢ is a lower semi-continuous
convex function on X. Hence by [3, Theorem 28.6], there exists h€E such
that §=h>¢. Then h=f, g and Th(y)=max{T f(y), Tg}. //

REMARK. In case of a Markov operator, F. Jellett [5] showed that the above
condition ii) is equivalent to the following :

iv’) For any f, g€E, acF satisfying Tf, Tg=a, there exists h€E such
that f, g=h and Th=a.

But when T is not a Markov operator, iv’) is not equivalent to ii) as shown in

the following example and the above theorem shows that a slightly modified
condition iv) is equivalent to ii).

ExamPLE. Let E={f=C(—1, 1]); f(O):%{f(lH—f(—l)}} and

2|zl fx) |x[=1/2
2(1—=[x)f(x) |x[>1/2

for all feE. Then E is a simplex space and 7T is a simplex homomorphism of
E into E.

Let fo(x)=x, gox)=—x for xe[—1, 17, and
{ 2x? | x| =1/2
px)=
20—1x) x| |x[>1/2.

Tf(x)={

Then f,, go, p€F and Tf,, Tge=p. In this case, there exists no A<E such
that h=f, go and Th=<p. But for any &>0, there exists heE such that
h=fo, go and Th(y)=p(y)+e for all ye[—1, 1.

This example shows that though T is a simplex homomorphism, the condi-
tion iv’) does not hold, but iv) holds.

§3. (O-topology.

Hereafter let E be a simplex space satisfying the condition :

inf{l|lx|l; x€0X\{0}}=a>0.
Then we have

LEMMA 2. Let K be a closed subset of 0X and B, be the set {xE’; ||x|<7}.
Then for r=1, [c, )KN\B; is a closed set for any ¢, 0=c=1.

PROOF. For =1, put KT=[c, —g—]K, as 0<a=<1. Then we have [¢, )K"\ B,
=K,NB,. Since K, is compact, K, B, is compact and so closed. //

The following lemma is easily obtained.

LEMMA 3. Let K be a closed subset of 0X.
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i) If 0& K, then [0, 0)KN0X\{0} =[a, «0)KNoX.
i) If 0K, then [0, c0)KNoX=[a, co)KNoX.

Hence we define the following mapping 6 : For any closed subset K of 9.X,
put §(K)=[a, ©)KNdX and for any relatively open subset U of 39X, put 6(U)=
oX\G@EX\U).

Then we have

LEMMA 4. Let U be the set of all relatively open subsets of 0X. Then

iy UD6U) Uen)
i) @) is relatively open. en)
iii) 4(aWU)H=6) Uel)
iv) 0UNU)=60U)NEU>) U, U,el)
) 9(g B(Ua))=kaj U ) U.€l)

vi) 0(B)=@, where @ is an empty set and 6(0X)=0X.
Therefore {§(U): U<} defines a topology on 0X. We shall call it @-topology.
PROPOSITION. 0X equipped with O-topology is T, space.

ProOF. For each disjoint pair of #-closed subsets of 0X, A and B, there

are disjoint open subsets of 90X, U and V such that ACU and BCV, since
weak* topology is normal. By the definition of #, we have ACOU)CU and
Bcé(V)cV. Therefore UNOV)=0. //

Now we have another characterization of a simplex homomorphism.

THEOREM 2. Let E, F be simplex spaces satisfying the conditions:
inf{||x]: x€0X\{0}} >0 and inf{|y|; y=oY\{0}}>0.
Then for TeX(E, F), the following are equivalent.

i) T s a simplex homomorphism of E into F.
ii) There exist a function y(Y)on 0Y and a mapping k:0Y —0X satisfying:
a) 0=yM=ITI for all yoY. .
b) kOY)CT0X, k is O-continuous® on {y<aoY ; y(y)#0} and k(y)=k(Va)
if Ya=CaYar for some c,>0.
¢) TI=r(»fk() for any f€E and any y<oY.

PROOF. 1i)—ii): By ii) of Theorem 1, we see

T(V)CLO, IT)10X .

2) We call that k is @-continuous if it is continuous with respect to #-topology for
both X and Y.
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Since T’ is continuous, we get
T'@Y)CLo, (T10X. ()

For yedY, define y(y)=inf{yeR; T'ycr-0X} and
Ty

k(y)= 7(y)

0 if T'y=0.

if Ty+0

Then we have k(y)€9X, T'y=r(y) k() and 0=y(»)=|IT| by (xx). For yeaY,
we have 7(»)=|T’y| and k(y)=0X. Next we show that %2 is f-continuous on

on {y=aY ; 7(y)#0}. For any f-open subset U of 9X\{0}, let K=0X\U. Then
K=50. By the relation £2~%(K)=T'"4[0, |TI|1K)N0X, we have k~-(K) is f-closed
and so £-YU) (=dY\k YK)) is f-open. Since {0} is f-closed, £ is f-continuous

on {y€adY; r(»+0}.
iiy)—i): For any yedY, we have k(y)=0X and T'y=y(y)-k(y) by ii). So
. . Ty Ty
th lation ||~ =1 implies |T/y|= . Therefore T'y=0 T
e relation ||2(y)| mplies [T/y]=r(y) refore T7y=0 or oy )

=k(y)€0X. //
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