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§1. Introduction.

The Ramsey number »(m, n) is defined to be the smallest integer p such that
every graph of order p contains a complete subgraph on m vertices or an inde-
pendent set of n vertices. Obviously, »(m, n)=r(n, m), »(1, n)=1 and (2, n)=n,
but very few exact Ramsey numbers are known for m=3 and n=3. The follow-
ing table shows all Ramsey numbers (3, n) known to data, together with the
best known upper and lower bounds (see [2]).

n|345678910

Table
(3, ) | 6 9 14 18 923 2829 36 39-44

Using J. G. Kalbfleisch’s upper bounds for 11=n=14 (see [3]), the author and
S. Tachibana [4] showed that the Ramsey number (3, n) satisfies

(1) 3, n)é(;)——c for all n=n,

if the inequality (1) holds for both n=n, and n=mn,-+1, where ¢ is a non-negative
integer. Hence by the table we see

(2) r3, m=(y) for nz9.
For general m=2 and n=2 the following inequality is known
(3) r(m, n)=r(m, n—1)+r(m—1, n)
(for example, see [11). This yields together with »(2, n):ﬁ
(4) r(3, n)=r(3, n—1)+n.

As easily checked from the table, for 6=<n=10 the inequality (4) is replaced by
a stronger inequality
(5) #(3, n)<#r@3, n—1)+n—1.

Hence it seems very likely that the inequality (5) would be true for all n=6.
In this paper, we prove a slight modification of (5) as
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(6) r(3, n)=r(3, n—2)+2n—3 for all n=6.

It should be noted that »(3, n)<#(3, n—1)+n—1 and »3, n—1)<r3, n—2)+n—2
imply (6).

§2. Lemma and Theorem.

For a simple graph G we denote by V(G), d(v) and N(v) the vertex set, the
degree of v=V(G) and the neighborhood of v respectively. Let diam(G) denote
the diameter of G, |X| the cardinality of X and I, an independent set of n

vertices.
It is easy to see that if G has no triangle, then N(v) is an independent set

of d(v) vertices for all veV(G).

LEMMA. If a graph G of order p=3 contains no triangle, then there is a
graph G’ of the same order p such that G’ contains no triangle, GCG’ and
diam(G’)=2.

Proor. If diam(G)=3, then there are two vertices ¥ and v with the distance
at least three. Let G, be the graph G+uv obtained by joining » and » by an
edge. Then G, contains no triangle and GC G, If diam(G,)=3, we repeat the
operation that joins, by an edge, two vertices with distance at least three in G,.
By continueing the same operation we have a graph G’ such that diam(G’)=2.
Obviously, GCG’ and G’ contains no triangle.

In Lemma, it should be noted that every independent set in G’ is also an
independent one in G.

THEOREM. For the Ramsey number r(3, n), the recursive formula
(%) r(3, n)<r@3, n—2)+2n—3 for all n=6
holds.

ProoOF. By the-table we see that the inequality (%) is true for 6=<n=9. Then
let n=10 and p=r(8, n—2)+2n—3, and let G be any graph of order p which has
no triangle. In order to prove the theorem it suffices to show that G has an I,.
We can assume diam(G)=2. For, if necessary, we may consider the graph G’
satisfing all the conditions in Lemma. Note that if G’ has an [,, so does G.
Furthermore, we can assume

(7) dw)=n—1  for all vV (G),

because if there is a vertex veV(G) with d(v)=#, then N(v) contains an I,.
Case 1. Suppose r(3, n—1)=#»(3, n—2)+n—3.

Then the inequality (x) holds by (4).
Case 2. Suppose 73, n—1)=r3, n—2)+n—2.
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Then it follows from the iequality (2) together with p=»(3, n—2)+2n—3
(8) p=rG, n"—lH-n—lé%n(n——l).

If there is a vertex veV/(G) with dw)<n—2, then T=V(G)—N@) {v} satisfies
|T|=p—(n—1)=r@3, n—1). Hence T contains an I,-; and I,-,\Y{v} is an I,.
Therefore we can assume that G is (n—1)-regular by (7).

Now, suppose that |Nu)N\N@)| =<2 holds for every non-adjacent vertices u
and v. Let v be any fixed vertex and let T=V(G)—N@w)V{v} and T;=
{ueT: |[Nu)NN@w)| =i} for:=1, 2. Then, by (8), #;,=|T;| (=1, 2) satisfy

thtt,=|T]| =p—n§%n(n—3).

On the other hand, counting the edges joining N(v) to T, we have t,+2t,=
(n—1)(n—2). These yield #;=<—2, which contradicts #;=0. Thus there exists a
pair of non-adjacent vertices u and v satisfying |[Nu)N\N@w)|=3. Let T*=
V(G)—Nw)INw)\J {u, v}. Since |T*|=p—02n—3)=r(3, n—2), T* contains an
I,-s and I,-,\J{u, v} is an I,.

Case 3. Suppose (3, n—1)=73, n—2)+n—1.

By (2) we have
(9) p=r(B, n—2)+2n—3=r(3, n—l)+n-—2§%(n+l)(n-2)-

If there is a vertex veV(G) with dw)=n -3, then T=V(G)—N@)\Y {v} satisfies
|T|=p—(n—2)=r(8, n—1). Hence T contains an [,_, and /,-;\J{v} is an I,.
Thus we can assume

(10) dw)=n—1 or n—2  for all veV(G).

First, we assume that there is a vertex veV(G) with d@v)=n—2. We shall
show that there exists a vertex u which is non-adjacent to v and satisfies
INNNQ@)|=2. If |Nu)nN@)| =1 for every vertex u non-adjacent to v, then

T=V(G)—N@)\J {v} satisfies |T|=p——(n—1)§%n(n—3) by (2) and |[T|=

(n—2)(n—3) by counting the edges joining N(v) to T. Hence 3=<n=4, which
contradicts n=10. Thus we have a vertex u non-adjacent to v which satisfies
INuW)ANw)|=2. Let T*=V(G)—Nu)JINuw)J{u, v}, then by (10) |T*|=
p—(2n—3)=r(3, n—2), which implies that T* contains an [,-, and I,-,\J{u, v}
is an I,.

Secondly, we assume d(v)=n—1 for all veV(G). Then G is (n—1)-regular.
Thus similarly to the proof of Case 2 one can show that G contains an I,. So
we shall omit it. ‘

Thus the proof has been completed.

REMARK. Table 1 in [4] contains a mistake which states 34=r(4, 6)=36. It
seems that the best bounds known up to date is 34=<r(4, 6)<44, [2].
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