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This is a continuation of our papers [1] to [3]. We shall be concerned with
introducing, for functions of a real variable, two new kinds of integration each of
which includes that of Denjoy. At present, however, we do not know whether
they really extend the Denjoy integration. There are, moreover, a number of
other problems which we have failed as yet in solving.

We shall make free use of the terminology, notation, and results of the papers
mentioned above. Thus a function, by itself, will mean a finite real-valued one
defined on the whole real line, unless stated otherwise. Again, by a sequence we
shall understand a nonvoid countable one finite or infinite. A sequence will
usually be indexed with natural numbers in this paper; however, even such an
expression as “for all values of n” where n is the index, will not necessarily
mean that »n ranges over the whole set IV, unless the sequence is expressly
restricted to being infinite.

The diameter of a linear set X (i.e. any subset of the real line) will be
denoted by d(X). In particular, d(X) means 0 or +oco according as X is void or
unbounded, respectively. The oscillation O(p; S) of a function ¢ on a linear set
S is defined to be the diameter d(¢[ST]).

We shall call a function ¢ to dwindle on a set S, if for each ¢>0 this
set can be covered by a sequence of open intervals <{H,, H,, ----> such that
> dleLH,NS])<e, where the summation extends over all values of n (under
consideration). Evidently, a function which dwindles on a set necessarily does
so on every subset of the same set.

THEOREM 1. Any function ¢ which dwindles on a set S, is continuous on S
and we have |@[S]]|=0.

PrROOF. We need only prove |¢[S]|=0. With the same notation as above,
we have successively

S=\UH.NS), ¢LSI=U e[H.NS],
lo[S1I =2 elH.NS1 =2 dlplH.NSD<¢,

as | X|=d(X) for every linear set X. Hence the result.

In order to avoid any possible misunderstanding, we mention here explicitly
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that an nterval, by itself, may be finite (closed, open, or half open) as well as
infinite, while neither the void set nor the singletonic sets are counted among
intervals. By a nonterminate interval we shall understand any interval which is
an open set. Every open interval is of course nonterminate, but not vice versa.

The union of the first n constituents of a sequence of sets will be called its
nth partial union. Needless to say, if the sequence is finite and of length £, this
number »n can only range over 1, 2, ----, k.

LEMMA. If the union (4] of a sequence 4 of monterminate intervals is an
interval, it is always possible to extract, from among the constituents of 4, a dis-
tinct sequence 4* (i.e. one without repetitions) whose union coincides with [4] and
each of whose partial unions is an interval.

This is a very slight extension of the lemma given in [1] on p. 253 et seq.
The proof is a strictly verbal repetition of that for the mentioned lemma and
may be omitted. It is worth notice that the sequence 4* is not necessarily a
subsequence of the original sequence 4.

THEOREM 2. In order that a function ¢ should dwindle on a set S, it is
necessary that given any ¢>0 we can cover this set S with a non-overlapping
sequence of closed intervals {I,, Iy, +--+> such that X d(e[I,NS])<e.

This condition is also sufficient, provided the fudction ¢ is continuous on S.

REMARK. The continuity assumption on the function cannot be deleted off
the sufficiency part of the theorem, as seen by considering the simple case in
which the set S is the real line and the function ¢(x) is equal to 0 or 1 according
as x<0 or x=0 respectively. '

Proor. (a) Sufficiency. If ¢ is continuous on S, then for each n we
can enclose the intersection I,N\S in an open interval H, such that

dleLH.NSD) <d(elI NS+ 2"¢.
The sequence <{H,, H,, ----)> covers S and we have
3 Al HaNSD< T dlgllnNSD+Z 2 e <2e,

which completes the sufficiency proof.

(b) Necessity. The proof will proceed virtually in the same way as for
the Theorem on p. 254 of [1]. Given any 0>0, we can cover the set S with a
sequence of open intervals @=<{H,, H;, ---+)> such that > d(¢[ Hr.NS])<3, where
m ranges over all its values.

Noting that the union [©®] is a nonvoid open set, let us consider any compo-
nent interval, say D, of this union, so that D is a nonterminate interval. Then
those intervals H, which are contained in D form together a subsequence of O,
which we shall denote by 4. Since plainly [41=D, the above Lemma applies to
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this sequence 4. Thus D is the union of a distinct sequence 4*=<(G,, G, *--->
whose constituent intervals G; belong to 4 and all whose partial unions Py, P,, - -
are intervals. .

Let us write A;=P, and A;=P;\ P;_; for 7>1 as long as P; exists, so that
{A;, A, :+:+) is a disjoint sequence of sets and has D for its union. Each set
A; is either (i) void, or (ii) a subinterval of the open interval G;, or (iii) the
union of two disjoint subintervals of G;, say B; and C;. In case (i) we simply
strike A; off the sequence (A,, A, ---->; in case (ii) we replace A; by its closure
A;; in case (iii) we replace A; by the pair of the closures B; and C;. Applying
this procedure to <{A4,, As, ----> for i=1, 2, ---- as long as A; exists, we obtain
a new sequence ¥p,=<K,, K, ---->, which is a non-overlapping sequence of
closed intervals. We find at once that the union [¥,] is D and that

2 dpLANSD) =2 X deLGinST) -

Writing I generically for a closed interval which appears in the sequence ¥
for some D, we arrange all the intervals I in a distinct sequence <[y, I,, +--->.
This sequence conforms to the assertion if 20<e, on account of the appraisal

2 dlpllanSD=2 23 dpLENS D=2 2 dlpLHnNS]) <20 .

THEOREM 3. If a function ¢ dwindles on a subset S of a closed interval I,
then given an arbitrary €>0 we can cover the set S with a non-overlapping sequence
Iy, Iy, ++--> of closed intervals contained in I, in such a manner that

2 dplInnShH<e.

PrOOF. We may plainly assume that the set S contains a point, say ¢, which
is interior to the interval I. We take an arbitrary 0>0, and we shall keep both ¢
and ¢ fixed during the proof.

By the foregoing theorem the set S admits a covering by a non-overlapping
sequence of closed intervals {[,, J,, ----> such that > d(¢[ J;"\S])<d. From this
sequence we shall derive another non-overlapping sequence (K, K, ----> of
closed intervals by means of the following process which we shall temporarily call
left hand modification.

Writing I=[a, b], so that ¢<c<b, we shall distinguish two cases according
as a&S or asS.

Let us first treat the case a«S. Consider any interval J; of the sequence
Ty, Jop vooo>. It J;C(—c0, a], we delete J; off this sequence. On account of
the presence of the point ¢, not all the J; are thus deleted. On the other hand,
if J;(—oo, a7, then the intersection J;\[a, ++o0) must be a closed interval, and
we replace J; by this interval. We thus obtain from {J;, J, ----> a new non-
overlapping sequence of closed intervals, which is the required <K, K,, - ).

We now pass on to the remaining case a<S. Since the function ¢ is con-
tinuous on S, we can take a point p such that a<p<c and O(¢; SnlLa, p1)<ad.
Consider any interval J; of the sequence <Ji, Jo, -+-->. If J;C(—o0, p7, we
strike J; off this sequence. By the presence of the point ¢, not all the J; are
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thus struck off. If J;¢(—oo, p], then J;N\[p, +o0) is a closed interval, and we
replace J; by this interval. We denote by <{K,, K, ----> the new sequence thus
derived from <J,, J,, ---->. Then <K, K,, ---->, where K,=[a, p], is the
required sequence.

Making a scrutiny into the above construction, we ascertain without difficulty
that the new sequence has the following properties: (a) <K, K,, +-+-> is a non-
overlapping sequence of closed intervals contained in [a, --o0); (b) this sequence
covers the set S; (c) we have X d(p[K;N\S])<2d, where ; ranges over all its
values.

To the sequence <K, K,, ----> we now apply a right hand modification, the
meaning of which it would be needless to expound. The resulting sequence, for
which we write <[y, I;, ---->, must have three properties corresponding to (a)~
(¢) above. We thus conclude finally that <I,, I,, ----> is a non-overlapping
sequence of closed subintervals of I and that it covers S so as to satisfy
> d(o[I.NS])<36. This completes the proof, since ¢ is arbitrary.

THEOREM 4. If a function ¢ dwindles on a set S of finite outer measure,
then we can make correspond to each ¢ >0 a non-overlapping sequence <{Iy, Iy, -++->
of closed intervals with lengths |I,|<e, so as to cover S and to fulfil simultaneously

Zn)[In|< [Sl+e and ;d(¢[lnm5])<e.

PrROOF. By hypothesis, we can cover S with a non-overlapping sequence
KKy, K,, ----> of closed intervals with lengths |K;|<e in such a way that
21K <|S|+e. Since the function ¢ dwindles for each 7 on the intersection
K;N\S, the foregoing theorem shows that each K;N\S can be covered by a non-

overlapping sequence <{L{¥, L{¥, ----> consisting of closed subintervals of K;
and fulfilling the inequality

Ole; LIPNS)+0(p; L{PNS)+ -+ <27%.

If we consider all the intervals L{® and arrange them in a simple sequence
Iy, I, ++-+>, we see readily that this sequence is non-overlapping and covers
the set S. Moreover, |[,|<e for every n and

S =2 DL =21 K| <IS|+e,

2 Olp; InmS)=§) 2,7 O(p; L;“mS)<§j 27le=¢.

THEOREM 5. If a function ¢ is absolutely continuous on a set S, then to each
e>0 there corresponds a 0>0 such that, for every non-overlapping sequence of
closed intervals {Iy, I, ----> fulfilling 33|I,]<0, we have X dp[I,NS])<e.

In particular, therefore, a function which is absolutely continuous on a given
set of measure zero, necessarily dwindles on the same set.

Proor. By the definition of absolute continuity, given any >0 there exists
a 0>0 such that for every non-overlapping sequence {J,, Js, ----> of closed
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intervals whose endpoints belong to S, the inequality
21J:1<d implies Xlo(J0l <7,

where ¢(/,) means the increment over J, of the function ¢. We shall show in
the following lines that this number J certainly conforms to our assertion if we
take p=2"le.

Let <[, I,, --++> be any sequence considered in the theorem. In order to
verify the displayed inequality of the theorem, we may suppose without loss of
generality that, for every nu, the set I,N\S contains at least two points. Noting
that the function ¢ is bounded on every bounded set, we make correspond to
each n, as we clearly can, a closed interval K, whose endpoints belong to I,NS
and which fulfils the inequality

d@LLNSD< | p(Kn) | +2777.
Since 2| K, |<3|1,|<d, we then have

z d(gotlnmS]K%? | p(KR) | +X 2 <gty=e,
which completes the proof.

THEOREM 6. If a function ¢ is absolutely continuous on a null sel S (i.e. a
set of measure zero) and if a function \r dwindles on this set, then their sum @+
dwindles on S.

Proor. Given any €>0, let us take a >0 agreeable to the assertion of
Theorem 5. Writing y=min(e, ) and applying Theorem 4 to the function +,
we find that the set S can be covered by a non-overlapping sequence of closed
intervals I, I,, ---+> fulfilling simultaneously

Zn}[In[<77 and ;d(\[r[[nmS]Kr;.
It then follows from Theorem 5 that X d(¢[l,.NS])<e.

On the other hand, if we write y=¢-+1, the inequality

d(yCLD)=d(eLLD)+d([L])

holds for any linear set L whatsover. In point of fact, for every pair of points
u, v of L we have the relation

[x(w)—xW) | = () — @) |+ [ Y (u) =Y @) | =deL LD+ dW[L]),
whence the result follows at once. Consequently

dlIaNSD=dleLzNSD+d(PLI.NSTD)

for all n under consideration, and hence

2 AU NSDET ALl NSD+T AW INSD<2e .

This completes the proof, since the function y is continuous on S together with
¢ and .
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THEOREM 7. A function ¢ which dwindles on every null subset of a set E,
1s necessarily continuous on E.

PROOF. Let ¢ be a fixed point of the set E supposed nonvoid. It suffices
to show that for every point sequence <{x,; n=N) taken from E and converging
to ¢, the sequence <{p(x,); neN) converges to ¢(c). By Theorem 1, the function
¢ is continuous on the null set S={¢, x;, x5, *--+}. Hence the result.

A function which fulfils the hypothesis of the above theorem, will be called
continuous (M) on the set E. Such a function maps every null subset of E onto a
null set, by Theorem 1, and hence fulfils the condition (N) on E. Further, such
a function is continuous (M) on every subset of E.

From now on, if a theorem not quoted from elsewhere is stated without a
proof, it will be meant that the proof is easy and left to the reader.

THEOREM 8. Every function which is absolutely continuous on a set, is con-
tinuous (M) on the same set.

THEOREM 9. The sum of two functions one of which is absolutely continuous
on a set and the other of which is continuous (M) on the same set, is necessarily
continuous (M) on this set.

A function which is continuous on a set E and which fulfils the condition
{N) on this set, will be termed continuous (N) on E. Continuity (M) on a set
implies continuity (N) on the same set.

We shall call a function ¢ to be generalized continuous (M), or simply GCM,
on a set E, if it is continuous on E and if E is the union of a sequence of sets
on each of which ¢ is continuous (M).

THEOREM 10. A function which is generalized continuous (M) on a set, is
necessarily continuous (N) on this set.

THEOREM 11. Ewvery function which is generalized absolutely continuous on a
set, 1s generalized continuous (M) on the same set.

THEOREM 12. The sum of two functions one of which is generalized absolutely
continuous on a set and the other of which is generalized continuous (M) on the
same set, 1s necessarily generalized continuous (M) on this set.

We dealt in our paper [1] with functions which we called generalized highly
continuous (or GHC) on a set. We now go on to prove that these functions are
generalized continuous (M) on the same set. For this purpose, it is convenient
to begin by recapitulating a few relevant definitions.

A function ¢ will be called strongly semiabsolutely continuous (or SSC) on a
linear set E, if there exists in the interval (0, 1] a number « (depending on both
the function and the set) with the following properties: (i) The set E is of
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a-dimensional volume zero; (ii) given any ¢>0 there is an >0 such that for
every non-overlapping sequence </j, I5, ----)> of closed intervals whose extremities
belong to E, the inequality |/,|*+4|[,|*+-- - <7y implies |p)|+ | )|+ - <e.
On account of this property (ii), a function which is SSC on a set is necessarily
continuous on this set.

We shall term a function ¢ to be highly continuous (or HC) on a set E, if
on this set it is either AC (absolutely continuous) or SSC. Again, a function ¢
will be called generalized highly continuous (or GHC) on a set E, if it is continuous

on E and if E is expressible as the union of a sequence of sets on each of which
¢ is HC,

The following lemma is a special case of the Theorem given on p. 254 of [1].

LEMMA. If E is a set of a-dimensional volume zero, where « is some positive
number, then for any 0>0 we can cover the set E with a non-overlapping sequence
of closed intervals <Ky, K,, ++++> such that X)| K,|*<é.

THEOREM 13. Every function which is generalized highly continuous on a set,
is generalized continuous (M) on the same set.

PrROOF. In view of Theorem 8, we need only show that a function ¢ which
is SSC on a set E, is continuous (M) on this set.

Let « be the number which appears in the above definition of an SSC func-
tion. The set E, which is of «a-dimensional volume zero, must have measure
zero. Accordingly it suffices to verify that the function ¢ dwindles on E. Let
us write 6=min(e, 5), where ¢ and 7 are the numbers which appear in the
property (ii) above. By the Lemma stated just now, we can cover the set E
with a non-overlapping sequence of closed intervals (K, K, ----> such that
2 Kp|%<0. It is enough to deduce X d(¢[ K,NE])<2¢, where we may, without
loss of generality, suppose that every KnmE contains at least two points.

For each n under consideration, we can choose a closed interval I, whose
endpoints belong to K,NE and which fulfils the inequality

d(e[K.NED< |o(I,)| 42775 .
Then <I,, I,, ----> is a non-overlapping sequence of closed intervals with end-

points belonging to the set E, and we have the relation X |/,|*<3| K, |*<d<7.
Hence, the above property (ii) gives X |p([,)]| <e. It follows that

%}d(go[an\E])<§lgo(ln)|+; 270 <e+0=2e, g.e.d.

REMARK. This theorem includes Theorem 11; in fact, by the definition of
a GHC function, a function which is GAC (generalized absolutely continuous) on
a set is always GHC on the same set. On the other hand, we constructed in the
paper [2] a class of functions which are GHC, without being GAC, on the unit
interval [0, 1]. These functions must, however, be generalized continuous (M)
on [0, 17 on account of the present theorem.
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Let E be any linear set. A function will be called approximately derivable
(N) [or (M)] on the set E, if it is continuous (N) [or generalized continuous (M)]
.on E and approximately derivable at almost all points of E. We shall often write
simply ADN and ADM for these properties, respectively.

Every function which is GHC on a measurable set must be ADM on this set,
on account of the preceding theorem and the Theorem on p. 253 of [1]. Again,
it is evident that a function which is ADM on a set E, is necessarily ADN on
E. However, the converse is false as shown by the following theorem.

THEOREM 14. Let U be the unit closed interval [0, 17.
(i) There are functions which are ADM, but not GAC, on U.
(i) There are functions which are ADN, but not ADM, on U.

PROOF. Re (i): As already stated in the above Remark, there certainly
exist functions which are GHC, and hence ADM, without being GAC, on U.

Re (ii): S. Mazurkiewicz constructed in his paper [4] a function f(x) which
is defined and continuous (N) on a nonvoid compact null set QCU and further
such that the function f(x)+ax, where « is any positive constant, maps the set
Q onto a nonnull set. We can easily extend this function f(x) to one defined
and ADN on the real line. However, on account of Theorem 12, this extended
function cannot be ADM on U. By adding an arbitrary constant to the extended
f(x), we obtain an infinity of functions which are ADN, but not ADM, on U.

THEOREM 15. If D is a nonvoid open set contained in a closed interval K
and if a function ¢ is absolutely continuous on the compact set Q=K\ D, then the
linear modification A of this function with respect to Q is absolutely continuous on
the whole interval K.

PrROOF. During the proof, we shall understand by an interval of the first
Cor second] kind any closed interval whose endpoints belong to the set Q [or
whose interior is contained in the set D]. Clearly, every interval of the first
or second kind is a subinterval of K. Of course, it is possible that an interval
is of the first and the second kind simultaneously. Again, any non-overlapping
sequence of intervals of the first [or second] kind will simply be called sequence
of the first [or second] kind.

Let us arrange the component open intervals of D in a distinct sequence
Iy, Ip, ++++>. Since the function ¢ is AC on Q, given any ¢>0 there is a >0
such that for every sequence {J;, [, +---> of the first kind the inequality

|Jil-+ 1ol 4+~ <8 implies (/)] +[@(J) |+~ <e.

We proceed to show that > [¢(l,)| <-4-co, where n ranges over all its values.
For this purpose, we may suppose that >I[¢([,)| is an infinite series. As
DNI.|=|D| <40, there is a k=N for which we have [[.|+|lzss]+----<0.
Accordingly, by considering the closure sequence <I;, I, ---+> which is of the
first kind, we have [@ )|+ s+1)|+----<e. Hence 2 |o(l,)]| <4oo.
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By definition, the linear modification A coincides on the set @ with the
function ¢ and further is linear on the closure of each interval /,. Combining
this fact with 2 [A(7,) =2 ,)| <-+co, we find easily that if (K, K, ----)> is
any sequence of the second kind, then XJ|A(K;)| can be made arbitrarily small
by making 3| K;| sufficiently small.

Consider now any non-overlapping sequence {Lj, L, ----> of closed sub-
intervals of K. The proof will be complete if we verify that the sum >J|A(L;)|
can be made arbitrarily small by making >3] L;| sufficiently small. But we know
that this actually comes about if (L, L, ----> is of the first or second kind.
And the general case is ascribable to these special cases, since every L; which
is neither of the first nor of the second kind, is expressible as the union of at
most three non-overlapping intervals each of which is of the first or second kind.

We quote the following five Theorems 16~20 from pp. 233, 220, 285, 225, 227
of Saks [5] respectively. However, Theorems 16 and 17 are only partial quota-
tions.

THEOREM 16. In order that a function which is continuous on a nonvoid closed
set E, be GAC on E, it is necessary and sufficient that every monvoid closed subset
of E contain a portion on which the function is AC.

THEOREM 17. If two functions of a real variable coincide on a measurable
set E, their approximate derivates coincide respectively at almost every point of E.

THEOREM 18. In order that a continuous function ¢ be absolutely continuous
on a closed interval K, it is necessary and sufficient that the function ¢ fulfil on
K the condition (N) and the condition

S o' (x)dx <400
P

simultaneously, where P denotes the set of the points of K at which the function
¢ has a finite positive derivative.

THEOREM 19. A fenction which is GAC on a set necessarily fulfils the con-
dition (N) on this set.

THEOREM 20. In order that a function ¢ which is both continuous and BV on
a compact set E, be AC on E, it is necessary and sufficient that ¢ fulfil on this
set the condition (N) of Luzin. ‘

| THEOREM 21. Suppose that a function ¢ is continuous (N) on a closed interval
I and that a function ) is GAC on I. If we have

Qap(x)=rip(x)  [or @;p(X>§xk;p(x)]

for almost every point x &I at which both ¢ and » are AD, then the difference
v—¢ is AC and non-decreasing [or non-increasing], on the interval I, so that the
function ¢ is GAC on I also.
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REMARK. The symbol AD is short for “approximately derivable.” It is
worth notice that the function ¢ is not assumed to be ADN on /. This theorem
includes Theorem 8 of [3] as well as the following Theorem 22 concerning
linearly ordered series.

PROOF. We may restrict ourselves to the half of the assertion in which we
assume the inequality ¢;,(x)<+/,(x). We shall have recourse to the same tech-
nique as used in the proof for Theorem 7 of [3].

During the proof, we shall understand by an admissible interval any closed
or open interval JCI with the following two properties: (i) the function ¢ is
GAC on J; (ii) every closed interval CC ] fulfils the inequality o(C)=+(C). As
we readily see, in order that a closed interval be admissible, it is necessary and
sufficient that its interior be so.

Let S be the union of all the admissible open intervals, so that S is an open set
contained in /. Supposing for the time being that S is nonvoid, we decompose
S into its component open intervals, which we shall denote generically by H.
We are going to show that each H is an admissible interval. For this purpose,
it is clearly sufficient to verify that if A is a closed interval contained in H, the
function ¢ is GAC on A and we have ¢(A)<+(A).

There exists, for such an interval A, a 6>0 such that any two points p and
g of A both belong to one of the admissible open intervals, provided only that
|p—q| <d. Indeed, if the contrary were true, we could extract from A two
infinite sequences of points, say <{p,> and <{¢,», such that lim|p,—g¢,|=0 and
that, for each n<= N, no admissible open interval would contain both p, and g,.
We may, without loss of generality, suppose that both these sequences converge
to a common limit, say &, belonging to A. Since &=H, there would exist an
admissible open interval containing & Both p, and ¢, would belong to this
interval for n sufficiently large, and we should thus arrive at a contradiction.

Let us express the interval A considered just now as the union of a finite
non-overlapping sequence <A,, ----, A,> of closed intervals. It follows immedi-
ately from the above that, if the lengths of A,, - .-, A, are simultaneously
sufficiently small, each of these £ intervals is contained in some admissible open
interval, so that the function ¢ is GAC on every A; and we have the inequality
o(A)=(A;) for every A;. It ensues that ¢ is GAC on A and that

P(A)=2 (AN =2 Y(A)=V(A4) .

We have thus confirmed that every component interval H of the union S of
the admissible open intervals is itself one of them, provided that S is nonvoid.

We now do away with this last assumption on S and we proceed to show
that S coincides in reality with the interior of the interval I. Let us write
E=I\S for this purpose, so that E is a nonvoid closed subset of I. (If S happens
to be nonvoid, the component intervals of S are no other than the open intervals
contiguous to this set E.) Assuming that E contains at least one interior point
of I, we shall derive a contradiction in what follows.

Let us show in the first place that every point p=FE interior to I must be
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an accumulation point for E. Indeed, if this were false, there would exist a pair
of admissible open intervals J; and J, abutting at p. The union J=/,\Y ;Y {p}
would then be an admissible open interval, as we can easily verify. It would
follow that pe JCS, which is certainly absurd.

This being so, we can take, in the interior of I, a closed interval K, whose
endpoints belong to E and whose intersection with E is a nonvoid perfect set.
Since the function v is GAC on I, and hence on E also, we deduce from Theo-
rem 16 that this intersection E\K, contains a portion on which « is AC. We
then can choose in K, a closed interval K whose endpoints belong to £ and
whose intersection with E is a nonvoid perfect set, say @, contained in the
portion just mentioned. The function 4 is AC on this set Q.

We shall first treat the case in which Q=K, so that the open set D=K\ @
is nonvoid. Each component interval J of this set D is contiguous to ¢ and
hence to E also. Thus J is a component of the set S. But we proved already
that all the components of S are admissible. It follows that we have ¢(J)=<+(])
for every component J of D.

Since the function +r is AC on @, we find by Theorem 15 that the linear
modification ¥ of +r with respect to the set @, is AC on the interval K. Hence
¥ is derivable at almost all points of K. For definiteness, let us define ¥'(x) to
mean 0 at every point xR at which ¥ is not derivable. Then ¥”/(x) is sum-
mable on K.

Let @ be the linear modification of the function ¢ with respect to the set
Q. We find at once that @ is continuous (N) on K. Both @ and ¥ are derivable
at all points of the open set D, since they are linear on every component J of D.
We have moreover @'(x)<¥"(x) for all x&D, as O(J)=¢(/)S=Y(H=T()).

Let us consider now the set, say M, of all the points of K at which the
function @ is derivable. By what was stated just now, this set M contains D.
We proceed to examine the set M\ D, which is easily found to be a measurable
subset of Q. Since the functions @ and ¢ coincide on @, we see by Theorem 17
that their approximate derivates coincide respectively at almost every point of Q.
A similar statement can of course be made for the pair of functions ¥ and .
On the other hand, ¥(x) is derivable to ¥’(x) at almost every point of K, as
already mentioned. By hypothesis, furthermore, we have ¢;,(x)<+;,(x) at almost
every point xeJ at which both ¢(x) and 4(x) are AD. Combining all these
items, we conclude that @'(x)<¥”’(x) at almost all points x of M\ D. But we
know that the same inequality holds for all x=D. Consequently we have
@'(x)<¥’(x) for almost all points x of the set M=D\U(M\ D).

We are now in a position to apply Theorem 18 to the function @ and the
interval K. Indeed, denoting by P the set of the points of K at which @ has a
finite positive derivative and taking notice of the summability of ¥7(x) on K, we
find that the condition of the mentioned theorem is fulfilled as follows:

SP(D’(x)dx = SPW’(x)dx < SK[ U'(x)|dx<—+oo.
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It follows that the function @ is AC on K. In consequence, @ is derivable at
almost all points of K, so that we have @'(x)<¥"(x) almost everywhere on K.
Let us, for definiteness, define @’(x) to be 0 at every point xR at which @ is
not derivable. Then @’(x) is summable on K.

As already mentioned, every component J of the open set D is an admissible
interval. The function ¢ is therefore GAC on every J, and hence on the set D,
too. On the other hand, ¢ coincides with @ on the set @, on which @ is AC.
It follows that ¢ is GAC on the whole interval K.

We now want to show that K is admissible. For this purpose, we need only
prove the inequality ¢(C)=<+(C) for every closed interval CCK. A closed interval
A will, for a while, be called manageable, if it is contained in the closure of a
component J of D, or if both its endpoints belong to the set Q. (A manageable
interval may happen to fulfil these two conditions simultaneously, but this does
not matter.) We see at once that any closed interval CC K can be expressed as
the union of at most three non-overlapping intervals which are manageable.
Accordingly our task in hand is reduced to verifying ¢(A)=+(A) for every
manageable interval A.

This inequality is obvious if ACJ, where / is a component of D, since the
closure J is admissible together with /. Supposing, therefore, that the endpoints
of A belong to the set @, we have

Y(A)—p(A) =T (A)—D(A)=
= SA?F’(x)dx — SAQ’(x)dx - SA{?F’(x)—-Q)’(x)} dx=0,

since we have @'(x)<¥’(x) almost everywhere on K, as already mentioned.

The interval K is thus admissible. The set S therefore contains the interior
of K. However, this contradicts the fact that K contains the nonvoid perfect set
@ which is disjoint with S.

Up to now, we have been dealing with the case Q=K. But the treatment
of the remaining case Q=K is far simpler, and we shall equally arrive at a
contradiction. We leave the details to the reader.

To conclude, we have proved by reductio ad absurdum that the interior of I,
and hence [ itself, is an admissible interval. In other words, the function ¢ is
GAC on [ and we have the inequality ¢(C)=+(C) for every closed interval CCJ.
The difference f(x)=+(x)—¢(x) is therefore non-decreasing on I. But this func-
tion f is GAC on I, together with ¢ and +». Theorem 19 then shows that f is
continuous (N) on I. It follows finally by Theorem 20 that f is AC on [.

THEOREM 22. Given two linearly ordered series X f(w) and 3 glw), where
o ranges over a countable indexing set §2 furnished with a linear ordering, suppose
that the former series is Luzin convergent and the latter Denjoy convergent. If
flw)=gw) [or flw)=gw)] for all w2, then X f(w) is Denjoy convergent also
and we have

D f@)=X glw) [or T flo)=gw)].
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REMARK. In connection with this theorem, let it be mentioned that we do
not know whether the following assertion is true: With the same notation as
above, if both 3 f(w) and X g(w) are Luzin convergent and if f(w)=<g(w) for all
we< R, then necessarily 3 f(w)=X glw).

Now let I be a closed interval. We shall call two functions ¢ and + to be
approximately equiderivable on I, if both of them are ADN on I and if we have
ap(x)=145(x) for almost every point x &/ at which both ¢ and - are AD. With
this wording, Theorem 8 of [3] admits the following brief expression: If fwo
functions are approximately equiderivable on a closed interval I and if one of
them is GAC on I, then they differ on I only by an additive constant.

The class of all the functions that are ADN [or ADM] on a closed interval
I, will be called the ADN [or ADM] class on [. Similarly for the GAC and
GHC classes on I. Let © be a nonvoid subclass of the ADN class on I. We
shall call a function ¢ to be stable on I within the class &, if it belongs to & and
if every member of & with which ¢ is approximately equiderivable on I differs
over I from ¢ only by an additive constant. When & coincides, in particular,
with the ADN [or ADM] class on I, a function stable on I within © will usually
be called function stable (N) [or (M)] for short.

Again, in the above expressions, we may omit the reference to the interval
I if there is no fear of misunderstanding or confusion. For example, Theorem 8
of [3] can now be expressed as follows: Ewvery function which is GAC on a
closed interval is stable (N) on this interval, or more briefly, every GAC function
1s stable (N).

Let & and € be two nonvoid subclasses of the ADN class. & will be termed
stable within E, if ©C% and if all members of & are stable within . If espe-
cially ©=% here, we shall usually call & self-stable. On the other hand, if in
the above definition ¥ is the ADN [or ADM] class, & will usually be called
stable (N) [or (M)]. In other words, © is stable (N) [or (M)] if and only if all
its members are so. The GAC class is stable (N), while Theorem (ii) on p. 256
of [17] shows that the GHC class is self-stable.

A nonvoid class of functions will be termed addstive, or closed under addition,
if the sum of its two members (identical or not) always belongs to it. For
example, the GAC and the GHC class are additive. However, the ADN class is
not additive, as shown incidentally in the proof for the assertion (ii) of Theorem 14.

We do not know whether the following assertions are true. (The reference
to the underlying interval has been omitted.)

(i) The ADN class is self-stable. (ii) The ADM class is stable (N). (iii) The
ADM class is self-stable. (iv) The GHC class is stable (N). (v) The GHC class is
stable within the ADM class. ~ (vi) The ADM class is closed under addition.

We now quote the following result from p. 299 of Saks [5].

THEOREM 23. The extreme approximate derivates of any finite measurable
function of one real variable are themselves measurable functions.



32 "~ K. ISEKI NSR. O.U., Vol. 34

We shall call a function f to be integrable (N) [or (M)] on a closed interval
I, if there exists a function ¢ stable (N) [or (M)] on 7, such that f(x) coincides
with the approximate derivative ¢;,(x) at almost every point x</ at which the
function ¢ is AD. When this is the case, the increment ¢(I), which is plainly
uniquely determined, will be called the integral (N) [or (M)] of the function f
on the interval I. These integrals (N) and (M) will be denoted by N(f; /) and
M(f; I) respectively. We shall also use the expressions Luzin integrable [or
integral] in place of “integrable [or integral] (N)” respectively.

We find at once by Theorem 23 that a function which is integrable (N) or
(M) on a closed interval I is necessarily measurable on I.

Of the following three theorems, the first one is evident, the second follows
directly from the stability (N) of the GAC class, and the third is ensured by
Theorem 21.

THEOREM 24. If a function f is Luzin integrable as well as integrable (M),

on a closed interval I, then the Luzin integral coincides with the integral (M), i.e.
we have N(f; D=M(f; D). ‘

THEOREM 25. Every function f which is Denjoy integrable on a closed
interval I, is Luzin integrable as well as integrable (M), on the same 1interval,
and the three kinds of integral coincide one with another, i.e.

N(f; D=M(f; D=D(f; D),
where D(f; I) stands for the Denjoy integral.

THEOREM 26. Given two functions f, g and a closed interval I, suppose that,
on this interval, f is Lusin integrable and g is Denjoy integrable. If we have the
inequality f(x)=<g(x) [or f(x)=g(x)] almost everywhere on I, then the function f
1s necessarily Denjoy integrable on I.

REMARK. We do not know whether the following assertion is true:
If two functions f, g are integrable (N) [or (M)] on a closed interval I and
if we have f(x)=<g(x) almost everywhere on I, then
N(f; D=N(g; ) [or M(f; D=M(g; I)].

In other words, integration (N) [or M)] is a monotone non-decreasing func-
tional of the integrand function.

THEOREM 27. Given two functions f, g and a closed interval I, suppose that,
on this interval, f is integrable M) and g is Denjoy integrable. Then the sum
h=f-+g is also integrable (M) on I and we have

M(h; D)=M(f; D+D(g; ).

REMARK. We do not know whether, in this theorem, the integrability (M)
of the function f can be replaced by Luzin integrability. Much less do we know
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whether the following is true:

The class of the functions which are integrable (N) [or (M)] s additive, and
the integration (N) [or (M)] is an additive functional on this class.

This assertion is, as we see without difficulty, equivalent to the assertion that
the class of the functions which are stable (N) [or (M)] s additive.

PROOF. By hypothesis we can select two functions ¢, 4 the former of which
is stable (M) on I and the latter is GAC on I, so as to fulfil simultaneously

F(xX)=@ap(x) and g(x)=1rap(x)

for almost all xeI. By theorem 12, the sum y(x)=¢(x)+ ¥ (x) is generalized
continuous (M) on I and we have

X;p(x):¢;p(x)+ \[’;p(x)=f(x)+g(x):h(x)
for almost all x<I, so that ¥ is ADM on I.

We proceed to show that this function y is stable (M) on /. For this purpose,
let 4 be any function which is, on the interval I, ADM and approximately equi-
derivable with y, so that 6},(x)=ys,(x) for almost all the points x<J. Writing
p(x)=0(x)—+(x) we find, by Theorem 12, that p is generalized continuous (M)
on I. We have further

P;p(x): 0;9(75)_ \p;p(x):X:/ip(x)_ ‘l";p(x):@;p(x)
for almost all xeI. Consequently o is ADM and approximately equiderivable

with ¢, on I. Since ¢ is stable (M) by hypothesis, the difference p—¢ must be
a constant, say ¢, over I. We then have

0(x)—y(x)=p(x)—p(x)=c (x&l),

which shows that y is stable (M) on /.
It follows that the function % is integrable (M) on I and that

M(h; D=yD=p)+y(D)=M(f; D+D(g; I,

which completes the proof.

We do not know whether the following assertions are true:

(i) Luzin integration amounts to the same as integration (M). (ii) Lusin
integration is no more than that of Denjoy. (iii) Integration (M) is no more than
that of Denjoy.
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