Split Graphs with Dilworth Number Three

Chiê Nara

The Doctoral Research Course in Human Culture, Ochanomizu University (Received September 10, 1982)

§ 1. Introduction.

For a set S and a binary relation \leq on S, the pair (S, \leq) is called a preordered set if the relation is a preorder, i.e., a reflexive and transitive relation, and a subset S_0 of S is called incomparable if for any pair $\{x, y\}$ of S_0 it holds neither $x \leq y$ nor $y \leq x$. Then Dilworth number of the preordered set (S, \leq) is defined by the maximum cardinality of incomparable subsets of S, which is equal to the minimum number of chains of the preorder \leq covering S ([1]).

For a simple graph G we denote the vertex set by V(G) and the neighborhood of a vertex v by N(v) or $N_G(v)$. Let S be a subset of V(G). Then the *vicinal preorder* \leq is defined on S by

$$u \leq v$$
 if and only if $N(u) \subset N(v) \cup \{v\}$

for $u, v \in S$ which is in fact a preorder, and the Dilworth number of (S, \leq) is written by $\nabla_G(S)$. Dilworth number of G, denoted by $\nabla(G)$, is defined by the Dilworth number of the preordered set $(V(G), \leq)$.

Especially if the vertex set V(G) is decomposed into two subsets I_G and K_G such that the induced subgraph $\langle I_G \rangle$ and $\langle K_G \rangle$ are a descrete graph and a complete graph, respectively, G is called a split graph and denoted by $G = (I_G, K_G)$. It is easy to see that we have $u \leq v$ for any $u \in I_G$ and any $v \in K_G$ of a split graph G and hence it holds $\nabla(G) = \max{\{\nabla_G(I_G), \nabla_G(K_G)\}}$.

A characterization of split graphs with Dilworth number two is obtained by S. Foldes and P. L. Hammer ([2]). The aim of this paper is to give a characterization of split graphs with Dilworth number three.

^{*} Present Address: Department of Mathematics, Musashi Institut of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158, Japan.

$\S 2.$ k-critical graphs.

In this section let $G = (I_G, K_G)$ be a split graph. We denote the cardinality of a set X, the degree of a vertex v and the edge set by |X|, $d_G(v)$ and E(G) respectively, and set

$$N_{G}^{*}(v) = N_{G}(v) \cap I_{G}$$
 and $d_{G}^{*}(v) = |N_{G}^{*}(v)|$

for $v \in K_G$.

For two graphs G_1 and G_2 , we write $G_1 \prec G_2$ if G_2 has an induced subgraph isomorphic to G_1 and we shall identify G_1 with the induced subgraph isomorphic to G_1 if there is no fear of confusion.

For a positive integer $k \ge 2$ a split graph $H = (I_H, K_H)$ is called k-critical if it satisfies $\nabla_H(I_H) \ge k$ and $\nabla_{H-v}(I_{H-v}) \le k-1$ for any vertex $v \in V(H)$, and we denote by \mathfrak{F}_k the set of k-critical split graphs. Then the split graph G satisfies $\nabla_G(I_G) \ge k$ if and only if G has an induced subgraph isomorphic to a graph of \mathfrak{F}_k .

PROPOSITION 1([2]). The set \mathfrak{F}_3 is equal to the set $\{H_1,\,H_2,\,H_3\}$ of Figure 1.

In what follows we shall suppose that vertices of H_i (i=1, 2, 3) are named by Figure 1.

We shall show three lemmas.

LEMMA 1. If G is k-critical, then

- (i) $\nabla_G(I_G) = k$ and $|I_G| = k$ hold and any pair of two vertices of I_G is incomparable,
- (ii) $\nabla_{G-v}(I_{G-v}) = k-1$ holds for any $v \in I_G$, so G-v has an induced subgraph isomorphic to a graph of \mathfrak{F}_{k-1} ,
 - (iii) $d_G^*(v) \leq k-1$ holds for all $v \in K_G$.

PROOF. (i) By $\nabla_G(I_G) \geq k$ there is a subset $S_0 \subset I_G$ which is incomparable and hence the induced subgraph $G_0 = \langle S_0 \cup K_G \rangle$ satisfies $\nabla_{G_0}(S_0) = k$ and $G_0 \in \mathfrak{F}_k$, so it must be $G = G_0$ by the k-criticalness of G.

(ii) is true since $|I_G - \{v\}| = k-1$ and $I_G - \{v\}$ is incomparable in G - v. Let's prove (iii). If $d_G^*(v) \ge k$ for some $v \in K_G$, then v is adjacent

to all vertices of I_G by (i). Hence any pair of two vertices of I_G is incomparable in G if and only if so is in G-v, which leads $\nabla_{G-v}(I_{G-v})=k$ and contradicts the k-criticalness of G.

LEMMA 2. Let G be k-critical. If G has a vertex $v \in K_G$ with $d_G^*(v) = 1$, say $N_G^*(v) = \{u\}$, then there is a vertex $w \in I_G - \{u\}$ satisfying

$$N_{\scriptscriptstyle G}(u)\!-\!\{v\}\!\subset\!N_{\scriptscriptstyle G}(w)$$
 .

PROOF. Let w be any vertex of $I_G - \{v\}$. Assume $N_G(u) - \{v\} \not\subset N_G(w)$. Since the pair of u and w is incomparable, it holds $N_G(w) \not\subset N_G(u)$ and hence $N_G(w) \not\subset N_G(u) - \{v\}$. By $N_G^*(v) = \{v\}$ we get $N_{G-v}(w) = N_G(w)$ and $N_{G-v}(u) = N_G(u) - \{v\}$, which implies $N_{G-v}(w) \not\subset N_{G-v}(u)$ and $N_{G-v}(u) \not\subset N_{G-v}(w)$. Thus we can obtain $\nabla_{G-v}(I_{G-v}) = k$, which is a contradiction.

Let's define a split graph $\hat{G} = (I_{\hat{G}}, K_{\hat{G}})$ as follows: the vertex sets are $V(\hat{G}) = V(G)$, $I_{\hat{G}} = I_G$ and $K_{\hat{G}} = K_G$ and it holds

$$uv \in E(\widehat{G})$$
 if and only if $uv \notin E(G)$

for $u \in I_G$ and $v \in K_G$.

LEMMA 3. We have $\nabla_{\hat{G}}(I_{\hat{G}}) = \nabla_{G}(I_{G})$. Moreover \hat{G} is k-critical if and only if G is k-critical.

PROOF. For any two vertices u and v of I_{σ} , we have

$$N_{\hat{G}}(u) \subset N_{\hat{G}}(v)$$
 if and only if $N_{G}(u) \supset N_{G}(v)$.

Hence a subset of $I_{\hat{G}}$ is incomparable in \hat{G} if and only if so is it in G, which implies $\nabla_{\hat{G}}(I_{\hat{G}}) = \nabla_{G}(I_{G})$. Similarly we can get that for any $v \in V(\hat{G})$

$$abla_{\hat{G}-v}(I_{\hat{G}-v}) \leq k-1$$
 if and only if $\nabla_{G-v}(I_{G-v}) \leq k-1$.

Thus the lemma has been proved.

§ 3. 4-critical graphs.

In the rest of this paper, let $G = (I_G, K_G)$ be a 4-critical split graph, i.e., $G \in \mathfrak{F}_4$. Then by (ii) of Lemma 1 G - v has an induced subgraph isomorphic to a graph of \mathfrak{F}_3 for any $v \in I_G$ and hence by Proposition 1 it holds $G - v > H_i$ (some i = 1, 2, or 3).

We shall use the symbol $G \cong G'$ if G is isomorphic to a graph G'.

PROPOSITION 2. If there is a vertex $v \in K_G$ with $d_G^*(v) = 1$, say $N_G^*(v) = \{u\}$, and if G-u has an induced subgraph isomorphic to H_1 of Figure 1, then G is isomorphic to G_1 , G_2 or G_3 of Figure 2.

PROOF. By Lemma 2, there is a vertex $w \in I_G - \{u\} = \{u_1, u_2, u_3\}$ such that $N_G(u) \cap K_{H_1} \subset N_G(w) \cap K_{H_1}$. We can assume $w = u_1$ without loss of generality. Put $S = N_G(u) \cap K_{H_1}$. Then $|S| \leq 1$ follows from $|N_G(u_1) \cap K_{H_1}| = 1$. It is easy to see that $G \cong G_1$ if |S| = 0. Let |S| = 1. Then $S = N_G(u_1) \cap K_{H_1} = \{v_1\}$. Since the pair $\{u, u_1\}$ is incomparable in G, there is a vertex $x \in K_G$ not adjacent to u but to u_1 and it satisfies $x \notin K_{H_1}$.

Now $d_{G}^{*}(x) \leq 3$ holds by (iii) of Lemma 1. If $d_{G}^{*}(x) = 1$ holds, we have $\nabla_{G-v_1}(I_{G-v_1}) = 4$, which contradicts the 4-criticalness of G. Hence $d_{G}^{*}(x) = 2$ or 3, which implies that G is isomorphic to G_2 or G_3 respectively.

PROPOSITION 3. If there is a vertex $v \in K_G$ with $d_G^*(v) = 1$, say $N_G^*(v) = \{u\}$, and if G - u has H_2 as an induced subgraph, then G is isomorphic to G_2 , G_3 of Figure 2, G_4 , G_5 or G_6 of Figure 3.

PROOF. Let u_i (i=1,2 or 3) be a vertex of $I_G - \{u\}$ satisfying $N_G(u) \cap K_{H_2} \subset N_G(u_i) \cap K_{H_2}$, which is guaranteed by Lemma 2. Put $S = N_G(u) \cap K_{H_2}$. Then $|S| \leq 2$ since $|N_G(u_i) \cap K_{H_2}| = 2$. It is easy to see that $G \cong G_2$ if |S| = 0 and $G \cong G_3$ or G_4 if |S| = 1. Let |S| = 2. Then $S = N_G(u_i) \cap K_{H_2}$ holds and there is a vertex $x \in N_G(u_i) - N_G(u)$ by the incomparableness of the pair $\{u, u_1\}$, which satisfies $x \notin K_{H_2}$.

Let's prove $d_G^*(x)=3$. Assume $d_G^*(x)\leq 2$ and i=1. If $d_G^*(x)=1$, then $\nabla_{G-v_1}(I_{G-v_1})=4$ and if $d_G^*(x)=2$, say $N_G^*(x)=\{u_1,z\}$, then $\nabla_{G-v_j}(I_{G-v_j})=4$ (j=2 or 4 according to $z=u_2$ or u_3) holds. These contradict the 4-criticalness of G. We can similarly lead a contradiction in the case of $d_G^*(x)\geq 2$ and i=3. Finally assume $d_G^*(x)\leq 2$ and i=2. If $d_G^*(x)=1$, then $\nabla_{G-v_2-v_3}(I_{G-v_2-v_3})=4$ and if $d_G^*(x)=2$, say

 $N_G^*(x) = \{u_2, z\}$, then $\nabla_{G-v_j}(I_{G-v_j}) = 4$ (j=2 or 3 according to $z=u_1$ or u_3) holds. These contradict the 4-criticalness of G. Hence we get $d_G^*(x) = 3$.

Therefore we can conclude $G\cong G_{\mathfrak{s}}$ for i=1 or 3 and $G\cong G_{\mathfrak{s}}$ for i=2.

PROPOSITION 4. If there is a vertex $v \in K_G$ with $d_G^*(v) = 1$, say $N_G^*(v) = \{u\}$, and if G-u has H_3 as an induced subgraph, then G is isomorphic to G_7 , G_8 , G_9 or G_{10} of Figure 4.

PROOF. Let u_i (i=1,2 or 3) be a vertex of I_G-u satisfying $N_G(u)\cap K_{H_3}\subset N_G(u_i)\cup K_{H_3}$, which is guaranteed by Lemma 2. We can assume i=1 without loss of generality. Put $S=N_G(u)\cap K_{H_3}$. Then $|S|\leq 2$ since $|N_G(u_1)\cup K_{H_3}|=2$. It is easy to see that $G\cong G_7$ or G_8 if |S|=0 or 1, respectively. Let |S|=2. Then $S=N_G(u_1)\cap K_{H_3}=\{v_1,v_2\}$. Since the pair $\{u,u_1\}$ is incomparable, there is a vertex $x\in N_G(u_1)-N_G(u)$, which satisfies $x\notin K_{H_3}$.

It must be $d_G^*(x)=1$ or 3. For, if we assume $d_G^*(x)=2$ and put $N_G^*(x)=\{u_1,u_i\}$ (i=2 or 3), then $\nabla_{G-v_j}(I_{G-v_j})=4$ (j=2 or 1 according to i=2 or 3) holds and contradicts the 4-criticalness of G. Hence we get $G\cong G_9$ or G_{10} for $d_G^*(x)=1$ or 3, respectively.

PROPOSITION 5. If G satisfies the condition

$$(*)$$
 $d_{\scriptscriptstyle G}^*(v)\!=\!2$ for all $v\in K_{\scriptscriptstyle G}$,

then G is isomorphic to G_{11} or G_{12} of Figure 5.

PROOF. Let u be any fixed vertex of I_a . Then G-u has H_1 , H_2 or H_3 as an induced subgraph by (ii) of Lemma 1. If $G-u > H_1$

42

holds, by the condition (*) we get $K_{H_1} \subset N_G(u)$. Considering the incomparableness of $\{u, u_1\}$ there is a vertex $x \in N_G(u_1) - N_G(u)$, which satisfies $x \in K_{H_1}$. By (*) we may put $N_G^*(x) = \{u_1, u_2\}$ without loss of generality. Since the pair $\{u, u_3\}$ is also incomparable, there is another vertex $y \in N_G(u_3) - N_G(u)$ satisfying $y \notin K_{H_1}$. It holds $N_G^*(y) = \{u_3, u_i\}$ (i=1 or 2) by (*), which implies $G \cong G_{11}$.

If $G-u>H_2$, then by (*) we get $\{v_1, v_4\}\subset N_G(u)$ and $G\cong G_{12}$.

If $G-u \succ H_3$, then the set $N_G(u) \cap K_{H_3}$ is empty by (*). Since the pair $\{u, u_1\}$ is incomparable, there is a vertex $x \in N_G(u) - N_G(u_1)$ satisfying $x \notin K_{H_3}$. By (*) it holds $N_G^*(x) = \{u, u_i\}$ (i = 2 or 3). Hence by the incomparableness of $\{u, u_i\}$, there is another vertex $y \in N_G(u) - N_G(u_i)$ satisfying $y \notin K_{H_3}$. Therefore $G \cong G'_{11} \cong G_{11}$ by (*).

Now we shall introduce 4 more graphs $G_{13} \sim G_{18}$ by the following Figure 6.

Figure 6.

Then, using the above propositions and the relations $\hat{G}_1 \cong G_{13}$, $\hat{G}_2 \cong G_{14}$, $\hat{G}_3 \cong G_{10}$, $\hat{G}_4 \cong G_{15}$, $\hat{G}_5 \cong G_5$, $\hat{G}_6 \cong G_6$, $\hat{G}_7 \cong G_{16}$, $\hat{G}_8 \cong G_8$, $\hat{G}_9 \cong G_9$, $\hat{G}_{10} \cong G_3$, $\hat{G}_{11} \cong G_{11}$ and $\hat{G}_{12} \cong G_{12}$, we get the following

THEOREM 1. A split graph $H = (I_H, K_H)$ satisfies $\nabla_H(I_H) \leq 3$ if and only if H has no induced subgraph isomorphic to G_1, G_2, \dots, G_{15} or G_{16} .

PROOF. The contraposition of the theorem is that $\nabla_H(I_H) \geq 4$ if and only if H has an induced subgraph isomorphic to G_1, G_2, \dots, G_{15} or G_{18} . Then it is enough to prove that \mathfrak{F}_4 is equal to the set $\{G_1, \dots, G_{16}\}$. It is easy to see that G_i $(1 \leq i \leq 16)$ is contained in \mathfrak{F}_4 .

Let's prove the converse. Let H be a graph of \mathfrak{F}_4 . By (iii) of Lemma 1 we have $d_H^*(v) \geq 3$ for all $v \in K_H$. If $d_H^*(v) = 1$ holds for some $v \in K_H$ or if $d_H^*(v) = 2$ for all $v \in K_H$, we have already proved in Proposition 2, 3, 4 and 5 that H is isomorphic to G_1 , G_2 , \cdots , G_{11} or G_{12} . Hence we can assume that there is a vertex $v \in K_H$ with $d_H^*(v) = 3$. Considering the split graph \hat{H} , we get $d_{\hat{H}}^*(v) = 1$ and $\hat{H} \in \mathfrak{F}_4$ by Lemma 3. Therefore \hat{H} is isomorphic to G_1 , G_2 , \cdots , G_9 or G_{10} by Proposition 2, 3 and 4, which implies that H is isomorphic to G_{13} , G_{14} ,

 G_{10} , G_{15} , G_{5} , G_{6} , G_{16} , G_{8} , G_{9} or G_{3} respectively. This completes the proof of Theorem 1.

The complement H^c of a split graph H is also a split graph and $\nabla_{H^c}(I_{H^c}) = \nabla_H(K_H)$. So using $\nabla(H) = \max\{\nabla_H(I_H), \nabla_H(K_H)\}$, we get

THEOREM 2. A split graph H satisfies $\nabla(G) \leq 3$ if and only if G and G^c has no induced subgraph isomorphic to G_1, G_2, \dots, G_{15} or G_{16} .

References

- [1] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
- [2] S. Foldes and P. L. Hammer, Split graphs having Dilworth number two, Can. J. of Math., Vol. 29, no. 3 (1977), 666-672.

Annex 4-critical split graphs

 $\cong \widehat{G}_5$ G

