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§1. Introduction.

For a set S and a binary relation < on S, the pair (S, <) is
called a preordered set if the relation is a preorder, i.e., a reflexive
and transitive relation, and a subset S, of S is called incomparable
if for any pair {x, y} of S, it holds neither #<y nor y<a. Then
Dilworth number of the preordered set (S, <) is defined by the
maximum cardinality of incomparable subsets of S, which is equal
to the minimum number of chains of the preorder < covering S
(I1D. '

For a simple graph G we denote the vertex set by V(G) and
the neighborhood of a vertex v by N(v) or Ny(v). Let S be a subset
of V(G@). Then the wvicinal preorder < is defined on S by

w<v if and only if N(u)cN®)U v}

for w, ve S which is in fact a preorder, and the Dilworth number
of (S, ) is written by V4(S). Dilworth number of G, denoted by
V(G), is defined by the Dilworth number of the preordered set
(V(@), <).

Especially if the vertex set V(G) is decomposed into two subsets
I; and K; such that the induced subgraph {I;> and <{(K;) are a
descrete graph and a complete graph, respectively, G is called a
split graph and denoted by G=(I;, K;). It is easy to see that we
have u<wv for any we I, and any v <€ K; of a split graph G and hence
it holds V(G@)=max {Vs(Is), Vs(Ks)}.

A characterization of split graphs with Dilworth number two
is obtained by S. Foldes and P. L. Hammer ([2]). The aim of this
paper is to give a characterization of split graphs with Dilworth
number three.
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§2. k-critical graphs.

In this section let G=(I;, K;) be a split graph. We denote the
cardinality of a set X, the degree of a vertex v and the edge set
by | X|, d¢(v) and E(G) respectively, and set

¢(W)=Ns(v)NI; and di(w)=|Ng@)|

for ve K.

For two graphs G, and G,, we write G,<G, if G, has an induced
subgraph isomorphic to G, and we shall identify G, with the induced
subgraph isomorphic to G, if there is no fear of confusion.

For a positive integer k=2 a split graph H=(I,, K,) is called
k-critical if it satisfies Vy(I,)=k and V,_,(I;_,)<k—1 for any vertex
ve V(H), and we denote by . the set of k-critical split graphs.
Then the split graph G satisfies Vy(I;)=k if and only if G has an
induced subgraph isomorphic to a graph of .

ProrosiTiON 1([2]). The set §; is equal to the set {H,, H,, H;} of
Figure 1.
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Figure 1.

In what follows we shall suppose that vertices of‘HL- (1=1, 2, 3) are
named by Figure 1.
We shall show three lemmas.

LemmMA 1. If G is k-critical, then

(i) Vele)=k and |I;|=k hold and any pair of two vertices of
I; is incomparable,

(ii) Ve_,Is_,)=k—1 holds for any veE I, so G—v has an induced
subgraph isomorphic to a graph of Fp_.»

(iii) di()Zk—1 holds for all ve K.

PrROOF. (i) By Vu(Iz)=Fk there is a subset S,cI; which is in-
comparable and hence the induced subgraph G,={S,UK,) satisfies
Ve (S)=k and G,€%,, so it must be G=G, by the k-criticalness
of G.

(ii) is true since |I;—{v}|=k—1 and I;—{v} is incomparable in G —v.

Let’s prove (iii). If di(v)=k for some v e K, then v is adjacent
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to all vertices of I, by (i). Hence any pair of two vertices of I, is
incomparable in G if and only if so is in G—w», which leads
Ve_o(Is_,)=k and contradicts the k-criticalness of G. ’

LEMMA 2. Let G be k-critical. If G has a vertex ve K, with
d¥()=1, say NFWw)={u}, then there is a vertex w e I;—{u} satisfying

No(u) —{v} C No(w) .

PrROOF. Let w be any vertex of I,—{v}. Assume Ng(u)—{v}&
Ny(w). Since the pair of w and w is incomparable, it holds Nu(w)Z
N;(u) and hence Nyz(w)Z Nz(u)—{v}. By Ng()={v} we get Ny;_,(w)=
Ny(w) and N,_,(w)=Ngz(u)—{v}, which implies Ns_,(w)Z Ngz_,(w) and
Ny_(u)Z Ny_,(w). Thus we can obtain V._,(I;_,)=k, which is a
contradiction.

Let’s define a split graph @=(I@, Kp) as follows: the vertex sets
are V(@)=V(®), I4=1; and Ks=K,; and it holds

wve B(G) if and only if ww¢ E(G)
for wel, and ve K.

LeMMA 8. We have Ve(1g)=Vu(ls). Moreover G is k-critical of
and only vf G is k-critical.

Proor. For any two vertices w and v of I;, we have
Na(w)c Ne(v) if and only if Ng(u)DNs®) .

Hence a subset of Iz is incomparable in G if and only if so is it
in G, Whic}l implies Vs(I2)=Vs(I,;). Similarly we can get that for
any v € V(G)

Vé_,(Iao_)Sk—1 if and only if V. ,(I;_,)=k~—1.

Thus the lemma has been proved.

§3. 4-critical graphs.

In the rest of this paper, let G=(; K;) be a 4-critical split
graph, i.e., Ge€PF,. Then by (ii) of Lemma 1 G—v has an induced
subgraph isomorphic to a graph of $; for any ve€I; and hence by
Proposition 1 it holds G—v>H, (some ¢=1, 2, or 3).

We shall use the symbol G=G' if G is isomorphic to a graph G'.

PROPOSITION 2. If there is a wvertex ve K; with di(v)=1, say
F)={u}, and if G—u has an induced subgraph isomorphic to H,
of Figure 1, then G is isomorphic to G, G, or G; of Figure 2.
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Figure 2.

Proor. By Lemma 2, there is a vertex w e I;—{u}={u,, U, us}
such that Ny(u)N Ky, CNg(w)NKy. We can assume w=wu, without
loss of generality. Put S=Nyu)NKy. Then |S|<1 follows from
| Ne(u) N Ky, |=1. It is easy to see that G=@G, if |S|=0. Let |S|=1.
Then S=Ng(u,) N Ky, ={v,}. Since the pair {u, w,} is incomparable in
G, there is a vertex xz e K, not adjacent to u but to u, and it satisfies
x ¢ Ky,

Now d#(x)<3 holds by (iii) of Lemma 1. If df(x)=1 holds, we
have V4_, (Iz_,) =4, which contradicts the 4-criticalness of G. Hence
d(x)=2 or 3, which implies that G is isomorphic to G, or G, re-
spectively.

PRrROPOSITION 3. If there is a wvertex ve K, with di(v)=1, say
NFw)={u}, and 2f G—u has H, as an induced subgraph, then G 1is
isomorphic to G, Gs of Figure 2, G, Gy or G, of Figure 3.

U (%] Uy

G

Figure 8.

Proor. Let u; (1=1,2 or 3) be a vertex of I,—{u} satisfying
Ny(u) N Ky, & No(u) N Ky, which is guaranteed by Lemma 2. Put
S=Nyu)N Ky,. Then [S|=2 since |Ng(u,)NKy|=2. It is easy to
see that G=G, if |S|=0 and G=G, or G, if |S|=1. Let |S|=2. Then
S=Ng(u;) N Kz, holds and there is a vertex ¢ Ny(u,)—Ng(u) by the
incomparableness of the pair {u, u,}, which satisfies x ¢ K.

Let’s prove di(x)=3. Assume d}(x)=<2 and 7=1. If d}(x)=1,
then Vg, (Is_,)=4 and if di(x)=2, say Ng(®)={u, 2}, then
Veo;Ig_o)=4 (j=2 or 4 according to z=wu, or u,) holds. These
contradict the 4-criticalness of G. We can similarly lead a contra-
diction in the case of d¥(x)=2 and ¢=38. Finally assume di(x)<2
and i=2. If di(x)=1, then V4, ,(Ig_,, ,)=4 and if d¥(x)=2, say
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& (@) ={u,, 2}, then Vi_,(Is,;)=4 (j=2 or 3 according to z=wu, or
us) holds. These contradict the 4-criticalness of G. Hence we get
di(x)=38. ‘

Therefore we can conclude G=G, for i=1 or 38 and G=G, for
1=2.

PROPOSITION 4. If there is a wvertex ve Ky with di(v)=1, say
NEWw)={u}, and 1f G—w has H; as an induced subgraph, then G is
isomorphic to G, Gy, G, or Gy, of Figure 4.

© u

K, u, K,

V2
Us
Uy Uz

G Gs

Figure 4.

PrOOF. Let u; (1=1,2 or 3) be a vertex of I,—u satisfying
Ng(u) N Ky, C Ng(u;) U Ky, which is guaranteed by Lemma 2. We can
assume ¢=1 without loss of generality. Put S=Nyu)N Ky, Then
|S|=<2 since |Ng(u,) UKy, |=2. It is easy to see that G=G, or G, if
|S|=0or 1, respectively. Let |S|=2. Then S=Nz(u,) N Ky,={v,, v,}.
Since the pair {u, u,} is incomparable, there is a vertex xe Ng(u,)—
Ny(u), which satisfies x ¢ K.

It must be d§(x)=1 or 3. For, if we assume d}(x)=2 and put
Ng(@)={u,, u)} (1=2 or 8), then Vq_,(I;_,)=4 (j=2 or 1 according
to =2 or 8) holds and contradicts the 4-criticalness of G. Hence
we get G=G, or Gy, for di(x)=1 or 3, respectively.

PROPOSITION 5. If G satisfies the condition
(%) di®)=2 for all veK,,
then G is isomorphic to Gy or Gy, of Figure 5.

Va2 V3

K4 Uz

2 Vg

= G:{l G12
Figure 5.

PrROOF. Let w be any fixed vertex of I,. Then G—wu has H,, H,
or H, as an induced subgraph by (ii) of Lemma 1. If G—u>H,
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holds, by the condition (x) we get K, CNgy(u). Considering the
incomparableness of {u, u,} there is a vertex x € Ng(u,) — Ngs(u), which
satisfies x€ Ky,. By (*) we may put Ng(x)={u,, u,} without loss of
generality. Since the pair {u, u;} is also incomparable, there is
another vertex y € Nu(u;) — Ng(u) satisfying y ¢ K. It holds Ng(y)=
{us, w;} (=1 or 2) by (x), which implies G=G,,.

If G—u>H,, then by (x) we get {v, v.JCNgz(u) and G=G,,.

If G—u>H,, then the set Ny(u)N Ky, is empty by (x). Since the
pair {u, u,} is incomparable, there is a vertex x € Ny(u) — Ng(u,) satisfy-
ing ¢ K,,. By (x) it holds N¢#(x)={u, u;} (=2 or 8). Hence by the
incomparableness of {u, u;}, there is another vertex y <€ Ny(u)— Ngy(u,)
satisfying y ¢ K,,. Therefore G=G,=G,, by ().

Now we shall introduce 4 more graphs G, ,~G,, by the following
Figure 6.

K4 K4

G13 G14 Gls GIG
Figure 6.

'lA‘hen, using the a;bove propositions and the relations @12(}13, @25G14,
GszGAw, G. =Gy, Gi=Gy, Go=Gy, G,=G, G =G, Go=G,, G =Gy, G=Gy
and G,,=G,, we get the following

THEOREM 1. A split graph H= (I, K;) satisfies V(I,)<8 if and
only if H has mo induced subgraph isomorphic to G,, G,, - -+, G5 or
Glﬁ.

PrOOF. The contraposition of the theorem is that Vg (I;)=4 if
and only if H has an induced subgraph isomorphic to G,, G,, - --, Gy
or G,. Then it is enough to prove that &, is equal to the set
{G, -+, Gg}. It is easy to see that G, (1<7<16) is contained in
B

Let’s prove the converse. Let H be a graph of &, By (ii) of
Lemma 1 we have di(v)=3 for all ve K. If di(w)=1 holds for
some v € K, or if di(v)=2 for all ve K, we have already proved
in Proposition 2, 3,4 and 5 that H is isomorphic to G, G, -+, Gy
or G,,. Hence we can assume that there is a vertex ve K, with
di(v)=8. Considering the split graph A, we get dj(v)=1 and He,
by Lemma 8. Therefore H is isomorphic to G, G, -+, G, or G, by
Proposition 2, 3 and 4, which implies that H is isomorphic to G, G,
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G, Gy, Gs, Go, Gy, Gs, G, or G4 respectlvely This completes the proof
of Theorem 1.

The complement H° of a split graph H is also a split graph and
Vaelge)=Vg(Ky). So using V(H)=max{Vy(Iy), Vaz(Ky)}, we get

THEOREM 2. A split graph H satisfies V(G)<3 if and only if
G and G° has no induced subgraph isomorphic to G, G, -+, Gy or
Gie.
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ANNEX
4-¢ritical split graphs

8 vertices

K( K4
Gy G=Gy

K4 K4
G: 6\7;016

.K4 K4
GB;/G\B G12;/G\12

9 vertices

G,  Gi=Gu
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10 vertices




