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Simple Cubic Lattice Green Functions
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A simple cubic lattice Green function and its associate functions are
grouped into avector. A differential equation for the vector is derived
and studied. The same process is repeated on anisotropic lattice Green
functions.

§ 1. Isotropic lattice Green functions

A lattice Green function u(z) defined by

u(z):_ls- SSS d6,de,deo, ’ z>3,
7 z—cos f,—cos §,—cos 0,

may be transformed into an integral
0

u(z) — _7%; S S S dﬁldazdﬁs S e—-t(z——cos 01~cos 0y—cos 03) dz
0

= Sm e s [I(t)]P dt
0
with the aid of a formula on modified Besessl functions®

_I_S”ems” cosnfdf=I,z), n=0,1,2,.... (1)
T Jo

There exist tables of cubic lattice Green functions®* and studies of
their analytic property.” This paper is a trial to comprehend lattice Green
functions together with their associate functions. We introduce a set of
four integrals u,(z), k=0, 1, 2, 3, defined by

S: e[ I(1)]* dt (2)

(7)== ;1§ S S d6,de,do,

z—cos §,—cos f,—cos b,

S cos 6, d6,do,do,
z—cos §,—cos ,—cos 0,

w(@=— \ e orLmd  (3)

Oty o Oy
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1 ({{ cos b, cos8,dodods, Sw » ,
u(z)=-— =\ e 2I(O[I()]?dt 4
(%) v Sgs z—cos f,—cos @,—cos 0, Jo (L") (4)
1 m cos 8, cos 0, cos B, df,do,de, Sw »
U(Z)=— - e ?[I(NEdt. 5
{2) n® JJ))  z—cos @, —cos f,—cos b, 0 (4] ()

The last three integrals (3), (4), (5) may be shown to have their respective
Laplacian integral representations by virtue of the formula (1) for »=0, 1.
We seek differential equations to be satisfied by u,(z), k=0, 1, 2, 3. Partial
integration of the Laplacian integral representation of x,(z) leads to

U= —z Sm eIy dt=e "tI}|> — Sw e"‘—d% (t13) dt
0

0

- S“’ e=t(I3 43t dt = —uy+ 31,
0

where the abbreviation u}=du,/dz is used.
Similarly

= — S"" e—ztéi(ugzl) dt = — r e~ (I3, + 241,13+ tI3T}) dt
[} t 0

- S: e~ (2, I3 t13) dt =)+ 2u]
2= 20+ U4,
zui=3ul4-2u, .
A formula on modified Bessel functions?
t=tI,—1, S (6)

was used in the above derivation.

It is to be noted that four functions u,, u,, u,, u, form a closed set with
respect to differentiation. These equations may be cast into a vector
form as

z =3 0 O lu, —1 0 0 07][u,
1 z —2 0|d|w| | 0 0 0 0|y ;
-2 z —1|dz|u|" | 0 O 1 O||un]|’ (7)
o 0 -3 =z U 0 0 0 2|u
or
du
—PY* —Qu, 8
(z—P)—-=Qu (8)
0300 —~1.0 0 0 1,
1 020 0 0 0 0 u,
P=lo 2 0 17 9% 0 0 1 o] *T|y
10 0 3 0} 0 0.0 2 ",
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If we eliminate u,, u,, ¥, from (7), we have an equation of the third
order

(24— 1024 9Yul!" + (628 — 302)uf! + (72> — 12)ut) -+ zUy =0

Solutions of this equation may be constructed from solutions of an
equation of the second order

(24— 10224 9w + (22— 102)W’ (22— 2)/4. w=0

as has been shown by G.S. Joyce.?
A change of variable z2={ leads to. a Lame equatlon”

2 C 2.
dcz _2_(3c 2oc+9)‘+ w=0.

(1004902

A further change of variable {—10/3=g(y), @: Weierstrassian elliptic
function, leads to another form of Lamé equatlons’ of order ——1/2

(oo

which is also difficult to solve. A possible solution of this Lamé equation
might be found in the spirit of Halphen.? ‘

. |
§2. The expansion at =00

The integral representation of uyz), (2) and the expansion of 1/(z—
cos f,—cos §,—cos §;) in powers of 1/z give the expansion of #(z) at z=c0

45 1

%—ﬁ+——+—m;+-u (9)

The equation (8) may furnish another approach. An assumed expansion

=24 S

leads to the conditions

(Q+1)e,=0
(Q +2)e;=Pc,
(Q+3)e;=2Pc,
(Q +4)e;=3Pc,

(10)

The first condition requires that ¢, be an eigenvector of the matrix Q
corresponding to its eigenvalue —1.
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Then one gets, in view of (9)

1
o 0
|0
0
Successive coefficients ¢,, k=1,2, 3, ... are obtained from (10) without
difficulty.
0 3/2 0 45/8 0
o 1/2 o 0 o 15/8 | 0 o 155/16
1 0 H 2— 1/2 H 3— 0 > 4— 3 ? 5 0 ’
0 0 3/4 0 45/8

§3. The transformation of the differential equation

The matrix P has four eigenvalues 3, 1, —1, —3 and takes a diagonal
form when transformed by a matrix § '

1 3 3 1

R U B T S G e

=575]1 —1 -1 1] S57=S (11)
1 -3 3 -1

constructed from four eigenvectors of the matrix P. In fact we have

3 0 0 0
0 1 0 0
—1pC— 4
STPS=A= 0 0 -1 0
0 0 0 —3
and
1 -3 0 0
1] =1 1 =2 0
-1 =B—=_"_
STOS=B=51 o _2 1 _1

0 0 -3 1
A change of variable
u==Sv, v=_Su (12)

leads to an equation for v

(z._A)%:Lsz (13)
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or

(z—3)vi= 5 (00— 3v)

(z— 1)1;;:;;_(_@0”1_2@2)
(z—]—l)'v;-_-_;_(—Zvl-}—vz—va)
(z+ 3)v;:_;_(_ 30,40;) -

Therefore, the differential equation (13) has four singular points 3=a,,
l=a;,, —1=a,, —3=a,, indices at each singular point being 1/2, 0, 0, O.

Hence a solution v, at each singular point is a linear combination of
a singular solution corresponding to the index 1/2 and a regular solution
having three adjustable parameters. The lowest singular term of the sin-
gular solution may be obtained directly from Laplacian integral represen-
tations of »,, k=0, 1, 2, 3, derived from (12) with the aid of (11), (2),

(3), (4), (5)

(=]

e~=t(I,+I,)* dt

8

- (14)

oo

%a)
S e=t(I, 4+ LI, —I) dt
e

e==(I,+ I)(I,— I)* dt

N.1

Vg= - e~*(I,—I,)*dt
33— 2‘\/ S ( 1)

If the variable z is supposed to have a negative imaginary part, the
variable ¢ in (14) may be replaced by it since the positive real part of iz
gurantees the convergence of integrals with respect to real . Replacement
of ¢ by it in (14) gives

(-]

e~ #(J(t)+1J,(2))® dt

0

S: et Jo(1) -+ i (£) (T ) — i (1)) dit
s ey a

o=y ‘/ S e~ (J(f)— iT (1))} dt .

Jo(f) and Jy(7) are Bessel functions of order 0 and 1, which may be expressed
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in terms of Hankel functions as
Jo(1)= ~(H (f)+H(t)) J(t)= *(H () +Hi(2)) .
The Hankel functions heve thelr respective asymptotic expansions”

)= (2 etimomems £ () m)

| iy
2 \1/2 _ (v m)
H2 t ( ) e~ Wt—(v/2)x—=x/4) )
(1= ot mZo (2ir)™

from which one gets

k()= ——(H (I)—{—IH ()= (2 >1 & eitt—m/4) 20__(__:_):'10_”_

o (2if)m
h_(t)z__(Hé(t)__iHi(t))_:<22)U - go-_(_(—z_i);bnﬂe_
:_;_(o m)+ - (1 my, a1 |
b, ";“(0 m)———.(l my, b,=0

and

k+(z)=i(Hg(_t)+iH;(z))=(%)”“’e—m_w 5 _bn

m=o (2it)™

k()= (HY(t) — iHY(0) =( 2 ) e s @
____ —1 e~ ii-rw m
, ‘ ﬂ&=0(2it)’"

One sees that as t—co,

A P
nt . nt 2it

k+_)<__2_)1/2e—z(t——r/4) bl k _><___2_>1/2e-—£(t—7:/4) .

rt . 212‘ T \nt

§ 4. The singular part of an integral

30

If the range of integration for the Laplacian ihtegrals is divided into
two parts at =1, the integrals from 0 to 1 of the Laplacian integrals are

- regular in z. The integrals from 1 to oo, however, may be singular.
integral '

. Sm e~ dt
Y 1 pr+l

An
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converges at 4=0 if v>0, but it is not always regular in 4. Making use
of the Mellin integral representation of e~*

1 o+t
et = S I'(s)x*ds, ¢>0

2ri

one gets .
Sme—hit_:_l_ SUH& F(s)l" 1 ds
1 [t 27i Jo—ico Sy
Zn
=I(—yr+ 5 ="

=0 n'(y—n)

If v is a half-integer, the integral turns out to be the sum of a r‘egular‘
function in 2 and a singlar (two-valued) function in 2. The singular part
is given by I'(—v)4*. So one sees that

Singular part of S e"“tdt =I'({—v)A.
1

The integral
S —”‘(J(z)—{—zJ(t))sdt—S e-iet(h, (1) k (1)) dt
may be split into the sum of four integrals,
Sj =B (1) di 43 S:’ ==tk (1), (1) i+ 3 S:" e=irth (1), (1) dt -+ Sf e=i=tk3, (1) dt .

The first integral is singular at z=3, since

o0 ) oo . 2 3/2 | 1
S e—zzthi(r) dt:g e-m(_) eza(t—-rr/4){1+ 0(__)} dt
1 1

Tt t

— (1)3/2—(3/4)*"&1*( —%)[i(z— 31+ 0(z—3)} .

T
Similarly the second interal is singular at z=1, the third integral at z=—1
and the fourth integral at z= —3, these three mtegrals being all regular
at z=3. So one gets
Singular part of m;~£«/z-—3{1+0(z-3)} at z=3.
T
In the same way one gets

Singular part of vlz—i}—\/z—-l{l-{—O(z—l)} at z=1,
T

Singular part of v2=1J2+1{1+O(z+1)} at z=-—1,
T
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Singular part of 1)3:1‘_2_\/2—{—3{14—0(2—}—3)}‘ at z=-—-3.
T :

§5. The expansion at a singular point

One denotes four eigenvalues of the matrix 4 by «,, k=0,1,2,3.
They are singular points of the differential equation (13). Substitution of
a series expansion of v

17:(2“ak)z(bo‘}'(z"“k)b1+(z_ak)2b2+ <)

into (13) gives the conditions to be satisfied by b,

AMa,— A)by=0 | (15)
(A 1)(a,— A)b, = (B— )b, (16)
(2+2)(ay— A)b,=(B—A— 1B, (17)

The first condition requires that either 2=0 or (a,—A4)b,=0. While
the first case gives a regular solution, the second case may lead to a singular
solution.

Case 1. 4=0. Regular solution
v=>by+(z—a,)b,+(z—a,) b+ - - -
(aty— A)b, = Bb, (18)
2(a,— AYb,=(B—1)b, . (19)

This case must lead to a solution with indices 0, 0, 0. So three components
of b, are adjustable. Since A is a diagonal matrix and «a, is an eigenvalue
of A4, the k-th component of Bb, must be 0. This condition allows to
determine the remaining component of A, by other components. The con-
dition (18) gives b, except for its k-th component, which is to be deter-
mined by the condition that the k-th component of (B—1)b, must vanish.
In this manner, successive coefficients b,, b,, b;, - - - will be determined in
terms of b,.

Case 2. A:£0, Ab,=a,b,. Singular solution.

This condition shows that b, is an eigenvector of the matrix 4 cor-
responding to its eigenvalue a,. Since the matrix A4 is diagonal, the vector
b, is a constant multiple of unit vector consisting of the k-th component
1 alone. The condition (16) imposes that the k-th component of the vector
(B—A)b, vanish. The equation (13) gives therefore 2=1/2, for every value of
k. Singular parts of v, computed at the end of §4 serve to determine b,
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completely for all values of k. The coefficient vector b, is determined by
(16) except for its k-th component, which will be given by the condition
the k-th component of (B—3/2)b,=0. Successive coefficients b,, b;, - - -
will be determined similary. So the singular solution for every k will
uniquely be determined. The singular solution, however, vanishes at z=a,,
since its lowest term is a multiple of (z—a,)"?. Therefore one sees

’D(Ct’k):bo .

The value of v(a,), however, must be determined by a different approach,

§ 6. Anisotropic lattice Green functions

If the interaction of neighbouring spins differs according to the direc-
tion, one has eight lattice integrals

oo

Il

S d6,d6,do,

e~*I(at)l(bt)l(ct) dt
z—acos 0,—b cos f,—c cos b, (@n)l(br)l(ct)

oo

cos 60, d6,d6,dd,
z—acos §;—bcos §,—c cos 0,

e~*I(at)I(bt)I(ct) dt

0

oo

cos 0, d0,d0,do,
z—acos §,—bcos f,—ccos b,

e “I(at)l,(bt)I(ct) dt

e~ L(at)I,(bt)I(ct) dt

z—acos §,—bcosf,—ccosf, Jo

8

cos 0, d0,d6,dog,
z—acos §,—b cos @,—c cos O,

e~=I(af)I,(bt)L(ct) dt

oo

cos 8, cos ¢, d0,d6,do,
z—acos ;—bcos f,—c cos b,

e I (at)ly(bt)I(ct) dt

0

oo

cos 0, cos 0, df,d0,do,
z—acosf,—bcosf,—ccos b,

e~*I(at)I(bt)I(ct) dt

|
S
|
cos 6, cos 6, d0,d0,de, S“’
|
|
\e

ey ey oy L' ey ey
Tl

0

B
>~
©

|

|

Clewmr | O} Y Oy} Ol H Ol N Ol N Ol N O N

_ 1
3
Partial integration and use of the formula (6) on modified Bessel func-

tions give a set of differential equations to be satisfied by u,(z), k=0, 1,
2, ---,7 as follows

S cos @, cos 6, cos 6, df,d0,do,

=\" e~ L (a1, (be)I(ct) dt .
z—acos §,—bcos f,—ccos b, So (an)I(br)L(cr)

(z——P)_Z%: Ou (20)
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0 a b5 0c 00 0] —1 00000 0 0 N
1a00b0c 00O 00000000 u,
500a00cO 00000O0GOHO u,
p_|06@a0000¢ , 1/ 00010000]|  |g
c0000aboO 2l 00000000 u,
0c00a00b| 00000100 g
00c0bO00O0a 00000010 s
000cOba 0] . 000000 0 2] Lu,

Use of Pauli matrices o;, o, and the direct product of matrices allows
one to write

P=a.o,x1x14+b-1x0o,Xx14+c-1x1X0,

Q:%(lxlxl——ae,x]><1—1><03><1—1><1><03)

where are used the abbreviations

S H
g,= ’ O3= ) = .
1 0 0 —1 0 1

It is to be noted that elimination of Ui, Uy, Ug, - - -, U, from the equation
(20) is very difficult even though the elimination leads to a differential
equation of the fifth order for u, the coefficient of the fifth derivative of
of u, being a polynomial of the eighth degree in z. So a direct approach

to (20) may be preferable. .
If one introduces an orthogonal matrix 7' defined by

1 1 1 1 1 1 1 17
1 —1 1 —1 1 —1 1 —1
1 1 —1 —1 1 1- —1 —1
1 1 -1 —1 1 1 —1 —1 1
T= fncd —
EXEXT=ST2 01 1 1 -1 —1 —1 —1
1 -1 1 —1 -1 1 —1 1
1 1 —1 —1 —1 -—1 1 1
1 -1 -1 1 —1 1 1 —1]
c=tto 11 1],
V2 V2Ll —1
and puts
u=Tv
one gets then
v=Tu

and the following integral representations of v,, k=0,1, ..., 7,
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2) =5 | (hat) L@ Uor) + BBYet) (e
WA=z | o= (1) — (@) ((bi) + L(bA)(cr) + i) di
i) =5 e | e Han) + E@) (o) — D) (et + (et d
0= | e ) —T(@)Ibr) — (B Tu(et) + Fet) i
0(E)= g | €l + @50+ Kb ety Eet) di
D)= Sje-mo(a?) I aB)(I(b1)-+ F(bE)er) — Ler) d
W)= s g”fe-ztuo(ar)+11(ar>><fo<br> 11<b,))(10(a)f_11(ct)) i
v7<z>:5-}:S‘”e-nao(ar)—A(&m»(fowt) L(b0)(Iet)—L(et)) dt

The differential equation (20) for u is transformed into the differential
equation for v

\ dv | : :
z— A)—— =Bv 21
( )dz ‘ : (21)
A=T"PT=a-0,Xx 1 xX1+b-1Xa;x1+c-1xX1Xa,

B:T*QT:%ﬂydxl—qxlxl—lqul—lxlxq)

fa4-b+4c 0 0 0 0 0 0 0 7
0 —adbtc O 0 0 0 0 0
0 0 a—btc O 0 0 0 0
e 0 0 0 —a—btc O 0 0 0
0 0 0 0 atb—c O 0 0
0 0 0 0 0 —atb—c O 0
0 0 0 0 0 0 a—b—c O
0 0 0 0 0 0 0 —a—b—c|
-1 —1 —1 0 —1 0 0 0
—1 1 0 —1 0 —1 0 O
-1 0 1 -t o0 0 —1 o©
p_1] 0 —1 —1 1 o o0 0 —1
2l—-1t 0 0 0 1 —1 —1 o
0 —1 0 0 —1 1 0 —1
0o 0 -1 0 —1 0 1 —1
.0 0 o0 1 0 —1 -1 1]
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The differential equation (21) has eight regular singular points a++b-+c=
ay, —a+btc=a,, a—bt+c=a,, —a—b+c=a;, atb—c=a,, —atb—c=
a, a—b—c=a;, —a—b—c=a, and a regular singular point z=oco.

A similar reasoning to that of §2 leads to the expansion at z=co,

=0 S S e
4 V4

17 0 7 _(az—l—bz—;—cz)/Z‘ B 0 7]
0 a2 | 0 a(3a2+Tb*+7c%)/8
0 b/2 0 b(7a*+3b*+7c?)/8
|0l L]0 o 2ab/3 o 0
o T e2|” 0 © T (Tar +Tb2+-3¢%)/8 |
0 0 . 2ca/3 0
0 0 v 2bc/3 0
1 0| 0 0 N B abc i
_3(02—}—b2—|—62)2/8+b2 2+C2 2+a2b2
0
0
o= ab(5a*+ 532+ 11¢)/6 ’
ca(5a*+116*+5¢%)/6
be(11a+ 56+ 5¢2)/6
0

A similar reasoning to that of §4 leads to the computation of singular
parts of v,(z) at z=a,, «, denoting one of eight singular points,

2 (z—a\Y?
[Singular part of v,(z) at z= ak]_.sk——< s ’°> {1+0(z—a,)}
c

where ¢,=—1, e;=e,—=¢,=—1i, ez=¢g;,=¢,=1, ¢,=1i.
: In the same way as in § 5, the expansion at a singular point «, needs
'the value of v(«,), which must be provided by a different approach.
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