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§1. Introduction.

Let G be a finite group. A subgroup A is called a strongly self-
centralizing subgroup if the centralizer of any nonidentity element of A4 is
A. In this paper under some conditions we shall determine a finite simple
group which has two types of strongly self-centralizing subgroups and one
type of subgroup with a property similar to a strongly self-centralizing
subgroup.

Main Theorem. If G is a finite simple group with three special types
of subgroups A, B and C such that
1. A is a strongly self-centralizing subgroup of order n,, and NgA)[A is a
group of order 2
2. B is a subgroup of order ny, with a property that the centralizer of any
nonidentity element of B is BX<{j), where j is an involution and N ;(B)/B is
an abelian group of type (2, 2)
3. C is a strongly self-centralizing subgroup of order ng and Ny (C)/C is a

cyclic group of order —n3—2_i
and satisfies the following conditions
(0) [G|=nin =L

(i) ng <5ny

(ii) ng<2ny+n,+6

(iii) 5=ny, ny

then G is isomorphic to one of PSL (2, q) with 2-Sylow groups of order 4.

Of course any PSL (2, q) with 2-Sylow groups of order 4 has these
subgroups and satisfies these conditions. We remark that 4 and B are
abelian groups of odd orders since they have fixed-point-free automorphisms
of order 2. Moreover C is an elementary abelian pz-group, since nonidentity
elements of C form 2 conjugacy classes of the same numbers. A4, B and C
are T.I. sets in G and Hall subgroups in G. ([1]). The involutions of a
finite simple group with a strongly self-centralizing subgroup of type A,
form a single conjugacy class. (Cor. 1. [1]). See [3] on the known simple
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groups with a certain type of strongly self-centralizing subgroup.
The main process of the proof of this theorem is as follows.

I. We plan to use the theory of exceptional characters. (see [1],
[3]). If H is a subgroup of G, a collection of conjugacy classes D in H
is a collection of special classes if whenever y€ D and x~'yx € H for some
x € G then in fact x€ H. Suppose 64, ------ , 0, is a family of irreducible
characters of H, n>1 maximal with the property that ,(x)=------ =0,(x)
for all x in H not members of special classes. Then:

a. There exist » irreducible characters y;, --=---- , x» of G (the exceptional
characters) such that y, z=¢6,+6, where e=-+1 (independent of i) and ¢
is a character of H containing the 6§, with equal multiplicity. If y is an
irreducible character of G not one of y;, x;z contains the ¢, with equal
multiplicity. v

b. If x€ G is not conjugate to any element of D, then y;, ------ s An
all have the same value on x. (In particular, if G H the class of 1 cannot
be special and all y; have the same degree.)

Moreover, two different maximal families lead to disjoint families of
exceptional characters.

From A, B and C we shall pick up some collections of special classes
in their normalizers and make some families of exceptional characters of G.

II. We shall divide the families of exceptional characters and some
special irreducible characters into blocks with respect to some prime numbers.
Here we shall determine a part of the character table by using a theorem
of modular representation :

Tueorem 1. (IV 6.4 p. 245 [2]) Let p and q be distanct primes. Suppose
that y is a p-element in G and x is a g-element in G such that no conjugate
of x commutes with any conjugate of y. ’

(i) Let B(p) be a fixed p-block of G and let B(q) be a fixed gq-block of G.
Then 2 y(x)xs(y)=0 where y, ranges over all the irreducible characters which
lie in B(p) and B(q).

(i) There exists a nonprincipal irreducible character which is in the principal
p-block and also in the principal g-block.

IIT. The conditions (0)~(ii) and the orthogonality relation for c¢€ C*
(=C—{1}), will lead to the fact that there are only a few irreducible characters
except the characters constructed in II. For the calculation of the ortho-
gonality relation for ¢ € C* here, we must determine the principal ps;-block
beforehand in II. (In fact for determination of the principal ps;-block, divi-
sion into p;-blocks for p; dividing n; and p,-blocks for p, dividing n, are
useful by the existence of theorem 1.) 1

IV. By III there are only a few conjugacy classes except special classes
in I and 1 and involution. We shall examine orders of the remaining classes
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and verify nonexistence of the remaining classes. Then we can verify the
result by theorem 1. (Harada [1]).

§ 2. Exceptional characters with respect to A (see [1])
and division into blocks (I-II)

A% in Ng(A) is a collection of special classes. Associated with the
family of irreducible characters of Ng(A4) of degree 2 which vanish on Ng(A4)
n—1

—A, we get exceptional characters of G: X3, ------ , X u-1- Since

2
[Ng(A): A|=2, there is a special nonprincipal nonexceptional irreducible
character Y. Moreover Y(A#)=¢,(e;==1), Y(1)=kn,+e;, and X, (1)=kn,
+2¢; for all i, where k is a positive integer. All nonprincipal irreducible

characters of G except {Xi}<1§ i§£1—;-1—> and Y, have degrees divisible

by n;. Let p; be a prime number dividing n,. Dividing irreducible char-
acters into, pi-blocks, each of these characters makes one block of defect 0
since their degrees are divisible by the highest power of p;. As the p,-

classes have defect 0 or maximal defect, 14z Y, {Xi}<1 < ig—nl—;—l——> are

divided into some p,-blocks of maximal defect.
On the other hand, the order of a finite simple group with a. strongly
self-centralizing subgroup of type A4 can be written as follows :

_ _ @)
L 1. |G|=n(kny+e) (kny +2 2-<— 1< )
EmMa 1. [Gl=m (kn+e) (kn+2e)m?. ( m kny +e — Y(z)

7 is an involution in Ng(A). Moreover m is an integer and m?*= I(mod n,).

Proor. See [1].

where

§3. Exceptional characters with respect to B and
division into blocks (I-II)

B#, jB#¥ is a collection of special classes in N4(B). Since Ng4(B) is a
direct product of a cyclic group {j)> and a generalized dihedral group B{i),
where 7 is an involution, the character table can be determined as follows :

1 B¥ §  jB* j i

1 11 1 1 11
2 11 -1 11 —1
2 1 1 1 =1 —1 —1
% 1 1 -1 —1 —1 1
{0,}(1§r§ ”2;1> 2 0 2 0
{0;}<1§r§ ”2;1) 2 0 —2 0

the orthogonality relations give
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; 0.(b) = ; 0.(jb) = ; 8, (b)= —}7: 0,(jb)=—1, and
; I0r<b)lz = ZT: [0;<b)|2 = ny, — D teeittiisieesiteennsstssiiannneneas (]_)

for b€ B,
The families of the 6, and the #, provide two families of exceptional
characters of G, the 7, and the 7, :

7]r|NG(B) =eb, + 7, 77;|NG(B) =0, + (e==+1, ¢ ==+x1),
and the multiplicity of ¢, in 7z and 6, in 7’ is independent of . Each family

has 12— 1

members. From the constant multiplicity (§1. I a.) and the fact

that the other characters of Ng4(B) have rational integral values on b & B¥
independent of b, x(b) are rational integers independent of » for any non-
exceptional irreducible character y of G. The same is true for 7 and 7.
And these statements are also true for jb € jB*.

The orthogonality relation for b becomes

1Co(0)] = X2, B)* + L5 B)* + X2 (B) %,

where the last sum ranges over all nonexceptional characters. Let 5(b)=x,
7(b)=x". Then

2 = D10 + ex T 0,0) + 0B) + L1 Do)
+e¥ T O0) + FE) + 121 % + Bl

Then by (1)
1

2ny=2n, — 4+ T2

5 x2+ n22—1 xX'2—2ex—2&x + 3 |x(b)|?---- (2)

ng —

Since n,=5 and x and x’ are rational integers, 1 x2 —2ex = 2x2—2ex

1

>0 and _”_2;_ X226 x =2x'2— 2/ X =0.

The orthogonality relation for jb becomes
|Ce( )] = 21 (B) 12+ Xl (J0) 12 + I jb) 1™,
Let »(jb)=y and 7/(jb)=)'. Then
2= 3210, 10)*+ ey SO,()+8,(78) +-21 1+ S0 b)]?
&Y SO FTCB) + "2 72+ She(b) .
Then by (1)
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2my=2m— 4Ly 4 TL i dey L 2+ BB e (3)

Mg

Since n,=5 and y and )’ are rational integers, =1 y2—2ey = 2y% —2ey

1

>0 and —’hz;y’2+25’y’;2y’2+25’y’20.

Because the terms in the last sum of (2) and (3) are rational integers
and x(b)=yx(jb), n(b)=n(jb), 7' (b)=7'(jb) (mod 2), there are five possibilities
as follows.

Case 1. Only four characters &;(=1;), &, & and &, have nonzero values on
B¥ and jB* (in fact 4-1). x=x'=y=) =0.

Case 2. Only four characters &;(=1g), &, &5 and &, have nonzero values on
B# and jB¥ (in fact +=1). ny,=5, x=¢ and x¥'=¢, or x=¢ and x'=0, or
x=0 and x'=¢.

Case 3. Only three characters have nonzero values on B¥ and jB*. n,—
7, x=¢ and x¥’=0, or x=0 and x'=¢.

Case 4. Only two characters have nonzero values on B# and jB¥. n,=7
and x=¢ and x'=¢, or n,=9 and x=¢ and x’=0, or n,=9 and x=0 and

X =¢.

Case 5. Only the principal character has nonzero values on B¥ and jB¥.
Let p, be a prime number dividing n, and let B,, be a p,-Sylow group of

order p$. Let B,; be a Hall p;-subgroup of B. Now we wish to determine

the principal p,-block.

d—-—
LemMa 2. In case 1, Pa 3 1 irreducible characters 7, associated with the

G, of the form (-, +@- ) p1, where ¢ is a nonprincipal irreducible character
of B, and ¢, and p, are the principal characters of B,, and {j), are in the
principal ps;-block By(p,). And in By(ps) there is only one nonprincipal irre-
ducible character other than these 7).

Proor. In case 1 for-a fixed p,-element by € B, and any p,-element u
€ Colbe)=BX (),

0(Bott) = e((Bg) + P(Bg)) (@1+0) (1) worevvvemreenennnnn. 4)

Since there exists one to one correspondence (in fact inclusion) from the set
of all py-blocks of Cg(b,) onto the set of all p,-blocks of py-group Cg(bg)/B,,
where all p,-blocks have p,-defect 0, there is only one irreducible Brauer
character in any ps-block of Cg(b,) and Cartan matrix of Cg(b,) is a scalar
matrix with diagonal entries p§. (Th. 4.5, p. 277 [2], Lemma 66.1, p. 401 [4])
Here ¢;-p; in (4) can be regarded unique irreducible Brauer character in
the principal block of Cg(by). So, by the second main theorem (Th. 6. 1,
p. 242 [27) and theorem 6.2 (p.286 [2]) these 7, are contained in By(ps).
Hence there is only one column of higher decomposition numbers for B, ( ps)
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for the section of b,. The inner product of this column and itself is p§,
since the Cartan matrix of the principal p,-block of Cu(b,) is p. Now we

number these 7,: %1, 52, *=v--* Npd-1. Then
2
pg-1
2 [— .
gl [9,(Bou) |2 = 3P} +P(Bg)|2=pF —2. woevenenreneniininnninnn. (5)

I’ll—'].

On the other hand 1,(=&;), {X}} (1§ i< ) and Y form a collec-

tion of p,-blocks S which includes the principal p,-block By(p;). If we
apply theorem 1 for SN By(p,), then we conclude that Y must be contained

d——
in By(ps) and Y(by)=—e. From (5) 15, Y and {’77}<1§r§%_1_> are

all members of By( p»). (q.e.d.)

Since all p,-classes have defect 0 or maximal, all p,-blocks have defect
0 or maximal. Then only exceptional characters and &;, &;, &; and &, which
don’t vanish on all B¥, can belong to py-blocks of maximal defect. Hence
we can take this Y out of &,, &, &, say &,.

Since this column of higher decomposition numbers is orthogonal to the
columns of degrees, we conclude as follows :

Lemma 3. In case 1

®1° 01 degree
§1=1¢ 1 1
pi—1
{n.} léré—_z'— kn,
§.=Y —€yq kni4-¢;
d—
Furthermore the sum of higher decomposition numbers for {,} |[1=Zr < P 22 1 )

is £1.
Next we wish to determine other p,-blocks of maximal defect in case 1.

LemMmA 4. In case 1, p§ irreducible characters 7, associated with 0, of
the form (- ;@) py, where ¢ is an irreducible character of B,, and ¢, is a
fixed nonprincipal irreducible character of B, and py is the principal character
of {j>, make one py-block of maximal defect. These types of blocks amount to

lB:n;| —1 .
2
Proor. With the same notations of lemma 2,

0r(bout) =edp(by) (1 01) (1) +595(b0) (@ic01)(w).

Here each of ¢;+p; and @;+p; can be regarded unique irreducible Brauer
character in some blocks of Cyz(b). By the second main theorem (Th. 6.1,
p. 242 [2]) these 7, are contained in a same block. Calculating the inner
product of the column of higher decomposition numbers for ¢;.p; we get
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2led(bo)? =ps.

So there exists no irreducible character other than these 7, in this block.

As the nvumber of the choice of ¢; and @; is _IB_&ZI:_I the last assertion

holds. (g.e.d.)

LemMA 5. In case 1, p§ irreducible characters n, associated with 6, of
the form (¢+@;+@+8,)+p1, where ¢ is an irreducible character of B,, and ¢,
is a fixed nonprincipal irreducible character of B, and p:1 is unique nonprincipal
irreducible character of < j), make one py,-block of maximal defect.

'szl —1
———————2 .

These types of blocks amount to

Proor. In the same way as lemma 4. (q.e.d.)

LemMa 6. In case 1 there exists only one nonprincipal maximal defect

d .
po-block other than lemma 3 and 4. This block consists of —!32—2~1— irreducible

characters 1), associated with 0, of the form (.o, +d-@) py and &, and &,

PrOOF. As the number of the blocks of maximal defect coincides with
the number of p,-classes of maximal defect, there are |B, [+ 1 blocks of
maximal defect. Then the first assertion holds by lemma 2, 4 and 5. The

d—— . . r .
fact that —*—Uz—é—l— irreducible characters 7, of the above form are contained

in a same block can be verified similarly to lemma 2. Furthermore in the
same way this remaining block has only two more characters other than
these 7,. On the other hand &, and &; have nonzero rational integral values
on B¥, Then &, and &; must be these (in fact the values are +1). We

pg—l

2
remark Y 9.(by) = —¢'. (g.e.d.)
r=1

’

Hereafter we call this block B;(p.), and number these 7, : 7;------ s

’
d .
79?1

2

Next we shall deal with case 2, 3, 4 and 5.

Lemma 7. In case 2, By(ps) consists of 9y, 12, &1(= 1) and £,(=Y) with
the same values as case 1 in lemma 3. Furthermore Bi(ps) consists of 7,
7y &2 and &3 as in case 1 and these two blocks are all py-blocks of maximal

defect.

Proor. In case x=¢ and x"=¢, we have for a fixed 5-element b, € B¥,



26 Y. Usami NSR. O. U., Vol. 29

7:(bo 1) =0, (bo* 1) +7(bo 1) =(¢(bo) + P (bo))ps(1) +¢  (r=1, 2)---(6)

where ¢ is a nonprincipal irreducible character of B and p; is the principal
character of <{j», since B is a cyclic group of order 5.

7:(bo /) =0,(bo /) +1(jbo) =e((bo) +F(ba))+ p1( N +y (r=1, 2) =+o-- (7)

(6) and (7) mean 7; and 7, have nonzero higher decomposition numbers for
the section of b, for p;, which can be regarded unique irreducible Brauer
character in the principal block of Cg(b,). By the second main theorem
(Th. 6.1 p. 242 [2]) and theorem 6.2 (p.286 [2]) »; and %, are in By( p;) and
y must be e. Then this higher decomposition number for p; is ¢6,(by)+e.
Since

2 |
S3ef, (o) el =m—2 -2+ 21 —np—2,

we can see that the remaining members of By(p;) are 1; and Y with the
same values as in case 1 in lemma 3 in the same way.
Next

7(bo+ 1) =€'0,(by - 1)+ (bo+ 1) =¢' (¢(bo) + P (o)) p1(1) +¢
7:(bo ) =€'0,(bo+ j) + 7 (jbo) =& (¢(bo) + P (bo))o1( )+
= —¢€'(¢(bo) + P (bo)) +¥' (r=1, 2)
Suppose y'=¢’, then #; and 7, have nonzero higher decomposition numbers
for p; which is unique irreducible Brauer character ‘in the principal block
of Cg(by). This contradicts that z; and 7; can not belong to By(p;) by
theorem 6.2 (p. 286 [2]). Then y'= —¢’ and 7; and 7; are contained in a same
block of maximal defect. Since their higher decomposition numbers are &'6,(b,)
2
+&(r=1, 2) and 3}|'6,(by) +¢'|2=ny;—2, the remaining members in this block
r=1 -

are &, and &. Furthermore we remark
2 2
2 7(bo) = 23 (€0,(bo) +& )= —¢' +2¢/ =¢.
r=1 r=1

As p;-classes of maximal defect are only 1 and j, all blocks of maximal
defect are By(p,) and this block B;(p,).
In case x=¢ and x¥’=0 and in case x=0 and x'=¢ these results can

2

be verified in the same way. We remark >)#,(by)= —¢’ in the second case
r=1

and -¢ in the third case. (q.e.d.)

LemMma 8. In case 3 all py-blocks of maximal defect are By( p:)={1s, {7,}
(ILr< 3), Y=E&,} with the same values as in case 1 in lemma 3 and B(p;)={{n,}
(ILr<3), &) &5 cannot appear.

Proor. Suppose x=e¢ and x’=0. Then 7,(1<r<3) have higher decom-
position numbers ¢f,(by)+e for p; and belong to By(p,) in the same way
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as in case 2. But since ) |ef,(by)+¢|?*=ns—1, By( p;) must be {ls {9}

(1<r<3)}, which contradicts theorem 1 (ii) for By( p1) N By( p2). Then x=0
and x'=¢. In this case 7,(1<r<3) have higher decomposition numbers
e0,.(by) for p; and By( ps)={ls, {7,}(1=Zr<3), Y (=§,)} with the same degrees
in case 1 in the same way. Since each 7(1=Zr<3) has higher decomposi-
tion number ¢8,(b,)+¢ for p; and 3|6,(by)+¢ |2=n;—1, By(p;) must be

{n}(1£r<L3),8:). We remark an;(bo) = 23 (€0,(by) +¢)=—¢ +3/ =2¢.(q.e.d.)
r=1 r=1

LemMma 9. Cases 4 and 5 cannot occur.

Proor. In case 5 By(ps)={ls {,}}, which contradicts theorem 1 (ii)

for By( p1) N Bo( pa).

In case 4 suppose x=e. Then this contradicts theorem 1 (ii) in the
same way as the first part of the proof of lemma 8. In case 4 suppose
ne=9 and x=0 and x'=¢’. Then By(p:) ={1s {7,} 1Z<r<L4), Y} and Bi(p2)
={{n}(1<r<4)}. In this case each 7 has higher decomposition number
¢'0,(by) +¢ for p;. Since the column of higher decomposition numbers is
orthogonal to the column of degrees,

4
vi(l)gg (€6.(bg) +¢')=0.
Hence
(1) (—¢& +4¢')=0.

Then 7,(1)=0, which is a contradiction. (q.e.d.)

§4. Exceptional characters with respect to C
and division into ps;-blocks (I-II)

C# is a collection of special classes in Ng(C). The families of two irre-

ducible characters ¢;, ¢, of degree n3;-1 of Ng(C) which vanish on Ng(C)

—C, provide two exceptional characters {; and ¢, of G.

gll,’va 0y =¢3p1+C, CleG(o) =ezp2+C.

Let {(C#*)=z, where z is a rational integer. And y(C¥) is a rational integer
for any nonexceptional character y. Since C is a ps-group and 1 is the only
ps-class of maximal defect and other classes have defect 0, p;-blocks of G
have defect 0 except the principal block By( ps).

The orthogonality relation for ¢ € C# becomes

|Cal)] = lests(€) +-L(0) 2+ lestpa(e) +L(0) |2+ €2 (1) 2
+ =L ) @+ )2
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where the last sum ranges over all the other characters. Since ¢;(c)+ ¢s(c)
=—1 and |¢1(c)|2+]¢2(c)12:—7—11—2il— from the orthogonality relations in
N(C), this equation becomes

ns=1(c) |2+ | 02(c) |2 +es2(1(c) + @1(c) +@a(c) + ¢a2(0))

22414 "2‘2‘1 7:(0) |2+ Sx(0)]?

=M 4222z b L BT O B e ®)

Next we wish to determine the principal ps-block By( ps).

Lemma 10.  (3) {Cy, Co} equal {§., &5} or equal none of {51(210), &2, &3,

v, (xy 1is 220, (1=, 0, (1= )]

(i) {37; <1§r§%_—1)} belong to By(ps).

(iii) In any case of (i) at least one of {&;, &} belongs to By( ps).

(iv) There exists no character which is in a py-block of defect 0 for any p,
diviping ny and in a ps-block of defect 0 except {X} <1§ ig%).

Proor. (i) holds because {; and {, have the same value on elements
which are not conjugate to C¥,

(ii) Suppose one of {7} is in a pz-block of defect 0. Then 7,(1) is divi-
sible by mjng and then each 7, is in a pg-block of defect 0. From the equa-

tion SV [x(D[*=|G| we get ) |7(1)|*< |G| and then ”2;1 nni<|G|, which
allx r

contradicts the condition (0).

d
(i) If not, By(ps) N By(ps)= {{7;;} (1grg m;l )} Applying theorem 1

p.~1

5 v
(i) for By(ps) N Bi(p2), 21 7.(bo)n,(c)=0 for a fixed by € B¥ and any c€ C¥,

pI-1

2
Since 7,(c) is independent of r and X 7,(by)#0 by remarks in the proof of
p=1

lemma 6, 7 and 8, we have 7,(c)=0 for any c¢€ C#. This contradicts (ii).
(iv) If there exists such a character, its degree must be divisible by ngn;.
Since it can not be Y nor 1, its degree must be also divisible by n;. Then
in the orthogonality relation %IX(I)P:IGI: this character contributes at

least minini, which contradicts the condition (0). (q.e.d.)

_ Cs(7)|?
From the fact that |G|=n(kn;+ kn, 42 |1Co
I ] n1( 1 61) ( 1 51) (kry 6, — Y(z'))2
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(lemma 1) and (n3, |Cg(z)|)=1, two cases occur as follows :
Case (1) Ry divides kn1+€1
Case (2) ng divides kny-2e¢

LemMa 11. In case (.1> X,.(C#)zel(l_g_ig ”1;1 )

70 = —a(12rs 221, ven=o.

Proor. Since X;(1) (=kn;+2¢;), 5.(1) (=kn;) are not divisible by ns,
{x} (1§ igﬂz—l), and {7} (lgr < n2;1 ) € By(ps). Applying theorem

L for SN B ={lo (3} (1<i< 21
m=1

3 2@ LCH =1+ 3 Xi(a) T{CF) = 1 -, F(CF) =0

for pi-element a € A*. Hence X;(C¥)=¢,. Applying theorem 1 for By(p2) N
d-——
Bo(po) = {1or {n}(1=r= P20

d
Py -1

S} 1) X =1+ 3 7,(b0) 7,(CH =1+7,{CH =0

Bo(p2) NBo(rs)

py~1

2
for a ps-element by, € B#, because > 2,(b,)=¢; by lemma 3, 7 and 8.
r=1

Hence 7,(C#)= —e;. Since this value is independent of r, ,(C#¥)= —¢; for
1<r< =l (qe.d.)

LemMma 12. In case (2) X,(C#*)=0 (1§ i< n1;1 ), Y(C¥)=—¢; and
7Ch=—2e(1=r < 1),

Proor. Similarly to the proof of lemma 11. (q.e.d.)

Lemma 13. Case (2) cannot occur.

Proor. Since {77;}(1 <r< n‘?;l >€B0(p3) by lemma 10 (ii), #, is not

zero on at least one element ¢ € C# and it is independent of ». We can put
this absolute value (=1) into the equation (8) as well as the values of lemma
12. Then (8) becomes

2

1y

L@ +11@)

nsgﬁ;i+zz2—zesz+1+ '2‘1 ()2 T2
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1 1

«1+1.

> Mt op gepprp ezl gy M
22 et 1T T

Hence n3=>5n,+4z% —4e322>5n,, which contradicts the condition (i). (q.e.d.)

LemMma 14. Let U be the set of irreducible characters {&;, &, &3, Y,
g (1=i= 7)) (1= 2o D) (1 rs )] zerw de

the set of representatives of the conjugacy classes {1, j, A¥, B#, jB¥, C¥}. There
are five cases in case 1 and 2.
(a) n3=2ny+ny. U is the set of all irreducible characters and B represents
all conjugacy classes.
(b)-(1) n3=2ny+ny;+2. There exists only one irreducible character except
A and only one class except $B.
(b)-(2) nz=2ny+n;+2. There exist only two irreducible characters except
U and only two classes except B.
(¢)-(1) mn3=2ny+n;+4. There exist only two irreducible characters except
A and only two classes except $B.
()-(2) mn3=2ny+n;+4. There exist only three irreducible characters except
A and only three classes except B.

In case 3 the equation and the number of the classes are the same as

(b)-(1) or (c)—(1).

Proor. Since 7, is not zero on at least one element ¢ € C#, in the same
way as the proof of lemma 13, we can put this absolute value (=1) into
the equation (8) as well as the values of lemma 11. Then (8) becomes

P L NS P PR A ”251 (P2 o)

2 2
+ =L xp
2713-*—1 272 — 2 1 7’12'—'1 n2—1 n1—1
=5 + 2z gz+1 + 5 + > + 5

_ N3 2 ny
=3 4272—2esz-+ny +—2,
5 g3Z+ng + )

Hence
ng3 2 2"2 + m + 4 7% —4632.

Since z is a rational integer, the minimal value of 4z%* —4e,z is 0 and minimal
nonzero value is 8. From the condition (ii) n3<2n;+n;+6, we get
ns=2ns+n; or 2my+n;+2 or 2n,+n;+4, because n; and n; are odd.
Furthermore 4z2—4e3z=0 and 7,(c)==1 and hence 7,(C¥)=+41 by equal
multiplicity in §1, I, a.

In case (a) by the equation (8) By(ps)= {1G, ¢y Co, {Xi}(lgig m;l )

— , —1
{7} (lé r< n22 1 ) {vr}(lér §—"2—2———>} Suppose {&, &3} #{C1, Co}, then
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neither &, nor &; can belong to By( p;), which contradicts lemma 10 (iii).
Hence {&;, £3}=1{{i, {2}. In this case any character except U is in a p;-
block of defect 0 for any p, dividing n, and in a ps-block of defect 0, which
contradicts lemma 10 (iv). Then % is the set of all irreducible characters.

In case (b) by the equation (8) By(ps)= {1(;, C1, Co, {X¢}<1§i é_nl“z_l \)’

{n,} (léréﬂgl—>, {n;}(lg ré—’fz—z'i), Z} wher Z is a new character.

We remark that a nonexceptional character has common value on C# by equal
multiplicity in §1, I, a. If {{;, {o}=1{&., &3}, Z is not in the set A. If {{y, Lo}
#1{&y, &3}, Z is one of {&;, &;} by lemma 10 (iii). In the first case AU Z is
the set of all irreducible characters and in the second case U U {{;, o} is
the set of all irreducible characters by lemma 10 (iv).

In case (c) from the equation (8), Bo(ps) ={ls, 1, Ls, { X} (lé i ém_;L)

{m}(lgr g_”zz__1> {n;}(lgr < n22—-1 ) Z,, Zz}, where Z, and Z, are new

characters. If {{;, {3} = {2 &;}, then neither Z, nor Z, is in ¥, and AU
Z1UZ, is the set of all irreducible characters by lemma 10 (iv). If {{;, Lo}
#{&2, &3}, then at least one of Z;, Z, is equal to &; or &; by lemma 10
(iii). Anyway €UC UL or AU UL, with only one more character is
the set of all irreducible characters by lemma 10 (iv).

Since the number of U and B are same, the number of the remaining
classes can be determined in each case. (q.e.d.)

§ 5. Nonexistence of the remaining conjugacy classes (IV)

Lemma 15. If m2=1, then k=2

Proor. If m?=1, then |G|=n(kn;+e;)(kn;+2¢;). On the other hand
kn, which is the degrees of 7, divides |G|. Then k=1 or 2. Suppose
k=1, then ny3=2n,+n;>n;+1. But now ng|Y(1)=n;+e;, which is a con-
tradiction. (q.e.d.)

Lemma 16. In case (a) G is isomorphic to one of PSL (2, q) with 2-
Sylow groups of order 4.

Proor. Since 3;1 = ( 2n2+;1—1 ) is an order of a cyclic group and

is greater than n, and ‘7121' must be 2ny or n;. In the first case, ny=2n,+ 1.
Since n, divides kn;-+2e¢; which is now 2mnk+k—+2¢, k=2 and e;=—1, or

ny divides k-2¢;. Suppose n, divides k-+2e¢;, then ny<k-+2¢ and then
ny—2e; <k and it contradicts the condition (0). Because if m?=+1, then

| G| =ny(kny+e;)(kn,+2e)m? = ni{ni(ny—2e;) +e}{ny(ny — 2e4) +2¢}(n +1)
> ni(ny—2)?
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and by the condition (0)

1

|G| <2 "2;1 =i (2ny-n* L < 2ni(me—1),

then since n,=5, (n;—2)? > 2(n;— 1) which is a contradiction. And if m®=1,
then k=2 by lemma 15, which contradicts n,—2¢; <k.
Then k=2 and ¢;=—1. Then |G|=n;(2n;—1)(2n;—2)m?*=14nnsnsm?.
Let 2% be the order of a 2-Sylow group of G. Since B is the set of re-
presentatives of all conjugacy classes in case (a), m? can be divisible only
by a power of 2. Hence
]CG(T>12 ny 2*

20-2— 2 - e, (9)
em—1-Y()*  (4n+1-Y())

since = is in a center of a 2-Sylow group. —(4n,—1) < Y(r) < 4n,—1.
Because G is simple and Y(z) cannot be a trace of a scalar matrix. Then
2 [4ny+1—Y(2)|<8n,. Hence (4nmp+1— Y(z))=2n,, 4n, or 8n,. If it is
2n;, (9) implies 2*-2=22*-2, which is a contradiction. If it is 4n,;, (9) im-
plies a=2 and m?=1. Then by theorem 1 [1] G is isomorphic to one of
PSL (2, g), Futhermore the order of a 2-Sylow group is 4 now. If it is
8ny, then (9) implies a=4 and m?=4=1 (mod #n,). Then mn;=3. This is

a contradiction.
n3—

In the second case that 1 =ny, ny=2n;—1. We can verify that

G is isomorphic to one of PSL (2, q) with 2-Sylow groups of order 4
similarly. (q.e,d.)

Remark. The order of PSL (2, q) (q: odd) is (q—l)q(q—{—l). Now

2
g is n;. If g=1(mod 4), then the first case occurs : ﬂl‘;—l—:nz and q~i2—1
=n;. If g= — 1 (mod 4) then the second case occurs: q;l—l =ny and
—1
12__—_;11_

Next we shall deal with cases (b) and (¢) and wish to conclude that
neither case can occur by considering orders of the remaining classes
except B. We can deal with these four cases by almost similar method.
Here we shall describe only the most complicated case (c)-(2).

Lemma 17. In case (c)-(2) possible orders of the remaining classes ex-
cept B are as follows :
(r.q. 8, (rnrq), (r,rr, (r2rn q, (r.r,2r, ¢ 220, 2r 4), (r,r, 4),
(r.4,4),(r.q.4),(r.4,8),(4.4.4), (4,4,8), (4,8,8), (4,8, 16), (3,9,6), (3,9, 9),

where r,q and s are distinct odd primes.
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Proor. First of all we must verify that if there exists order r2, r=3.
Suppose there is only one class of order r2. Since the automorphism of an
element v of order 7% is an abelian group of order r(r—1), Ng(v)/Cs(v) must
be so and there exists an element of order rz, where ¢ is any prime divid-
ing r—1. Then r=3. Furthermore the orders are (3, 9, 6). Suppose there
are 2 classes of order r2. In this case the orders are (r, % r¥). Ng(v)/Ce(v)
for an element v of order r? acts fixed-point-free on the elements of order
r* in {(v>¥ and any two elements of order 2 in <{v)>¥ conjugate in G are
conjugate in Ng(v), Hence

r(r—1)=2|Ng(v)[Cs(v)| or [Ne(v)/Ca(v)|.
Then |Ng(v)/Cs(v)| ___r(rz———l) or r (r—1). But since there is not an element

of order 2r, [Ng(¥)/Cs(v)| =

%ﬁ and r=3 and the orders are (3,9, 9).

Next we must verify the orders (r, ¢, rq) cannot occur, Since the con-
jugacy class of order rg is unique, Ng4(v)/Cq(v) is an abelian group of order
(r—1)(g—1) for an element v of order rq. Here r—1 and g—1 are even.
Since an elementary abelian 2-Sylow group of Ng(v) cannot act fixed-point-
free on {r, g}-group Cg(v), this is a contradiction. (q.e.d.)

Lemma 18. In case (c)-(2)
(i) ny <3n,—4.

() o=l sy, m—1 > o,
: 2 2 2
Giiy =L —p 2m, r g s or 2n
Proor. (i) By the condition (i). (ii) Because "3;1 = 2 "2+2’11+3
and 2n,+n;<2X5-+7 by the condition (ii). (iii) The assertion holds by

Ny —

lemma 17 and (ii). Because is an order of a cyclic group. We remark

n3—l

# 16 since n3 is a power of ps. (q.e.d.)

Next we shall examine the cases in this lemma (iii) case by case.

H3—

Lemma 19. In case (¢)-(2) the case =n; cannot occur.

Proor. In this case n;=2n,+3 and ny=4n,+7. Since n, divides kn;

+2¢,, which equals 2kny+3k-2e;, n,<3k-+2¢;. Hence ”2“—3261 < k.

Suppose m?2=1. Then by lemma 15, k=2 and n, divides 4n;+ 6+ 2¢;. This
is a contradiction. Then m?s~1. Then
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|G| =ni (&—3_2_3_ n1+251) (—11—2_—326—1— ny + 51) (ny+1)

> n} (2ny+-3)2 (ﬁgi)z .......................................... (10)
On the other hand by the condition (0),
1G] < 2 (4n2+7)2_"2;_1 e (11)

By easy caluculation we can see the right side of (10) > the right side of
(11) for ny = 21 and this is a contradiction. If ny < 21 there are only finite
possibilities for n;, n, and n;. By the condition (0) and the fact that m*=1
(mod n;) we can verify no case can occur. (q.e.d.)

We remark that if we get an equation of n; and n; we can deal with
the case similarly as above and gain a contradiction.

ng—1
3 =2n, cannot occur.

Lemma 20. In case (c)-(2) the case

Proor. In this case n;=2n,—3. We can deal with this case similarly.
(q.e.d.)

Lemma 21. In case (c)-(2) the case n3;1 = r or § cannot occur.

Proor. In case that it is » and there is only 1 class of order 7, or in
case that it is 5, r—1 (or s—1) is 2X (a divisor of n,) or 4. Now since
10=2n; < 2ny+n;+1=2(r—1), (or 2(s—1)), 2n;+n;+1=4n,;. In this case
ny=2n,—1. We can deal with this case similarly.

In case that ny—1

=r and there are only 2 classes of order r, the

possibilities of orders of the remaining classes are (r, r, q), (r, », 2r) and
(r, r, 4). Since an abelian group N;(v)/Cy(v) acts fixed-point-free on {v)*
for an element v of order r and any two elements of (v>¥ conjugate in G

r—l. We can deal with

are conjugate in Ng(v), |Ng(v)/Ce(v)]=r—1 or

the case that it is r— 1 as well as the previous paragraph. Suppose |Ng(v)/

ca<v>1=’*21. Since 12, 1 <2n2+:1+1:n323 T

r—1

2ny+m+1 _ ”_11 r—1 =2 X (a divisor of n,), l;—, nyng or g. If

4 2 2

=2 X (a divisor of ny), 2ns+n; +1=8n, or %nz, since 2ny+n;+1 > 2n,.

If it is 8m,, then n;=6m;—1, which contradicts lemma 18 (i). If it is

—g— ny, then ny :%nz— 1. We can deal with this case similarly. If r—1




July 1978 A Characterization of Some Type of PSL (2, q) 35

:%L, then »,=6mn,-+3, which contradicts lemma 18 (i). If r"2—1 =ny, then
nlz—zn—g;i. We can deal with this case similarly. If r—él =n,, then n
=2n;—1 and we can deal with this case similarly. If r—zl =g, theng—1

r—1

=2X(a divisor of n) since there is only 1 class of order g. Then

=2n,+1 or -i—ng—{— 1 since r;l > l%z— In the first case n; = 6mn,-+ 3, which

contradicts lemma 18 (i). We can deal with the second case similarly.

In case that ny—1 =r and there are 3 classes of order r, the possibility

of orders of the remaining classes is (r, 7, r). |Ng(v)[/Co(v)|=r—1, r—2 Lor r; 1

for an element v of order » by the same reason as the previous paragraph.
We can deal with the first and second cases in the same way as the previous

paragraph. Suppose it is r;l. Then it is 2X(a divisor of ny;). Then

2}12 < 2n2—l—n1+ 1= 127’12, 47’12 or —152-712. Hence ny= 10}12— 1, 2”2'—1 or ——i—-ng

—1. The first case contradicts lemma 18 (i). We can deal with the second
and third cases similarly to the proof of lemma 19. (q.e.d.)

Lemma 22. In case (c)-(2) the case n3;1 =g cannot occur.

Proor. Suppose n3;1 =g. Then g—1 is an order of an abelian group

since there is only 1 class of order q. Hence 2n, <2ny+n;+1=2(qg—1)
=4n, or 4r since g—1=2X(a divisor of ny) or 2r. If it is 4n, then mn
=2n,—1 and we can deal with this case similarly. If it is 4r, then r—1
=2X (a divisor of ny), since the orders of the remaining classes are (r, 2r, q).

Since 2ny; < 2ny+n;—3=4(r—1)=8 X (a divisor of n,), it must be 8n, or
%_ng. The first case contradicts lemma 18 (i) since n;=6mn,+3. In the

second case ny =—§—n2+3 and we can deal with this case similarly. (g.e.d.)

LemMma 23. In case (c)-(2) the case n32—1 =2r cannot occur.

Proor. Suppose

n3;1 =2r. If there is only 1 class of order 7, r—1

=2X(a divisor of ny) or 4. Otherwise the orders of the remaining classes
are (r, r, 2r). In this case r—1=2X(a divisor of n,) since N4(v)/Cs(v) for
an element v of order 27 is an abelian group of order r—1. Anyway 2n, <
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2ny+n;—1=4(r—1)=28n,, % ny or 16. The first case contradicts lemma

18 (i) since n; = 6ns+1. In the second case 7 :%n2+1 and r=2 (%nﬁ 1)

=2ny, which is a contradiction. In the third case ny,=5, ny=7 and n;=
21=3ny, which is a contradiction. (q.e.d.)
Then the main theorem is proved.
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