PN

Natural Science Report, Ochanomizu University, Vol. 28, No. 2, 1977 59
KEOKRLZTFRYE BRBFRE F28F £25

An Improvement in the Spherical Approximation
of an Ising Spin System

Noriko Nagai, Yoko Ohkawa, Mayumi Shingu, Sachiko Yagi
and Giiti Iwata

Department of Physics, Faculty of Science
Ochanomizu University, Tokyo

(Received, Sept. 10, 1977)

Rewriting the partition function of an Ising system as a multiple integral,
dividing the integration space by a set of concentric spherical surfaces and
sets of parallel planes into small domains, averaging separately the two factors
constituting the integrand of the multiple integral over each of these domains,
and replacing the two factors by their respective averages, logarithm of the
partition function per spin is given by the extremum of a function with respect
to a complex variable and a number of real variables. The specific heat curve
of an Ising square lattice obtained by the present method is compared with
those by the exact method, the spherical approximation and the mean field
approximation.

§ 1. Division of the integration space

The partition function Z of an Ising spin system consisting of N Ising
spins x, situated at N lattice points r of a lattice may be expressed as the
sum

Z=2_NE €Xp [%- ) rzr’ K(r"_r/)xrxr’—i— ; hrxr] (1)

where the first 3} means the summation over each variable x, on 1 and —1,
the lattice point r ranging over the whole lattice, —K(r—r’)x.x, representing
the interaction of the Ising spins x. and x., divided by the product of the
Boltzmann factor and the absolute temperature, and —h.x, representing the
interaction of the Ising spin x, and an external field divided by the same
product as above. The factor 27¥ is inserted for later convenience.

The sum (1) may be transformed into a multiple integral

Z:f f f exp [’%‘ SK(r—1) 2o+ S | T18(x—1)dX 2
dX=dryd, - dxy |

by virtue of the property of the delta function
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B(x*—1)= -+ {3(x—1)+3(x+1))

If we compare the representation (2) of the partition function with the
expressions (11) and (12) in the paper by Berlin and Kac, the spherical appro-
Ximation initiated by Berlin and Kac may be interpreted to consist in replac-
ing the factor ITo(x2—1) by its average over a spherical surface R=2>x% The
average is given by

(T 823 —D)y= [T 8(x1—1)- 8(R— 2 x)dX / [S(R— 3 xDdX

=0(R—N)/((=R)""*/RI'(N/2)).
To improve the approximation, we divide the integration space by a set
of spherical surfaces
R=>x%, 0<R<
and n sets of linearly independent planes
L;=2> c;:x,, j=1,2,-,n, —oo<L;<o0,

How to choose the sets of planes L; is very crucial to our method. We
consider that the planes should include the plane X A.x,=L, or the plane
2 h.x,=L should be expressed as the linear combination of planes L; as few
as possible '

D hx=2 0 2 CieXe

Over a domain defined by R, L;, L,, -+, L,, we compute the integral A of

the factor IT d(x2—1) and the integral B of the factor

exp [—%— D Kir—r)xx.+2 hrxr]
in (2) separately, and replace the integral in (2) by
Zf:f0 de_del -.-j_NdLnA-B/Q 3)

£ being the volume of the domain defined by R, L,, Ly, ==+, L.

The spherical approximation by Berlin and Kac uses only the division by
R. If n=N-1, the integral Z’ of (3) is equal to the integral Z of (2) exactly.
In the following, we fix the number n and make the number N tend to infinity.
We note here that if L=2] x, is included in the sets of planes, the integration
space is divided by planes, in which the difference of the number of upward
spins and that of downward spins is constant.

§2. Computation of the integrals over the domain

First we compute the vblume 2 defined by R,L,, L,, -+, L,, or

2=[6(R—% *)-11 B(L,—3 c,x)dX.
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Using the representation of the delta function

c+ieo z
o(x)= Zm L_iw e"*du

we get

Q:"M—;{W-f---jexp [—%L(R—E )+2v(L;—2 erxr)]du Il dv;dX

e N N2
=gy | Jexo[ 4 RES0,Lit gy Do | () duTLdy,
pjx being defined as

Pir= 2 CjxCre/ N .

Integration with respect to v; and u gives

. i u . o N/2 o2nu n/2
‘Q_———~2(27ri)”“ fexp[—z—(R—Z(P )jijLk/N)]'(7> ) \/det pd
_ TN -2 1 1 (R—Z(P—l)' L.L /N)(N—n)/z—l (4)
N~ Vet p T(N—n)/2) i

det p denoting the determinant of the matrix p=(p;») and (p™%);» the (i, k)
element of the inverse of the matrix p.
Next we compute the integral A to get

A=CTL (2 —1>Q={ -+ [TL 8(x3—1)- (R — 3 #)IT 8(L;— 3 ¢;ex)dX
ZWf---fexp[fg-(R—E )+ DAL= ¢pexs) |
I 0(x2—1)dX du 11 dv;
=2(z—nli)n+1—f---jexp[%(R—N)+E ijj—i—; log cosh ; vjcjr]du II dv;
—5(R—N)- W}-j-jeXp [Sv,Ls+3 log cosh 3 v,c; ) TL dv, )
Thirdly we compute the integral B and get
B———<exp [—%—2 K(r—r")x.x.+> h,x,]>.Q
= -+ fexp [%z Ka—1)x10+Z a;L; |- 0(R—% 2) TL6(L;— % ¢;ex)dX
= 2(273;')7&1 f"‘jeXp [’%‘Z K(r—r")x.x.+2 a;L;

+5- (R—2 )+ B 5Ly~ 2 ¢5ex,) | dX ds TI ds,

the lines of integration with respect to s, s; being parallel to the 1mag1nary
axes. Integrating with respect to x,, we have
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(27)N/2

B= WI"'J‘CXP[—%—SR‘FE(Sj'{_aj)LJ

—%log det (s—K)—l—%Z} o,-ksjsk]ds I ds;

where we use the following abbreviations
_ 1
a.jk‘—rzr.“ erckr'( S___K >rr’ N
(1/(s—K)). representing the (r, r’) element of the inverse of the matrix s—K.

It is necessary that the eigenvalues of the matrix s—K have positive real
parts. Integrating with respect to s;, we have

(2 / N ™2
B= ! 2((27;_/1‘)721 j.eXp [’%‘SR——%log det (S—K)
1 - ds
T aij__ZN—Z (0 l)ikLJ‘Lk]m (6)

§ 3. Computation of Z

Now we substitute the expressions (4), (5) and (6) into (3), replace R by
N by virtue of o(N—R) in (5), replace the variable L; by Nu; and get

7'= gy -+ fexp[5-sN— -} -log det (s—K)+N Sau,

—"IziE(o—l>jkujuk+N > v,u;+ 2 log cosh X vjcj,]

(1= (™) puup) =¥ ™"%(det )" "2ds II dv; I1 du;.

C is a factor independent of integration variables.
With the fixed n, we make N tend to infinity under the assumption that
Pk Ok and

7{[— -log det (s—K)= T{f_ -2 log (s—A)=<log (s—A)»

A's representing eigenvalues of the matrix K, tend to their respective limits.

And further we assume c; to be periodic with respect to r with the period
of n, then we have

% *2log cosh 2 v,-cjr=%-§ log cosh X v;c;,

k ranging over n lattice points.
As N tends to infinity, we see that

C:2(N—n)/z[v< N—2—7’L )N—N/2+3n/2+1 \/m——) o~ N2t

C’ being of a finite order in N.
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Then we can rewrite Z’ as

Z/:Wf...fexp [NW]-dsTI dv, IT du,C"
W:%— ——%—<log (s—0+2 ajuj__%' 23 (07 jau ke

+Xu;+ % > log cosh X vjc,-k—%log(l—Z(p“l)jkujuk)—-—%— 8)

C” being of a finite order in N, the real variables u; ranging over the domain
defined by

2o M puue<l,

the complex variables s and v; running upward, parallel to the respective ima-
ginary axes.
Therefore, we have, by the use of the method of steepest descent,

F= %_rg—lﬁ -log Z/=Min Min Max W )

vj wj

since the s and v; are complex variables, while the u; are real variables.

§4. Transfermation of W

Since X ¢;x,=L;, j=1,2,---,n are assumed to be linearly independent,
and c;; are assumed to be periodic with the period of n, the matrix (c;z), j, &
=1,2, -+, n has the determinant different from zero. If we denote the matrix
inverse to the matrix (c;z) by (¢j), we see that

Zk: CjkC;zl:‘Sjl ’ Zk: C§kaL:5jz . (10)
If we replace the variables v;, u; by the variables w;, ¢; defined by
wk:; ViCir s vjzg WiChy

(11)

1, . _1
Ttk_;ckiuj’ uj——Tg)cjktk

we have
]2 u;v,+ *nl—g log cosh ; vjc,'k:%g (tyw,+log cosh wy) .

A typical term tw-log cosh w in the right hand side is minimum when ¢+
tanh w=0 or w=1/2-log [(1—1%)/(1+1)], and has the minimum

— L {1+ log (L+0)+(1L—1) log (1)} .

This expression appears in the mean fleld approximation,” ¢ standing for
the long range order. Consequently we can eliminate v; and replace

Min[z u,-v,+% - 22 log cosh 2 v,¢;,
vj



64 N. Nacal, Y. Oukawa, M. SHINGU, S. YAGI and G. IwaTAa NSR. 0.U., Vol. 28

by
——zln— -2 {410 log I+t +(1—1,) log (1)} - (12)

Now we must eliminate the variables u; from (8). From (11), it follows
that

2(0—1)J’kujuk:—,],;" 2 Uplitn,, A =2(0"");4C1.Chm/ M (13)

207 jat s = % * 2bimtitn, bim=23(0"") jxCsiCrm/ T . (14)

We remark here that if the set of L; is replaced by the set of L;*=
Sl (aj)=a being a non-singular matrix, the matrices a=(a;,) and b=
(b;n) remain invariant, as we will see in the following.

From L¥=> a;,L, we have

ch=Xacy or c*=ac in matrix form.
If a quantity obtained by replacing L, by L¥ may be denoted by the same
symbol with an asterisk, we have

1
P;Fk: N > CfrCfrZE A1 Oim or P*:apat

a' being the transposed matrix of a. Similarly we have
o¥*=aoa’.
On the other hand, (13) and (14) give
a=cto™¢/n, and b=c'p 'c/n.
Therfore we have

la"lac/n=a

a*=c*¥'g* 1c*/n=ctat(a’) o

b*¥=c*'p*~1c*/n=b
In other words, the matrices a¢ and b are independent of the choice of ¢, so
long as the condition detc=]|c;,|#0 is ensured. If we choose c;,=8,, we
have

ij:l/n'ajk
bjk___'ajk .
The computation of a;, is rather troublesome, so it will be presented in

a succeeding paper. For the present we have

W= %s— —%—aog (s—+ % 25 Cpte— —2‘177 2t sty

e SH(L+13) log (L4 £)-+(1—1,) log (1—1,)}

=
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F=MithaX w.
$ k

§5. An illustrative example, square lattice

For the square lattice where only nearest neighbor spins interact with
each other and no external field is present, we take only one plane L,=> x,
and use only one variable f for the sake of simplicity, so we have

W= —%—s— ——21—<log (s—Z))—%-anz‘z—%(l—H) log (1+#)— -%—(l-z‘) log (1—1%)

1 oy 1
———2—10g<1—t )— 5

If we put =0, W reduces to that of the spherical approximation. The
terms dependent on the variable ¢ originate from the divison of the space by
planes X x,=L,=Nt. The constant a;;, is to be computed from the relation
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1 1 1
a4, uTN § s—K )r

For the nearest neighbor interaction, non-zero element of the interaction matrix
K(r—r’) are
K(1,0)=K(—1,0)=K(0,1)=K(0, -1)=K.

We have then
A=2K(cos 0,+cos 0,), A, =4K

1 1

Clll - S_lo )

011=

Putting s=4,y, we have
Clog (s—A)>=log 4,+C(),

C(y)= <log (y— cos 01—2%003 g, >>

_1 L”joﬂlog (y_ cos 6,+cos 0, >d¢91d92

2 2

oy 2
C=2—K(5),

K(x) denoting the complete elliptic integral of modulus x.

In the figure we show the speciflc heat curves obtained by the exact
method of Onsager,” the spherical approximation, the mean field approxima-
tion and our method. While the spherical approximation predicts no phase
transition, our method gives a phase transition in the vicinity of the point
where the exact method predicts a phase transition.
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