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§0. Introduction.

Let K(p) be the maximal p-extension of an algebraic number field
K, where p is a rational prime. We call an algebraic number field p-
Henselian if it has a valuation which does not split in its maximal p-
extension. It is known that the center of the absolute Galois group of
a finite algebraic number field is trivial. In §1 we shall prove that the
center of the Galois group Gal(K(p)/K) is trivial if K is a finite algebraic
extension over the rational number field @ containing a primitive p-th
root of unity. In the proof the decomposition groups play an important
role. In §2 we assume that K is an algebraic extension over @ con-
taining a primitive p-th root of unity and that K is totally imaginary
if p=2. We shall give a necessary and sufficient condition, in terms
of Gal(K(p)/K), for K to be p-Henselian with respect to a discrete valu-
ation over p which has a finite residue class field. Using this we shall
derive a number theoretical result, which is the purpose of §2: when
K is a finite algebraic extension of @, Gal(K(p)/K) determines the degree
of K over @, the number of prime ideals of K over the ideal (p), e(p)f(p),
where e(p) denotes the ramification index and f(p) denotes the degree
of inertia of a prime ideal p of K over (p), and the maximal integer
m for which K contains a primitive p™-th root of unity.

§1. The center of Gal(K(p)/K).

In this paper we denote by p a rational prime. Let k& be a field.
We say that an extension K of k is a finite p-extension if it is a Galois
extension and its Galois group is a finite p-group. We donote by k(p)
the composite field of all the finite p-extensions of % in a fixed algebraic
closure of %, and call it the maximal p-extension of k.

Let K be an algebraic extension of @ and v be a valuation of K.
K, denotes the composite field of K;,, in a fixed algebraic closure of @,,,
where K; runs all the subfields of K which are of finite degree over @,
v, (resp. v;) is the restriction of v to @ (resp. K;), and @Q,, (resp. Ki,,)
is the completion of @ (resp. K;) with respect to v, (resp. v;). We note
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that if K is a finite extension of @, K, is the ordinary completion of
K with respect to ».

LEMMA 1. Let K be a finite p-extension of k and L be a finite p-
extension of K. Then the nmormal closure of L over k is a finite p-
extension of k.

PROOF. C(lear.

PROPOSITION 2. Let K be an intermediate field of k and k(p). Then
K(p)=Kk(p).

PRrOOF. Since clearly K(p)2k(p), we have only to show the converse.
For any finite p-extension K’ of K, there exists an element z in K’ such

that K'=K(x). We can assume that K= QKL-, K[k is a finite p-extension
i=1

and K;SEK;:;. For sufficiently large m, the irreducible polynomial
Irr(wx, K, X)€ K,[X] and every K-conjugate of x is contained in K.(x).
Since K.(2)/K, is a finite p-extension, the assertion follows from
Lemma 1.

PROPOSITION 3. Let K be an algebraic extension of Q containing
a primitive p-th root { of wunity. Assume that K has no proper p-
extension of itself. Then for any non-archimedian wvaluation v of K,
K, has no proper p-extension of itself.

PROOF. Assume that Gal(K,(p)/K,)#{1}. Then there exists a cyclic
extension L of K, of degree p. Since K, contains {, L=K,¥a ) for some
a in K,. As K is dense in K,, a=v—lima;, a;= K, and the polynomial
X?—q can be arbitrary approximated by X?—a;. Therefore for suffi-
ciently large 7, L=K,¥a;). But by the assumption K(§a;)=K, hence
Ya,s K< K, We have a contradiction.

PROPOSITION 4. Let K be an algebraic extension of Q containing
a primitive p-th root £ of unity. Assume that K has a proper p-extension
of itself. Then K has at most one valuation up to equivalence which
does not split in K(p).

PROOF. Assume that there exist two such wvaluations »; and v,
-We show first that (K*)?=(K,*)?NK*, 1=1, 2; where K* denotes the
multiplicative group of K. If there is an element a in (X, *)’NK* and
not in (K*)?, the polynominal X?—a is irreducible over K. Since K
contains ¢, K(¥a) is contained in K(p). As v; does not split in K(Ja),
[K{a),,: K,,J=p, where V; is the valuation of K({a) over v, i=1, 2.
This is a contradiction, for ae(K,,*)?NK*.
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Next we show that K*=(K*)?. For any element a of K* take
an arbitary neighbourhood U of e in K,,*. For any element b of (K*)?
take a neighbourhood W of b in K,,* which is contained in (K,,*)*?. By
the approximation theorem, there exists an element ¢ of K* contained
both in U and in W. Then ce WNK*S(K,,*)? N K*=(K*)?S(K,,*)".
Therefore ¢ is in the closure of (K,,*)? which is a closed subgroup of
Ky *, hence as(K,,*)’n K*=(K*)?. On the other hand K has a Galois
extension L of K of degree p. Then L=K(ja) with some a in K. Thus
we have a contradiction.

DEFINITION. An algebraic number field K is called p-Henselian if
K has a valuation which does not split in K(p).

We denote Gup)=Gal(k(p)/k). We remark here that G,p) is the
maximal quotient of G,=Gal(k/k) which is a pro-p-group, where %
denotes an algebraic closure of k.

THEOREM 5. Let K be a finite algebraic extension of Q containing
a primitive p-th root of unity. Then the center of Gx(p) is trivial.

From here to the end of the proof of this theorem we assume that
K satisfies the assumption of Theorem 5.

LEMMA 6. Let V be a non-archimedian valuation of K(p). Then
ND(V)=D(V), where D(V') is the decomposition group of V in Ggx(p)
and N(D(V)) is the normalizer of D(V) in Gx(p).

PROOF. It is sufficient to show that D(V') contains N(D(V)). Now,
N(D(V))={ccGx(p): esD(V)o ' =D(V)}={c€Gx(p) : D(V?)=D(V)}, where
V' is the valuation of K(p) such that V(x)=V(z’) for any element x
in K(p). Let L be the intermediate field of K(p)/K such that Gi(p)
=D(V), and v be the restriction of V to K. Then by Proposition 3,

Gi(p)=Gal(K(p)y[K,)=Gal(K(p)/K,) .

It is clear that L=+L(p), for K is a finite extension of @. For any o
in N(D(V)), L is p-Henselian with respect to the restrictions of both
V and V° to L. Hence V=V’ by Proposition 4.

LEMMA 7. Let V, and V, be non-equivalent non-archimedion wvalu-
ations of K(p). Then D(VIND(V,)={1}.

PROOF. For i=1, 2, let L; be the intermediate field of K(p)/K such
that G, (p)=D(V;) respectively. L denotes the composite field of L, and
L, Then L is p-Henselian with respect to the restrictions of both V,
and V, to L, hence L=K(p) by Proposition 4.
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PROOF OF THEOREM 5. Take any non-equivalent non-archimedian
valuations V; and V, of K(p). For any o in the center of Gx(p),
o N(D(V,)), ©=1,2. Hence it follows from Lemma 6 and 7 that ¢=1.

q.e.d.

§ 2. p-Henselian fields and the decomposition of (p).

In relation to Proposition 4, we naturally have a question: under
what condition is K p-Henselian? The next proposition gives a partial
answer.

THEOREM 8. Let L be an algebraic extension of Q containing a
primitive p-th root of unity. If p=2, assume further thot L is totally
maginary. Then the following conditions are equivalent.

1) L 1s p-Henselian with respect to a discrete valuation v over p
which has a finite residue class field.

2) Gal(L(p)/L)=Gal(K(p)/K), where K is a finite algebraic extension
of Q, containing a primitive p-th root of wunity.

First we state several results to which we refer in the proof.
(Lemma 9~12)

LEMMA 9 (cf. [4]-§ 2). Let K be an algebraic extension of Q, contain-
ing a primitive p-th root of unity and p~/[K: Q] i.e. [K: Q] being
devided by p only finite times. Then Gg(p) is a Demuskin group of
rank 2 (resp. [K: Q.]+2) if l+p (resp. l=p), and the cohomological
dimension of Gg(p) 18 2. In case [K:@Q]=c0, rank [K:Q,]4+2 means
rank ¥, ‘

LEMMA 10 (cf. [5]-81). Let K be an algebraic extension of Q,. Then
the p-cohomological dimension cd,(Gx) is 0,1 or 2. More precisely,

cd(Gx)=0<=p [ [K: K]
cdy(G)=1<=p |[K: K] and p~|[K: Q]
cdy(Gx)=2<==p~ [ [K: @] = Bx(p)+0,
where By 1s the Brauer group of K and Bx(p) is its p-component.

'LEMMA 11 (cf. [5]-§ 1). Let K be an algebraic extension of Q.
Assume that p#2 or K is totally imaginary. Then cd(Gx)=0,1 or 2.
More precisely,

cdy(Gx)=0<p [ [K: K]

cd (Gx)=1<=p| [K: K] and p=|n(K) for every mnon-archimedion

valuation v of K, where n(K)=[K,: Q]
cdy(Gx)=2 <= p~ ) n,(K) for some mon-archimedion valuation v of K

<= Bx(p)#0.
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LEMMA 12 (cf. [6]-II §2). Let G be a pro-finite group and G(p)=
G[N be the maximal quotient of G such that GIN is a pro-p-group. Then
cd(G(p))=cdy(G) if cd(N)=1.

PROOF OF THEOREM 8. We show first that 1) implies 2). Since the
canonical extension of v to L, is discrete and has the same residue class
field, [L,: @,]<oo. Let V be the unique extension of v to L(p). L(p)r
=L(p) by Proposition 3, and L(p)"L,=L, for v does not split in L(p).
Hence Gal(L(p)/L)=Gal(Ly(p)/L,).

Next we show the converse. 2=cd,(Gx(p))=cd,(G.(p)) by Lemma
10. Since GL(P)=G.[Gryp and cd(Gi(p))=1, cd,(G;)=2 by Lemma 11
and 12. Hence By(p)#0. On the other hand when » runs all the places
of L, the canonical homomorphism B,—IIB,, is injective (cf. [3]), there-
fore there exists » such that

BLv(p)_f_(). B N e )]

If v is archimedian, L,=C so B;,(p)=0; this contradicts (1). Hence »
is non-archimedian. Take any extension V of v to L(p). Then L(p),
=L,(p) from Proposition 8 and D=L(p)"L, is the decomposition field
of V over L. Then

Gp(p)=Gal(L(p)/L)=G . (p)

Let v be over a rational prime q. Since p~/f[L,: Q,] by (1) and Lemma
10, applying Lemma 9 we have

Cdp(Gqu(p)):Z eessesrestevescrsssntssenttsasestees (2)

and G.,(p) is a Demuskin group. Now G, (p)=Gu(p)SGLp)=Gk(p). K’
denotes the intermediate field of K(p)/K such that Gu(p)=Gx(p)SGx(p).
Since K'2Q,, G, (p)=Gx(p) is of rank [K': Q,]+2. Hence p=q.

Let N be the normal closure of D over L. We show that N= L(p).
It is sufficient to show that N o7 'Gp(p)o+#{1},i.e.that N o 'Gr(p)o

gEGL(D) gEGK (D)
+ {1}, namely that the normal closure of K’ over K is not K(p). From (2)
Cdp(GK’(p)):Cdp(GD(p)):Cdp(GLu(p)):2; GK’(p):GK’/GK'(p): and cdy(Ggp)
<1, for p~|[K'(p): @,). Therefore cd,(Gx)=2 from Lemma 10 and 12.
Hence [K': Q,] is devided by p only finite times, so [K’: K]<co. Thus
the normal closure of X’ over K is of finite degree over K, so this is
not K(p).

Next we show that L=D. Assume that LD, then v has an ex-
tension V' to L(p) distinct from V. The decomposition field D’ of V'
over L is conjugate to D. As N is normal over L, N contains both D
and I’. Then N is p-Henselian with respect to V and V’/. From
Proposition 4, N=L(p), this is a contradiction.

Thus we have shown that L is p-Henselian with respect to v. We
have G.(p)=G.,(p), for v does not split in L(p). Hence G, (p)=Gk(p).
The richt hand side (resp. the left hand side) is a Demuskin group of



104 Y. HIRONAKA : NSR. 0.U., Vol. 27

rank [L,: Q,]+2 (resp. [K: Q,]+2) by Lemma 9. Hence [L,: Q,]=[K:
Q.1 <. Consequently v is discrete and has a finite residue class field.
g.e.d.

In virtue of the proof of Theorem 8 we have the next result.

COROLALLY 13. Let L be as in Theorem 8. Then L is p-Henselian
with respect to a non-archimedian valuation v if there exists a field K
which satisfies the following conditions; K is an algebraic extension of
Q. containing a primitive p-th root of unity where 1 is a rational prime,
=/ [K:Q], and Gal(L(p)/L)=Gal(K(p)/K). In this case if l=p (resp.
l#p), then v is over p (resp. v is not over p).

REMARK. From Theorem 8 we know that any finite totally imagi-
nary algebraic number field L containing a primitive p-th root of unity
can not be p-Henselian. Clearly it is not p-Henselian with respect
to an archimedian valuation. It is known that the rank of Gup)=
dimzpzH (G r(p), Z|pZ )=dimz,,L*[(L*)? (cf. [1]-§ 9). Hence the rank of
Gup)=, if L is a finite extension of @. Therefore the condition 2)
can not be satisfied, for the right hand side of it has a finite rank.

From Theorem 8 we can obtain some results on the prime decom-
position law. The next theorem is a purpose of § 2.

THEOREM 14. Let K be a finite totally imaginary algebraic number
field containing a primitive p-th root of unity. Then Gal(K(p)/K) deter-
mines the degree of K over Q, the number of prime tdeals of K over
(p), e(p)f(p) where e(p) denotes the ramification index and f(p) denotes
the degree of inertia of a prime ideal p of K over (p), and the maximal
wnteger m=m(K) for which K contains a primitive p™-th root of unity.

PrROOF. Let K, and K, satisfy the assumption of Theorem 14 and

G (p)=Gy(p). Let the prime ideal decomposition of (p) in K; and K,
be as follows;

(P)=p -9 in K;, and  (p)=pi°t--- pl% in K,
Neuep)=p"", Newa(P))=p% (=it 1=j<5s).

We construct mappings « and g such that

a
A:{pl; Ty 'pt (—_——_)-— {plly tty, pC}:B .
B
For any p in A, take a valuation v of Ki(p) over p. -=+--e-e- (1)

L denotes the decomposition field of v over K;. Then

Gr(p)2GL(P)=Gal(K, (p)/Ky,), and [Ki,: Qp]<oo. wervvreres(2)
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M denotes the intermediate field of Kyp)/K, such that G.(p)=Gx(p)
through the given isomorphosm. There exists a valuation w of M over
p such that M is p-Henselian with respect to w, from Theorem 8. Denote
by a(p) the prime ideal in K, corresponding to the restriction of w to
K,. If we show that a(p) is uniquely determined by p independent of
the choice of » in (1), the mapping « is well-defined. If o' is another
valuation of K(p) over p, the decomposition field of v and v/ are Gg,(p)-
conjugate. Hence taking M’ corresponding to ¢/, M and M’ are Gg(p)-
conjugate. Then w and w’ and so prime ideals corresponding to these
are Gg(p)-conjugate. Restricting them to K, we have the same prime
ideal.

Similarly we can construct a mapping 5, and it is evident that
aof=idp and Boa=id, Consequently t=s. We have GKlp(p)&’GKza(p)(p)
by (2) and the manner of the choice of M. The Galois group of the
maximal abelian extension of K, (resp. K,,) over K, (resp. K,,,,) is
known by the local class field theory. Now their maximal p-factor
groups are isomorphic, namely

ZgEKlp: Qpl+ti X Z/pm(Ki)Z; Z;nga(D: Qpl+i X Z/pm(Kz)Z ,

where Z, denotes the p-adic integer ring. We remark here that m(K))
=m(Ki,) and m(Ky)=m(K,,,,). From above isomorphism we know that
m(K)=m(K;) and [Ki,: Qul=[Ko,,: @yl i.e. e(p)f(p)=ela(p))f(alp)) for
every b in A. From these results clearly we have [K;: Ql=[K,: Q].
q.e.d.
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