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§1. Introduction

We denote by C(E) the Banach algebra of all real valued con-
tinuous functions on a compact Hausdorff space E normed by the
uniform norm, and by C*(&) the class of all feC(E) with f(x)=0
(xe E). A non-empty subset F' of C(E) is called a cone if f+g and
af (¢ =0) belong to F' whenever f and g belong to F. A non-empty
subset F' of C(F) is called a semi-algebra if F' is a cone and fy
belongs to F' whenever f and g belong to F', and is said to be closed
if it is uniformly closed. Given a non-negative integer N, a semi-
algebra F' is said to be of type N if f¥/(1+f) belongs to F when-
ever f belongs to F. Given a subset F' of C(¥), let us define by F
a partial order <, in E by taking =<,y if and only if f(2)=f(y) for
every fe€F. Given a partial order < in F, a real valued function
defined on E is said to be monotonically increasing if f(2)<f(¥) when-
ever £=vy. Let us denote by 1 the unit function: 1(x)=1.

It has been shown by F.F. Bonsall [1, p. 134] that a closed semi-
algebra F' with the unit is the class of all fe C*(E) monotonically
increasing with respect to <;.

A closed semi-algebra of type N generated by wu, %, -+, u, €
C*(F) is the smallest closed semi-algebra of type N containing
Uy Ugy ***y Uge

It has been shown also by F. F. Bonsall [2, p. 138] that the closed
semi-algebra of type 2 in C([0, 1]) generated by y(x)=2« is the class
of all fe€C*(0, 1]) non-decreasing, convex, and satisfying f(0)=0.
We may define a partial order in R as follows. For each two pairs
(x, v), (', y)e RXR, let us put (z, ¥y)=(¢', y')=o=a', y<y'. In this
note we shall prove that a closed semi-algebra of type 1 in C([0, 1] x
[0, 1]) generated by xz(x, y)=2 and y(x, y)=vy is the class of all fe
C*([0, 1] X [0, 1]) monotonically increasing and also satisfying f(0, 0)=0.
By using this fact we shall be able to give a generalization of F. F'.
Bonsall’s theorem.
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§2. A type 1 semi-algebra in C([0, 1])

We denote by y the identity mapping: y(x)=x. Let f be the
real valued continuous function defined on a subset of R which
contains the range of g where g€ C(E). Then their composition
fogeC(E) may be defined. Let us denote by B([0, «]; x) the smallest
semi-algebra of type 1 containing y and contained in C*([0, «]) for
a>0. It is the class of all fe C*([0, «]) that can be built up from
the function ) in a finite number of steps by addition, multiplication,
multiplication by a non-negative number, and the operation r—r/(1+ 7).
In particular for &¢=1, we denote the class by B()). We denote by
B([0, aJ; x) the closure, by the uniform norm, of B([0, «]; ) in C([0, «]),
and we call this the closed semi-algebra of type 1 generated by 7.
In particular for a=1, we denote it by B()). Let f, geC*(&).
Let us write f<g¢ if and only if f(¢)<g(t) for every tc E. Then <
defines a partial order in C*(E). Let B be the class of all fe C*([0, 1])
vanishing at 0 and non-decreasing.

Our present purpose is to prove B=B()). The function P, defined
for x=0 by P(x)=«/(1+2z), is a non-negative, non-decreasing, con-
tinuous function on [0, ) vanishing at 0. Let f, g € B and @ =0, then
f+g9, fo9, af, and Pof also belong to B. Thus B is a semi-algebra
of type 1. Since ¥ ¢ B and B is closed, we have B(y)cB. Thus our
problem is to show BCB(y), for which we need the following lemmas
and theorem by F.F. Bonsall [2, p. 138]:

LEMMA 1. A(x)cB().

Proor. If fe B(y), then f*/(1+f)=f/A+f)f<c B(y) since B(y) is
a semi-algebra of type 1. Therefore B()) is a semi-algebra of type
2 containing y. Hence A(xy)CB(y) by the definition of A(y).

LEMMA 2. For ac]0,1] the function Y, defined on [0,1] by
Xx)=max {0, x—a} belongs to B(Y).

Proor. By Bonsall [2, p. 138], 1. belongs to A(y). Therefore y,
belongs to B(y) since A(y)cB(x) by Lemma 1.

Theorem A(y) is the class of all feC*([0, 1]), non-decreasing,
convex, and vanishing at 0.

THEOREM 1. B=B(Y).

PrROOF. As has been shown, we have only to prove BCB(y).
Suppose that fe B and f+£0. Let ¢ be an arbitrary positive
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number. Then there exists a non-negative iﬁteger N such that
@1)  |f@)—Ff@)|<e x, yel(k—1)/N,k/N] (k=1,2,---, N).
Put 2,=%k/N (k=0,1, ---, N) and '

(2-2) P =J (@) = f (4-1) (k=1,2, --+, N).

Then there exists a positive number X\, satisfying the inequality
| Nt |=€/N (B=1,2, -++, N). Let us define three functions from
[0, 1] into R as:

fl@)= /(v + )
gk(x):fk ° ka_l(x):)akakﬂl/()\’k"l_Xxk_l) (k:]v 2; Ty N) ’

ahd

Then follows ¢;(x,)=0 (k=1,2, --+, N) (=k+1, k+2, ---, N), and

(2-3) 9(@) =3, 9.4w.) (h=1,2, -+, N).

On the other hand from (2-2) it follows that

(2—4) f(xk):/’cl'l—#z—l_ R o T (k':l’ 27 "_'9N) .
Since | fi(x)— 4 |=| =Nt/ O +2) | | NNyt | =¢/N for every x €[z, 1],
holds

(2-5) |gu@)— 1 |<e/N we[m, 1] (k=1,2, ---, N).

From (2-3)-(2-5) it follows that
(2-6) | 9@ —f@) 1= | 3 020 — 3 1| S 33 042 — S
(k=1,2, ---, N).

For t €0, 1] there exists a non-negative integer ¢ such that z,<t=x,,,.
From (2-1) and (2-6) it follows that

@-7) | g(@)— F() || g@) — F(@) | +] Fz)—FE) | <2 ,
and '
(2-8) | 9(@1) —F (@) =] 9(@s4) = F (254) l+lf(xi+1).f_f(t_) |<2.

From (2-7), (2-8), and the non-decreasingness of g, it follows that
lg(t)—r(@t)|<2e.
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Since g, belongs to B()) as X, , belongs to B()) by Lemma 2 (k=

1,2,.-., N), g also belongs to B(¥). Hence f belongs to B(¥), and
our theorem is proved.

§3. A closed semi-algebra of type 1 in C([0, 1]x][0, 1])

For each two pairs (x, ¥), (2, ¥') € R, we have defined in §1 the
order (x, ¥)=(«', ¥') as <2’ and y<y'. Let us put I={(z, ¥): 05z <1,
0=y=<1}. Let us denote by B(z, y¥) the smallest semi-algebra of type
1 in C(I) that contains the two functions «(z, )=« and ¥y(x, ¥)=yv.
It is the elass of all fe C*(E) that can be built up from the variables
2 and y in a finite number of steps by the operations of addition,
multiplication, multiplication by a non-negative number, and r—
r/(L+7r). We call B(zx, y), the closure of B(z, y), the closed semi-
algebra of type 1 generated by «# and y. We also denote by B(x)
(resp. B(y)) the smallest semi-algebra of type 1 in C(I) that contains
x (resp.y). Let C be the class of all feC*(I) vanishing at (0, 0),
and monotonically increasing in the sense that f(x, ¥)=<f(x, ¥') when-
ever (x, y)=(2, ¥'). '

Our present purpose is to prove that B(z, y)=C. We begin by
proving the following lemma.

LEMMA 3. Let F be a closed semi-algebra of type 1 in C(H). If
g€ B([0, al; x), f€ F, and the range of f is contained in [0, &], then
gofekl.

ProOOF. Given an arbitrary positive number ¢, there exists
g' € B([0, a]; x) such that |g(t)—g'(t)|<e (0=t=a). Consequently,
|gof(x)—g o f(x)|<e for every x e K, and gofec F since g'ocfeF.

THEOREM 2. B(z, y)=C.

PrOOF. Since it is obvious that B(x, y)C as in the proof of
theorem 1, we have only to show B(x, y)DC.

Suppose feC and sup {f(z, ¥); 0=x=1, 0=Zy=<=1}=1. Given an
arbitrary positive number ¢, there exists a positive integer » such
that 1/n<e. Put z,=k/n, (k=0,1, -+, n).

In R® we make use of the notations as:

K={(x, y,2); 0=¢=1, 0=y=<1, 0=z f(w, )}
K;={(x, 9, 205 (%, ¥, 2:) € K}
Iz:'{(w, Y, zz); Oéxél, Ogyél} (’&:1, 2, cee, n) .

Put d((0, 0, z,), K)=6,., Then 6,>0. Put also L,={(x, ¥, ?);
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(x, ¥, 2;_) € K;_,} for 2<i<n. Then I,—L,NK,=@. Since d(Il,—L,,
K,)=0,>0, there exists a positive integer m, such that 1/m,;<0,/4
and m;>n. Let us divide I, (1=¢=n) into m} equal intervals in R?,
and define I),={(z, 4, 2,); (s—1)/m,=x=s/m,;, ({—1)/m,Sy=t/m, (s=
L2 ---,n) (t=1,2, ---, n) (Fig. 1, 2). Let J; be the union of all the
sets I, such that K;NI},= @, and let 2i=p/m; (p=0,1, ---, m,).

. ¥ ' ¥
0,1, ) ©,1, %)
]1 K1 ]i Ki
z, ,
Ji@f---1 R e A a E G e e el
. I
1/my i 1/m; \
- : x AN . x
* (1,0, x) * (1,0, x)
Fig. 1 Fig. 2

We define a function f; from [0, 1] into [0, 1] as follows:

For xz€[0, 1], let 7 be the integer with zi<x=<uxi.,.

If (2%, v, 2,) ¢ J, for every y €0, 1], then the following two cases
may be distinguished: (i) (¢}, y, 2,)¢J, for every ye[0,1] (I=1, 2,
cee, 9). (i) (2} 9, z)¢dJ, for every y€[0,1] (I=7+2, ---,n). In the
first case put fi(x)=1. In the second case put f,(x)=0.

If there exists ¥’ €[0, 1] such that (xi., v, 2,)€J;, then denote
the minimal value of such ¥’ by ¥i,,. (iii) In addition if there exists
y" €10, 1] such that (xf, ¥, 2;) €J;, then denote the minimal value of
such ¥" by ¥}, and put

Ji(@)= (Y5 — Y5+0)/(005— €5 )0 + (L5954 — 5.02Y5)/ (5 — @F1)
where y;=¥i.. (iv) On the other hand if (x}, 9, z,)¢J; for every
y€[0,1](1=1,2,---,J), then put f(®) = y54./(T];1.— 2T — Ty} 11/ (054, — 5).

Thus defined f; is a non-negative non-increasing continuous func-
tion defined on [0, 1] whose range is [0, f,(0)]. Put f/()=r,(0)—f(x).
Then f; is a non-negative non-decreasing continuous function defined
on [0, 1] and satisfies f/(0)=0.

Then define a real valued continuous function g; on [—f;(0), 1] as:

9:(t)=0 (—=fi0)=t=—1/m;) (f.(0)>1/m,).
g(O)=(m;/n)t+1/n, (—1/m,<¢t<0).
9.t)=1/n, (0=t=1).

Thus the function t—g,(t— f,-(O)) is non-negative, non-decreasing,
continuous on [0, 1+£:(0)], and takes 0 at 0, satisfying g,(y—fi(x))=
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g:(y+fi(x)—f.(0)). By theorem 2, it is obvious that y e B(y) and
fi(x) e B(x). Since B(x)cB(z, ¥) and B(y)<B(x, ¥), holds y+fi(x)e
B(z, y). From these facts and Lemma 3, it follows that the function
(@, ¥)— 9y —fix)) is an element of B(x, y). Let g(z, )= 2, g:(y —f())-
Then ¢ is also an element of B(x, y).

From (3-1), it follows that 0=g,(y—f.(x))<1/n for every (x, y) € I.
If (z,9,2)eK, then g (y—/fi(x))=1/n since fi(x)<y. If (x, ¥, z)e€
I,—L, for (¢=2,38, ---, n), then g,(y—fi(x))=0 since y—f,(x)<—1/m,.
Since the ratation (z, 9, 2;)€l,—L; is equivalent to the relation
(®, ¥, 2-) € K,_,, (2,9, 2,-,) ¢ K,_, implies g,(y—fi(x))=0.

Let (x, y) e L.

If (x,9,2)¢K, (1,—1 2, .-+, n), then 0=f(x, y)<1/n, and 0=
g(x, y)<1/n since g(y—J. (w)) 0 (¢=2,8, ---, n). Hence |f(z, y)—
g(x, y) |<e.

If there exists ¢ such that (x,v,2)cK; (=12, ---,%) and
(w; Y, zi)eK:i (-7:7’+1: 7’+2, Y %)’ then ’b/%éf(w, y)g('&—i—l)/n, and
in = g(x’ ?/) = (’L+1)/n since gﬂ(y_fﬂ(x)) = 1/’”’ (-7. =1, 2, .., ?’) and
gd(y'— fa(x)):() (.7:7;—*_29 *t % ’ﬂ/). Hence If(x, y)—g(x’ ?/) l<8'

If (x,9,2)ekK; (2=1,2, ---,n), then f(z, y)=1, and ¢(x, y)=1
since g.(z, ¥)=1/n (k=1, 2, ---, n). Hence it is obvious that | f(x, ¥)—
9(z, y) |<e.

From all the considerations made above, it follows that fe B(zx, v)
since B¢ B(x, ¥) and | f(x, y)— g(w, Y) |<e for every (x, y) e I, and our
theorem is proved.

§4. Closed semi-algebras of type 1 in C(F)

Given f and g belonging to C(E), let f\Vg and fAg denote, as
usuval, the function defined by (fVg)(¢)=max (f(¢), 9(t)), (fAg)t)=
min (f(t), g(¢)). A subset F of C(E) is said to be a lattice if f\Vg
and fAg belong to F whenever f and g belong to F.

Let F' be a closed semi-algebra of type 1 in C(E), and let N(F')=
{x: f(x)=0 (feF)h

In the first place we shall prove that F'is a lattice, and by using
the fact we shall also prove that F' is the class of all feC*H(E)
vanishing on N(F') and monotonically increasing with respect to =,
Further, we shall prove that F' has the unit if N(F) is empty. To
prove this we need the following notations and also the theorems by
F. F. Bonsall [1, p. 128].

Given a cone A which is the subset of C(E), let I'y(A) denote
the set of all quadruples (s, s’;a, ') (s, s"€ E, a, &' =0) satisfying
af(s)=a’f(s") for every fe A. Also let K(I'(A)) be the class of all
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feC(F) satisfying the inequality af(s)<a’f(s) for every (s, s’; a, &') €
I'(A). Then the theorem of F.F. Bonsall is as follows:

Theorem of F.F. Bonsall. A closed convex cone 4 is a lattice
if and only if A=K(["(A)).

Now we shall prove the following theorem.

THEOREM 3. F s a lattice.

ProOoOF. Let us remark that the functions « and B, defined on
I by a(x, y)=max (x, y) and B(x, ¥y)=min (x, ¥), belong to B(zx, ¥) by
Theorem 3. If ¢ is an arbitrary positive number, then there exist
two functions &’ and B’ belonging to B(z, y) such that

‘ a(x, y)_a'(x, y) |<8
and
| B(IX), ’IJ)'—B’(.’B, y) |<8 ((x’ y) € I) .

Since a(f, 9)=rVg and B(f, 9)=fAg for f, g€ F with f<1, g<1, and
a'(f, 9), B'(f,9)eF, we have f\Vge F and fAg € F, which completes
our proof. .

THEOREM 4. F s the class of all fe C*(E) vanishing on N(F')
and monotonically increasing with respect to <j.

Proor. Remark that FF'=K(I'(F)) by [1, p. 128].

Take (s, s";a, &’)e I'(F') with «>0 and s¢ N(F'). Then a=a'.
For evidently holds apg(s)/(v+g(s))<a’rg(s’)/(v+9(s")) for arbitrary
positive numbers A and £ since pg/(A+9) € F, and consequently a/a’'<
29(sHn A 9(8))/ g(s)(n+g(s")), from which follows a/a’<1 since the left
hand side converges to 0 as A converges to 0. In addition holds
F(8)=f(s") for every fe F. Assume that there exists f ¢ F such that
f(8)>f(s"). If f(s)=0, then a=0, which contradicts the assuption.
If f(s')>0, then for every positive integer m, af™(s)<af™(s’) or equi-
valently ™)/ f™(s')=a’'/a. From [f(s)/f(s')>1, it follows that
F™)/f™(sN=(f(s)/f(s))™ diverges to + o as m— -+ o, which is a con-
tradiction. Thus holds f(s)=f(s’) for every f€ F. From the previous
consideration, for every (s, s’; @, a') e I'y(F') the following three cases
may be distinguished: (i) «=0, (ii) «>0, and s ¢ N(F"), (iii) s € N(F").

Suppose that fe CH(H) vanishes on N(F') and f(#)=f(y) (x, y € E,
2=<zY¥). Let (s, 8;a a)Yel(F). (i) If a=0, then 0=af(s)=a’f'(s").
(i) If >0, s¢ N(F), then a<a’ and s=,s’ from the above fact.
Therefore af(s)<af(s)=a’f(s’). (i) If se N(F'), then 0=af(s)=
a@'f(s').
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Therefore in any case fe K(I'(F))=F, which completes our proof.
THEOREM 5. If N(F') is empty, then F' has the unit.

Proor. For every x € E there exists f, € F' with f.()>0, and a
neighborhood U, of z. Since E is compact, there exist a finite number

of neighborhoods U, , U,, ---, U,, such that E’CU U,,. Putg'= Z Sope

Then ¢'€ F' and g'(x)>0 for every z¢cE. Further there ex1sts a
positive number \ such that sup{\g'(x); x € F}=1. Put Ng'=g, and
inf {g(x); x€ E}=a. Then 0<a=1l. By Theorem 1 there exists h e
B(y) such that (x)=1 on [a, 1]. Now from Lemma 8 follows hog € F,
which proves our theorem since hog=1.
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* Added in proof:
The author, to her greatest regect, did not know that Prof. Bonsall had already got
Theorems 4 and 5. Though his proofs are different from hers.



