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The Euler-Maclaurin sum formula, which is formulated with
respect to a function of one variable, is generalized so as to be
applicable to a function of several variables with the aid of periodic
Bernoulli functions.

§1. Periodic Bernoulli functions

The Bernoulli polynomial of order & may be expanded as a Fourier
series”

B (x)=—k! 2'Q2mir)"* exp 2rire) (1) ‘

for 0<x<1, the prime indicating that the term corresponding to
r=0 is omitted. Following the lead of this representation, we define
periodic Bernoulli function of order % by

G.(r)=—2" exp (2wir-n)- (27in) " (2)

where r is a point (x, x,, ---, ;) in a d-dimensional euclidean space
and n=(n,, n, -+, n;) ranges over all lattice points except the origin.
The periodic Bernoulli functions have the following properties

1° Periodicity G,(r+n)=G(r).
2° G,(r) is symmetric in ,, 2,, -+ -, %, and even in any of x,, - - -, 2,.
3° Gy(r) is continuous everywhere for k>d/2.
4° G,(r) is singular at lattice points for k=d/2.
5° Gy(r)=1—36(r—n).
6° 4G, (r)=G,_,(r), 4=Laplace operator.
—)'B, n 1 1
(2k)! 2r7)* (k—1)!
0 >"‘17rCot7m*. (3)
o(n*) n*

B, : Bernoulli number, n*=(n, n, *++, Ng_y, 0), n*=In*]|

7° Gk(xlv cery Lgoyy 0) = (

X X' exp (2win* ~r)-<



28 ' ' G. IwaTa NSR. 0. U., Vol. 27

G2y ==, Ty_yy 1/2):%(1_21—%)_’_ 1 1

@h)! @n* (=1
, SR T
x 3’ exp (2win* -r) <6’(n*)2) S (4)

The summation 3’ excludes the term n,=n,= «++ =n,_,=0.

g (26ut5)

=0 for any 7.
0x, /u;=1/2

o _ — Bz*(x) de(x)_ B2>|;c—l(x)
9° For d=1, _ Bi(@) —
or CG@="0" “de @D

where Bj(x) is redefined to be periodic by the Fourier series (1).

- These properties follow at once from the definition (2). In par-
ticular, the property 5° is derived with the aid of the well-known
Lighthill summation formula?

>, 0(r—n)=>) exp (i27r+n)

§2. The Euler-Maclaurin sum formula

If we integrate the product of G,(r) and a continuous function
f(r) over a domain D, we have the relation

[, G smdr=|_ f@r—3 fn) (5)

where n ranges over lattice points in D. On the other hand, with
the aid of the property 6° in §1 and the Green formula, we have

=1

[, G rmar=35 | (27w 25 08I0 G, r)Jas

+ SD A"F(x)- G, (r)dr (6)

where C is the boundary of D, ds stands for the surface element of
C, and 9/ov denotes the outward normal derivative on C. m is any

positive integer. Hence we have a generalized Euler-Maclaurin sum
formula

_ SD A" F(x)- G (r)dr . (7)

When d=1 and the domain D=(1/2, n+1/2), we have
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When d=1 and the domain D is (0, n) we have the well-known
Euler-Maclaurin sum formula®

S 1 ‘ —\" (=)Y'By { rer-1 (2k—1)
S0+ 5O+ )= 1@y 5 LB (00—

L g B(x) ™ (w)da .

- @m)!

When the boundary C is composed of planes z,=integer-+1/2,

1=1,2, .-+, d, the formula (7) becomes simpler since 0G,(r)/ov vanishes
at the boundary for any k.

§ 3. Generalized Zeta funcfions

For the later use, we introduce a generalized Zeta function Z(s)
in a d-dimensional space defined by

Z(s)=23"

L for aps>dj2 (8)
(n%)

where n ranges over all lattice points except the origin. The func-

tion Z(s) has the followmg properties similar to those of the Riemann
Zeta function.”®

1° 7 T(s)Z(s)=23" Swexp(—nnzt)-ts‘ldt, Bs>d)2.
0

2°  aI(s)Z(s)=—t —L 5 S“exp(—nnzt)-(td/2-8+ts)t—1dt.
s—d/2 s 1

3° g I(8)Z(s)=n"""I'(dj2—s)Z(d/2—s).

4° Z(s) has a simple pole at s=d/2 with the residue 7%*/I'(d/2).
5° Z(s) has zeros at s=—1, —2, —3, ...

6° Z(0)=-—1.

7°  Z'(0)=—v—log n—%—l—Z” S“’ exp (— n®t)- (1+t4/2)tdt.

v=FEuler constant.

The property 1° is obvious. The property 2° follows from 1°
when the range of integration is divided into two parts at =1 and -
the variable ¢ is changed into 1/¢ in one part. The properties 3°
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through 7° follow -from 2°.

§4. Spherically symmetric Bernoulli functions

When both the function f(r) and the domain D are spherically
symmetric, we may use spherically symmetric Bernoulli functions
G(r), which are defined to be the average of G,(r) on the spherical
surface |r|=7r. The formula (7) becomes then

5, fm=o | fordr—o S[{4770)- aéa'ff” -G )]

—w Sb 4F(7)-G o (r)ri—tdr . (9)

It is to be understood here that the domain D is bounded by two
spherical surfaces of radius ¢ and b, and that ® is the surface area
of the unit sphere, or w=27%?*/I(d/2).

Since the average of exp (i27r-n) on the spherical surface |[r|=7r
is given by

{exp (127r-n)) = S o(r*—r*) exp (12xr-n)dr / S o(r*—r¥)dr

=I'(d[2)ap-(2Tnr) - (N7 ) ™2

1 (o~ I'(d/2)](s) _as
" om Sc—w T(dja_g) "~ s,

0<c==Zs<(d+1)/4,"

we have an integral representation of G.(r)

= (=Y 1 [ T@2)T() e
Gl = o S T(dj2—s) 1) Ak+s)s,

d2< Bs<(d+1)4.  (10)

The integrand has a poleat s=d/2—k, and polesats=0, -1, —2,-- -, — L.
On the other hand we deduce from 5° and 6° in §1 that

Gr=1-3, =1
wr
and
4-G(r)=G,_(7), 4= dl_l 0 pamr 0 (11)
Pt or or

Solving the equation (11) successively with the aid of the integral
representation (10) for determining undetermined solutions of the
homogeneous Laplace equation 4u=0, we have for d=2
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Gry=Tr L (20D 4
(r) 4+4rc( T ogn'—l—cl)

—Elglongr—él—#Z'(logn—~logr)e(fr~n)
4 2 ’
G.(r)=-T r (2°Q) o4 >__l_ *(log r—1)— Z(2)
(=gt 167z:< Ty 2lente)-grrlegr—1)—-Gn
—I—El{Z”(%Z(log n—log r)+ ,,.2_4_:%2> e(r—mn)

Iiclzlinla (ﬂ—sF(S)Z(S)—?]iT) , €@)=1forx>0, e(x)=0 for x<0]

and for d=3

Gry="4+241) 1 _ 12,(l_i _
) 6 + 4Am? + Adnr Ar n 'r) ¢ (r—m)
4 2 3
G(r)=_" ZUr*  r _ Z2) 1 s (r—n) . _
=100 " otr T @ny x> 6mr U™

where the 3’ means the summation over all lattice points except the
origin. For practical uses one may need tables of G(7).
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