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§1. Introduction

Let A be a commutative normed algebra and B an arbitrary com-
mutative normed algebra containing A4 as a closed subalgebra. The
problem of extension of a maximal ideal in A to a maximal ideal in B
was studied by Silov [3] and Rickart [7]. Silov’s extension theorem
shows that every maximal ideal in the Silov boundary for A can be
extended to a maximal ideal in B. In this paper we study the exten-
sion problem of maximal ideals in commutative normed algebras in
general situation. All algebras in the following will be commutative
and complex, and have an identity.

Let A and B be commutative normed algebras. We shall say here-
after that B contains A algebraically if there exists an algebraic iso-
morphism ¢ of A into B which takes the identity of A onto the identity
of B.

Let us denote by M(A) and M(B) the maximal ideal spaces of A
and B respectively, and y, the adjoint mapping of M (B) into M(A)
induced by ¢. Then y, (M(B)) is a closed subset of M(A) in which every
maximal ideal can be extended to a maximal ideal in B. Now, let us
say that a closed subset F' of 9 (A) has the extension property for B if
2,(M(B))DF. Thus, in this term, we can state Silov’s extension theo-
rem as follows: the Silov boundary for A has the extension property
for B if B contains A as a closed subalgebra relative to the norm of B.

Our aim is to understand, under certain circumstances, to what
part of M (A) the extension property for normed algebras containing
A should be admited.

In § 3, we shall give a proof of Rickart’s extension theorem, based
on our characterization of the Silov boundary in commutative normed
algebras in §2, which is a generalization of Silov’s extension theorem.

If we consider arbitrary commutative normed algebras containing
A algebraically with norm preserving isomorphisms, then, by defini-
tion, the cortex of A is the part of M(A4) which is contained in y (M (B))
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for every such B. Moreover, it is well-known that the cortex of A
contains the Silov boundary for A, and that it coincides with the Silov
boundary when A has the sup norm [1] [4].

‘On the other hand, as we shall show in Theorem 2 later, if there
exists an algebraic isomorphism of A into B which preserves the spec-
trum of every element in A, at least one of the minimal unit-
boundaries for A has the extension property for B, which, by definition
[3], contains the Silov boundary. And we know that the Silov
boundary is the minimum unit-boundary if and only if every non-
invertible element in A is a topological divisor of zero with respect to
the spectral radius.

§2. A characterization of the Silov boundary in
commutative normed algebras

PROFOSITION. Let A be a commutative normed algebra. Then a
necessary and suffictent condition for a maximal ideal M in A to belong
to the Silov boundary for A is that, for every finite subset {m,, ..., my}
of M, there exists a sequence {a,} 1m A such that p,(a)=1 and p,(a,m;)
—0 (n—o0) for 1=1, ..., k, where p,(a) s the spectral radius of a.

PROOF. Suppose that M, is in the Silov boundary for A. Put
U (M) ={MeW(A) ; [mM)*| <L (i=1, ..., k)} for a given finite sub-
n

set {m, ..., m;} of M, then U,(M,) is a neighborhood of M, Take

pg=max max |m,;(M)|=max p,(m;). Since M, is in the Silov boundary,
1SSk M=9(4) 1=i{=k

there exists an element a, in A such that p,(a,)=max|a,(M)]| =1
MU,

and ldn(M)|<L for every M outside U,(M,. Therefore, p,(a,m,;)
2

= max | &, (M) || m,(M)] <%~. Thus, for every n, we can choose a, in A,
McIM(4)

and {a,} will be the sequence which we require for the finite subset
{m,, ..., My}

Next, we prove the converse. Suppose U(M,) is an arbitrary neigh-
borhood of M, Then it contains a neighborhood of M, U,M,), defined
by k-inequalities |m,(M)| <1 (¢=1, ..., k), where m,, ..., m, are in M.
Since, for the finite subset {m,, ..., m;}, there exists a sequence {a,} in
A and pu(a,m;)—0 (n—o0) (t=1, ..., k) as in Proposition, we have
psla,m;) <1 (v=1, ..., k) for some 7, which shows ril&a[])oc [, (M )|y (M)

< pala,m;) = max [, (M)||d,(M)| <1 (=1,...,k. If M is outside
McMm(4)

* We denote by 4(M) the value of the Gelfand transform of a in 4 at a maximal
ideal M.



March 1973 Extension .of Maximal Ideals 75

Uy(M,), then there exists j; 1<j<k such that |#;(M) =1, whence
0, (M) <1. If M is in Uy(M,), then, since p(a,)=1, |8, M )|=1 for
some M’ in U(M,). Namely, M, is in the Silov boundary which com-
pletes the proof.

REMARK. Zelazko has also obtained the same characterization of
the Silov boundary in function algebras [8] where he states that every
maximal ideal in the Silov boundary is non-removable for any normed
algebra B, not necessarily being a function algebra, containing A alge-
braically. While, ours, as will be seen in the following section, is to
find a condition for B that the Silov boundary for A may have the
extension property for B.

§3. Extension of maximal ideals

Here, we shall prove Rickart’s extension theorem [7] applying
Proposition in § 2.

THEOREM 1. Let A be a commutative normed algebra and B an
arbitrary commutative normed algebra containing A algebraically. Then
the following two conditions are equivalent.

1) There exists an algebraic isomorphism ¢ satisfying that

04(@) = pz(p(@)) , for every a in A.

2) Ewvery maximal tdeal im the Silov boundary for A can be ex-
tended to a maximal ideal wn B.

PROOF. Suppose the condition (1) holds and that there exists a
maximal ideal M in the Silov boundary for A which cannot be extended
to a maximal ideal in B. If we denote by J the set of all finite sums of
the form > ¢(m,)b, (m; M, b, B), then, since J is a ideal in B contain-
ing ¢(M), J coincides with B. In particular, the identity ez of B can

k
expressed as e;=73} o(m,)b, by m,, ..., m; in M and b, ..., b, in B. Since
i=1

M is in the Silov boundary for A, it follows from Proposition in §2
that, for the finite subset {m, ..., m,} of M, there exists a sequence
{a,} in A such that p,(a,)=1 for every n and p,(a,m)—0 (n— ) for
1=1, ..., k. Multiply e; by ¢(a,) and consider the spectral radius. Put
C=max pg(h;). Then we have

1=i=k

1= 05((@)es) = 0a(2 $(a)e(mIb) = 3 oalp(@)p(m)b)

e

=1
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This contradiction shows that the condition (2) holds.
Now, we shall prove the converse. Since M(A)Dy,(M(B))Da(4),
by definitions, we have
N
pp(p(@)) = max [o(a)(M')|= max [a(y,(M"))]
M =M(B) M eM(B)

= max |a(M)|=max|a(M)], for every element a in A,
My, R(B)) MEH(4) :

where 0(A4) is the Silov boundary for A. Thus, we see that pula)=
ps(p(a)), for every a in A, which completes the proof.

If we consider, instead of general algebraic isomorphisms, those
preserving the spectrum of every element in A, then the class of
algebras containing A algebraically becomes smaller than the class of
algebras considered in Theorem 1. But the consideration of the above
smaller class, where the part of M (A4) with the extension property may
become larger than the Silov boundary for A, will lead to the next
theorem.

THEOREM 2. Let A and B be the same as in Theorem 1. Then the
Jollowing two conditons are equivalent.

1) There exists an algebraic isomorphism ¢ of A into B satisfying
that o,(a)=0z(p(a)), for every a in A, where o (a) is the spectrum of a
with respect to A.

2) There exists a minimal unit-boundary for A in which every
maximal ideal can be extended to a maximal ideal in B.

PROOF. Since the condition (1) is equivalent to the fact that the
image of A, ¢(A), under the isomorphism ¢ is a * sous-algebre pleine ”
of B[2][6], we have to see that the condition (2) is equivalent to the
fact ¢(A4) that is a “ sous-algebre pleine ” of B.

If p(A) is a “ sous-algebre pleine 7 of B, then, since M(B) is a unit-
boundary for B, x,(M(B)) is a unit-boundary for A and consequently
contains a minimal one for A. Thus the condition (2) follows from the
condition (1).

To see the converse, suppose that, for an element a in A4, ¢(a) is
invertible in B. Then the Gelfand transform ga/(a\) of ¢(a) vanishes
nowhere on IM(B). Therefore, by the condition (2), a vanishes nowhere
on the unit-boundary with the extension property. Hence a is inverti-
ble in A. This shows that ¢(4) is a ““ sous-algebre pleine ” of B. This
completes the proof.
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