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S1. Int‘roduction

In this paper we shall consider a separation property of a function
algebra which is obtained in studying unit-boundaries of a function
algebra. [2]%, [3]

- Let X be a compact Hausdorff space and C(X) the Banach algebra
of all complex valued continuous functions on X with the sup-norm.
We consider a function algebra A on X, that is, A is a closed subalgebra.
of C(X) which separates the points of X and contains the constant
functions. .

Throughout this paper, let M(A) be the maximal ideal space, ['(A)
the Silov boundary and Cho(A) the Choquet boundary, of A, respective-
ly. Further, let, for any set S, f(S) be the set {f(x); z&=S}.

DEFINITION. A closed subset F' of M(A) is called a unit-boundary
of A 1ff F satisfies the following condition ; for any function f in A
which does mot vanish of F, there is a function g m A with f. g=1.

The above definition is written equ_ivalently as follows;
A unit-boundary F is a closed subset of M(A) with f(F)=f(M(A)).

In the paper [3], we have obtained the necessary & sufficient con-
dition for F to be identical with the Silov boundary.

DEFINITION. A function algebra A satisfied the condition (*) on a
closed subset S in M(A) tff for any closed proper subset K in S there is
a function fin A and a point x in S—K such that f(x)=0 and (Re f)
(¥)>0 (or <<0) for all y in K. ,

A function algebra A satisfies the condition (**) on a closed subset
S in M(A) off for any closed proper subset K im S and any positive
number ¢, there is a function h in A and a point x in S— K such that
h(x)=1 and |h(y)|<<ec on K.

Presented by S. Kametani. ‘
* The number in bracket refers to the paper in the reference.
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By the lemma in [3], we know that for a closed subset S in M(A)
the condition (*) is equivalent to the condition (*¥).

§2. On a separation property of A
The following definition we owe to D.R. Wilken [5].

DEFINITION. A function algebra A 1is said to be “ approximately
regular on X7 off, for each point p in X and each closed set K in X
not containing p and for any positive number ¢, there is a function [
wm A such that f(p)=1 and |f(y)|<<e on K. A is said to be “ approxi-
mately normal on X7 aff, for any two disjoint closed subset K,, K, in
X and any positive number e, there 1is a function f in A such that
[ fle)—1|<<e on K, and |f(y)|<<e on K,.

It is evident that if A is approximately normal, then A is approxi-
mately regular, and if A is approximately regular, then A satisfies the
condition (*¥*).

In general the condition (**) is weaker than “ approximately
regular 7.

In the following we shall construct an example for this.

EXAMPLE. Let X={z:|2|<1}, T={z2:|z]|=1},
A={fcC(X): for the restriction of f to T, there is a
founction f which is analytic in X’ (the interior of X) and f(0)=f(0)}.

Then A is a function algebra on X and its Silov boundary is X.
By the proposition in [3], we know that A has the condition (*) on X.

On the other hand A in not approximately regular. In fact for
the point 0, closed set T and any positive number ¢(<C1), there is no
function f in A such that f(0)=1 and |f(¥)|<<¢ on T by the maximum
modulus principle.

It is interesting that the condition (*) and (**) do not possess the
property that if A satisfies the condition (¥) (or **)) on a closed subset
of S again. On the other hand the concept of “approximately regular
and “ approximately normal »” has this property.

To show this we shall make use of the above example.

We know already that A satisfies the condition (*) on X. But on
the closed subset 7'\ /{0}, A does not satisfies the condition (*).

In fact if A satisfied the condition (*) on T\ J{0}, then for the closed
subset 7' of T\ {0} and any positive number ¢, there would be a func-
tion fin A such that f(0)=1 and |f(y)|]<<e on T. This contradicts the
maximum modulus principle. ’

Now we try to strengthen the condition (**).
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At first we exchange the condition (**) for the following condition
(**); if A satisfies the condition (**) on S, then on any closed subset K
in S A satisfies again the condition (¥*¥).

We can prove easily that the condition (**) is equiyvalent to “ ap-
proximately regular ». '

Therefore the stronger concept “ (**) » is not interesting.

‘Now we define the condition (¥**) as follows, which is stronger
than (**) and weaker than “ approximately regular ” and is equivalent
on M(A) to “approximately regular in a weak sense* »” and *“ approxi-
mately normal in a weak sense* 7.

DEFINITION. A function algebra A satisfies the condition (***) on
a closed subset S of M(A) iff A satisfies the condition (**) on S and
Surther on any closed subset K of S having mo isolated points with
respect to the relative topology of K, A satisfies the condition (**) on K
again t.e. for any proper closed subset J of K and positive number e,
there 1s a function f im A and a point x in K—J such that Sf(x)=1 and
| f(x) |<<e on J.

To show that in gemneral the condition (¥**) is weaker than ap-
proximately regular, we shall make use of the above example.

Already we know that the function algebra A in the example is
not approximately regular and satisfies the condition (**) on X. Then
we shall show that A satisfies the condition (***) on X.

Let K be any closed subset which has no isolated points with rela-
tive topology of K. Then for any « in K and an open nghd U of z, the
set UNK—{x, 0} is not empty. By the construction of A, any point
except 0 in X is a peak point of A.

Let #’ be a point of U/"\K—{x, 0}. Then the point 2’ is a peak point
of A i.e. there is a function fin A such that (2" =1 and | fly)|<<1 for
any y(+1).

Hence A satisfies the condition (**¥*).

In spite of the weakness of the condition (*¥**), on the maximal
ideal sace this concept is equivalent to approximate normality and ap-
proximate regularity. ’

THEOREM. If a function algebra A satisfies the condition (***) on
M(A), then A 1s approximately normal.

In otherwords, on M(A) the following three concepts are equivalent ;

(a) A satisfies the condition (**¥%),

(b) A 1s approximately regular in a weak sense,

(c) A is approximately normal in a weak sense.

* The definition of “ approximate regularity in a weak sense” and “ approximate
normality in a weak sense” is written after the references of this paper.
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ProOOF. It is sufficient to show that (a) (c).

Let K, K, be disjoint closed subsets in M(A) having at most finite
isolated points, and A, the uniform closure of the restriction of A to
KUK, in C(K,\JK,).

Then A, is a function algebra on K\ JK,.

It is well known that the maximal ideal space of A, is the set
{eeM(A): | f(x)|=||f]| x,ux, fOr any fin A}.

Hence the set K|\ /K, is contained in M(A,).

Now if M(A,) has isolated points {x,: a2}, then by the Silov’s
theorew [4], there is a function f, in A4, such that f, (z,)=1 and f,(y)=0
for y in M(A,)—{x,}, whence we have {z,: acA}c K,\ JK,. Therefore
the set {x,} is a finite set.

Let M'=M(A,)—{z,: acA}, K/'=K —{z,: ac} and K/=K,—{x,:
a=A}. .

Then M’ has no isolated points. If M'—K/\ K/ (=M(A,)—K,\JK,)
were not empty, then by the condition (¥***) there would be a point «
in M — KN\ K/ and a function f in A for any positive number &(<1/3)
such that f(x)=1 and |f(y)|<<e on K/\JK,. On the other hand, there is
a function g in A4, such that g(z,)= f(x,) for a=A and g(y)=0 on M by
the Silov’s theorem.

There is a function & in A such that |[g—h ||k .,<Ts, as A4, is the
closure of A| K\ JK,.*

The function f—#h is in A and | f(z,)—h(zx,)|<<e for a&A and | fy)—
My)|<<2e on K\ JK, .

Therefore || f—h|lx,ux,<2e.

But | flz)—h(x)]|=]1—h(x)|>1—e¢.

The existence of the function f—h contradicts the construction of
M(A,)). Hence M(A,))=K,\ JK,.

Again ap‘plying the Silov’s theorem [4], there is a function f’ in
A, such that f’(z)=0 on K, and f(y)=1 on K,. '

There is a function ¢’ in A such that |¢(z)|=¢ on K, and |¢'(y)—1]
<Ze on K, by the closedness of A4,.

Thus we know that A is approximately normal in a weak sense on
M(A).

PROFOSITION. A function algebra A satisfies the condition (***) on
a closed subset F in M(A) if and only tf for any closed subset K of F
having no isolated points with respect to the relative topology of K and
for the closure Ay in C(K) of A|K, the Silov boundary of Ax is identical
with K.

* We shall denote A | S the restriction of ‘A to the set S..- .
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PROOF. If, for some K, the Silov boundary of Ay were contained
properly in K, then for I'(4,) and any positive number ¢, there would
be a function fin A and some point # in K—1I'(As) such that f(z)=1
and | f(y)|<<e on I'(Ayg) since A satisfies the condition (***) on F.

Then existence of the function f contradicts that I'(Ax) is the Silov
boundary of A.

Then, for any closed subset K, I'(Ax) =K.

Conversely we assume that I'(4,) is equivalent to any closed
subset K. For any point z in K and open nbhd U of x in K with
respect to the relative topology, there is a point «’ in Choquet boundary
and a nbhd V of 2/ with UDV. For «/, V and any positive number
e(<<1), there is a function g in A, and a point z, in V such that ||g||=<1,
l9(x)|=1 and |g(y)|<<¢/3 on K—V. Since Ay is the closure of A|K,
there is a function f in A such that ||g—f||x<<e/3. Let k be f/f(x,).
Then & is in A and h(z,)=1 and |k(y)]|<<e on K—V.

Therefore A satisfies the condition (***) on F.

COROLLARY 1. If a function algebra A is maximal on the maximal

ideal space M(A), then A is approximately mormal in o weak sense on
M(A). ‘

PROOF. If A is maximal, then the Silov boundary is equivalent to
M(A). Hence A satisfies the condition (*¥*) on M(A).

If A did not satisfy the condition (**) on some closed subset K
having no isolated point, then there would be a proper subset F such
that for any fin A and any point z in K, | f(z) |<||fllz-

Let A be a uniform closure of A|F. Then M(A;) is the set
{ee=M(A) : | f(x)|<|flr for all fin A} and A is also maximal on M(A4y)
and on F by the maximalty of A.

Hence ['(Ay) = F'=M(A).

On the other hand FFC Kc M(Ay) by the choice of F.

This contradiction shows us that A must satisfy the condition (¥**)
on M(A). Applying the theorem in §2, A is approximately normal in
a weak sense on M(A).
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* DEFINITION. A function algebra A is said to be “approximately regular in a
weak sense on X iff, for each point p in X and each closed subset K in X having at
most finite isolated points and for any positive number ¢, there is a function f in A
such that |f(P)| =1 and |f(¥)|<e on K. A is said to be “approximately normal in a
weak sense on X7 iff, for any two disjoint closed subsets K, K, in X having at most
finite isolated points and for any positive number &, there is a function f in A such
that |f(x)—1]<e on K, and |f(¥)|<e on K,.

— Postscript —

We can take away the assumption “in a weak sense ” in the theorem. i.e. we get
the sharp result as follows;

THEOREM. Let A be a function algebra on M(A) satisfying the following condition ;
for any connected closed subset K of M(A) the Silov-boundary I'(Ag)=K. Then A is
approximately normal on M(A). And if A is approximately normal on M(A), then A
satisfies the above condition.
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