On a Separation Property of a Function Algebra

Kiyoko Nishizawa

Department of Mathematics, Faculty of Science & Technology, Sophia University, Tokyo (Received September 10, 1971)

§ 1. Introduction

In this paper we shall consider a separation property of a function algebra which is obtained in studying unit-boundaries of a function algebra. [2]*, [3]

Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex valued continuous functions on X with the sup-norm. We consider a function algebra A on X, that is, A is a closed subalgebra of C(X) which separates the points of X and contains the constant functions.

Throughout this paper, let M(A) be the maximal ideal space, $\Gamma(A)$ the Silov boundary and Cho(A) the Choquet boundary, of A, respectively. Further, let, for any set S, f(S) be the set $\{f(x) : x \in S\}$.

DEFINITION. A closed subset F of M(A) is called a unit-boundary of A iff F satisfies the following condition; for any function f in A which does not vanish of F, there is a function g in A with $f \cdot g = 1$.

The above definition is written equivalently as follows;

A unit-boundary F is a closed subset of M(A) with f(F) = f(M(A)).

In the paper [3], we have obtained the necessary & sufficient condition for F to be identical with the Silov boundary.

DEFINITION. A function algebra A satisfied the condition (*) on a closed subset S in M(A) iff for any closed proper subset K in S there is a function f in A and a point x in S-K such that f(x)=0 and $(Re\ f)$ (y)>0 (or <0) for all y in K.

A function algebra A satisfies the condition (**) on a closed subset S in M(A) iff for any closed proper subset K in S and any positive number ε , there is a function h in A and a point x in S-K such that h(x)=1 and $|h(y)| < \varepsilon$ on K.

Presented by S. Kametani.

^{*} The number in bracket refers to the paper in the reference.

By the lemma in [3], we know that for a closed subset S in M(A)the condition (*) is equivalent to the condition (**).

On a separation property of A

The following definition we owe to D.R. Wilken [5].

DEFINITION. A function algebra A is said to be "approximately regular on X" iff, for each point p in X and each closed set K in X not containing p and for any positive number ε , there is a function f in A such that f(p)=1 and $|f(y)| < \varepsilon$ on K. A is said to be "approximately normal on X" iff, for any two disjoint closed subset K_1 , K_2 in X and any positive number ε , there is a function f in A such that $|f(x)-1| < \varepsilon$ on K_1 and $|f(y)| < \varepsilon$ on K_2 .

It is evident that if A is approximately normal, then A is approximately regular, and if A is approximately regular, then A satisfies the condition (**).

In general the condition (**) is weaker than "approximately regular".

In the following we shall construct an example for this.

Let $X = \{z : |z| \le 1\}$, $T = \{z : |z| = 1\}$, EXAMPLE. $\widetilde{A} = \{f \in C(X) : \text{ for the restriction of } f \text{ to } T, \text{ there is a } f \in C(X) : f \in C(X) :$ founction \tilde{f} which is analytic in X' (the interior of X) and $f(0) = \tilde{f}(0)$.

Then \widetilde{A} is a function algebra on X and its Silov boundary is X. By the proposition in [3], we know that \tilde{A} has the condition (*) on X.

On the other hand \widetilde{A} in not approximately regular. In fact for the point 0, closed set T and any positive number $\varepsilon(<1)$, there is no function f in \tilde{A} such that f(0)=1 and $|f(y)|<\varepsilon$ on T by the maximum modulus principle.

It is interesting that the condition (*) and (**) do not possess the property that if A satisfies the condition (*) (or **) on a closed subset of S again. On the other hand the concept of "approximately regular" and "approximately normal" has this property.

To show this we shall make use of the above example.

We know already that \tilde{A} satisfies the condition (*) on X. But on the closed subset $T\setminus \{0\}$, \widetilde{A} does not satisfies the condition (*).

In fact if A satisfied the condition (*) on $T \cup \{0\}$, then for the closed subset T of $T\setminus \{0\}$ and any positive number ε , there would be a function f in A such that f(0)=1 and $|f(y)| < \varepsilon$ on T. This contradicts the maximum modulus principle.

Now we try to strengthen the condition (**).

At first we exchange the condition (**) for the following condition (**)'; if A satisfies the condition (**) on S, then on any closed subset K in S A satisfies again the condition (**).

We can prove easily that the condition (**)' is equivalent to "approximately regular".

Therefore the stronger concept "(**)' " is not interesting.

Now we define the condition (***) as follows, which is stronger than (**) and weaker than "approximately regular" and is equivalent on M(A) to "approximately regular in a weak sense*" and "approximately normal in a weak sense*".

DEFINITION. A function algebra A satisfies the condition (***) on a closed subset S of M(A) iff A satisfies the condition (**) on S and further on any closed subset K of S having no isolated points with respect to the relative topology of K, A satisfies the condition (**) on K again i.e. for any proper closed subset J of K and positive number ε , there is a function f in A and a point x in K-J such that f(x)=1 and $|f(x)| < \varepsilon$ on J.

To show that in general the condition (***) is weaker than approximately regular, we shall make use of the above example.

Already we know that the function algebra \widetilde{A} in the example is not approximately regular and satisfies the condition (**) on X. Then we shall show that \widetilde{A} satisfies the condition (***) on X.

Let K be any closed subset which has no isolated points with relative topology of K. Then for any x in K and an open nghd U of x, the set $U \cap K - \{x, 0\}$ is not empty. By the construction of \widetilde{A} , any point except 0 in X is a peak point of \widetilde{A} .

Let x' be a point of $U \cap K - \{x, 0\}$. Then the point x' is a peak point of \widetilde{A} i.e. there is a function f in \widetilde{A} such that f(x') = 1 and |f(y)| < 1 for any $y(\neq x)$.

Hence A satisfies the condition (***).

In spite of the weakness of the condition (***), on the maximal ideal sace this concept is equivalent to approximate normality and approximate regularity.

THEOREM. If a function algebra A satisfies the condition (***) on M(A), then A is approximately normal.

In otherwords, on M(A) the following three concepts are equivalent;

- (a) A satisfies the condition (***),
- (b) A is approximately regular in a weak sense,
- (c) A is approximately normal in a weak sense.

^{*} The definition of "approximate regularity in a weak sense" and "approximate normality in a weak sense" is written after the references of this paper.

PROOF. It is sufficient to show that (a) \Rightarrow (c).

Let K_1 , K_2 be disjoint closed subsets in M(A) having at most finite isolated points, and A_0 the uniform closure of the restriction of A to $K_1 \bigcup K_2$ in $C(K_1 \bigcup K_2)$.

Then A_0 is a function algebra on $K_1 \bigcup K_2$.

It is well known that the maximal ideal space of A_0 is the set $\{x \in M(A): |f(x)| \le ||f||_{K_1 \cup K_2} \text{ for any } f \text{ in } A\}.$

Hence the set $K_1 \cup K_2$ is contained in $M(A_0)$.

Now if $M(A_0)$ has isolated points $\{x_\alpha: \alpha \in \mathfrak{A}\}$, then by the Silov's theorem [4], there is a function f_α in A_0 such that $f_\alpha(x_\alpha) = 1$ and $f_\alpha(y) = 0$ for y in $M(A_0) - \{x_\alpha\}$, whence we have $\{x_\alpha: \alpha \in \mathfrak{A}\} \subset K_1 \cup K_2$. Therefore the set $\{x_\alpha\}$ is a finite set.

Let $M'=M(A_0)-\{x_\alpha:\alpha\in\mathfrak{A}\},\ K_1'=K_1-\{x_\alpha:\alpha\in\mathfrak{A}\}$ and $K_2'=K_2-\{x_\alpha:\alpha\in\mathfrak{A}\}.$

Then M' has no isolated points. If $M'-K_1' \cup K_2'$ (= $M(A_0)-K_1 \cup K_2$) were not empty, then by the condition (***) there would be a point x in $M'-K_1' \cup K_2'$ and a function f in A for any positive number $\varepsilon(<1/3)$ such that f(x)=1 and $|f(y)|<\varepsilon$ on $K_1' \cup K_2'$. On the other hand, there is a function g in A_0 such that $g(x_\alpha)=f(x_\alpha)$ for $\alpha\in\mathfrak{A}$ and g(y)=0 on M' by the Silov's theorem.

There is a function h in A such that $||g-h||_{K_1\cup K_2}<\varepsilon$, as A_0 is the closure of $A|K_1\bigcup K_2$.*

The function f-h is in A and $|f(x_{\alpha})-h(x_{\alpha})|<\varepsilon$ for $\alpha\in\mathfrak{A}$ and $|f(y)-h(y)|<2\varepsilon$ on $K_1'\cup K_2'$.

Therefore $||f-h||_{K_1\cup K_2} < 2\varepsilon$.

But $|f(x)-h(x)| = |1-h(x)| > 1-\varepsilon$.

The existence of the function f-h contradicts the construction of $M(A_0)$. Hence $M(A_0)=K_1\bigcup K_2$.

Again applying the Silov's theorem [4], there is a function f' in A_0 such that f'(x) = 0 on K_1 and f'(y) = 1 on K_2 .

There is a function g' in A such that $|g'(x)| = \varepsilon$ on K_1 and $|g'(y) - 1| < \varepsilon$ on K_2 by the closedness of A_0 .

Thus we know that A is approximately normal in a weak sense on M(A).

PROFOSITION. A function algebra A satisfies the condition (***) on a closed subset F in M(A) if and only if for any closed subset K of F having no isolated points with respect to the relative topology of K and for the closure A_K in C(K) of $A \mid K$, the Silov boundary of A_K is identical with K.

^{*} We shall denote $A \mid S$ the restriction of A to the set S.

PROOF. If, for some K, the Silov boundary of A_K were contained properly in K, then for $\Gamma(A_K)$ and any positive number ε , there would be a function f in A and some point x in $K-\Gamma(A_K)$ such that f(x)=1 and $|f(y)| < \varepsilon$ on $\Gamma(A_K)$ since A satisfies the condition (***) on F.

Then existence of the function f contradicts that $\Gamma(A_K)$ is the Silov boundary of A_K .

Then, for any closed subset K, $\Gamma(A_K) = K$.

Conversely we assume that $\Gamma(A_K)$ is equivalent to any closed subset K. For any point x in K and open $nbhd\ U$ of x in K with respect to the relative topology, there is a point x' in Choquet boundary and a $nbhd\ V$ of x' with $U\supset V$. For x', V and any positive number $\varepsilon(<1)$, there is a function g in A_K and a point x_0 in V such that $||g|| \le 1$, $|g(x_0)| = 1$ and $|g(y)| < \varepsilon/3$ on K-V. Since A_K is the closure of $A \mid K$, there is a function f in A such that $||g-f||_K < \varepsilon/3$. Let h be $f/f(x_0)$. Then h is in A and $h(x_0) = 1$ and $|h(y)| < \varepsilon$ on K-V.

Therefore A satisfies the condition (***) on F.

COROLLARY 1. If a function algebra A is maximal on the maximal ideal space M(A), then A is approximately normal in a weak sense on M(A).

PROOF. If A is maximal, then the Silov boundary is equivalent to M(A). Hence A satisfies the condition (**) on M(A).

If A did not satisfy the condition (**) on some closed subset K having no isolated point, then there would be a proper subset F such that for any f in A and any point x in K, $|f(x)| \leq ||f||_F$.

Let A be a uniform closure of $A \mid F$. Then $M(A_F)$ is the set $\{x \in M(A) : |f(x)| \leq |f|_F \text{ for all } f \text{ in } A\}$ and A_F is also maximal on $M(A_F)$ and on F by the maximalty of A.

Hence $\Gamma(A_K) = F = M(A_F)$.

On the other hand $F \subseteq K \subset M(A_F)$ by the choice of F.

This contradiction shows us that A must satisfy the condition (***) on M(A). Applying the theorem in § 2, A is approximately normal in a weak sense on M(A).

References

- [1] E. Bishop & K. de Leeuw: The representation of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier (grenoble) 9 (1959), 305-331.
- [2] K. Nishizawa: On a unit-boundary of a function algebra, Natural Science Report, Ochanomizu Univ. Vol. 22, no. 1 (1971).
- [3] K. Nishizawa: On a unit-boundary of a function algebra II, Natural Science Report, vol. 22, no. 2 (1972).
- [4] G. Silov: On decomposition of a commutative normed ring in a direct sum of ideals, Math. Sobornik 32 (1954), 37-48.

[5] D.R. Wilken: Approximate normality and function algebras on the interval and the circle. Proc. international Symposium on Function Algebra. Tulane Univ. 1965. Scott-Foresman (1966), 98-111.

132

* Definition. A function algebra A is said to be "approximately regular in a weak sense on X" iff, for each point p in X and each closed subset K in X having at most finite isolated points and for any positive number ε , there is a function f in A such that |f(p)|=1 and $|f(y)|<\varepsilon$ on K. A is said to be "approximately normal in a weak sense on X" iff, for any two disjoint closed subsets K_1 , K_2 in X having at most finite isolated points and for any positive number ε , there is a function f in A such that $|f(x)-1|<\varepsilon$ on K_1 and $|f(y)|<\varepsilon$ on K_2 .

— Postscript —

We can take away the assumption "in a weak sense" in the theorem. i.e. we get the sharp result as follows;

Theorem. Let A be a function algebra on M(A) satisfying the following condition; for any connected closed subset K of M(A) the Silov-boundary $\Gamma(A_K) = K$. Then A is approximately normal on M(A). And if A is approximately normal on M(A), then A satisfies the above condition.

[Natural Science Report, Ochanomizu Univ., Vol. 23, 1972]