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As the metric generalizations of Banach algebras W. Zelazko consid-
ered, in his paper [1], some types of topological algebras. One of them
is not always convex in the sense of a linear space, that is the p-normed
algebra, 0 <<p=<1. The purpose of this note is to glve some apphcatlons'
of this theory of p-normed algebras, not so trivial in case 0 <p<1.

S1. We shall give the definition and the fundamental propertles
of the p-normed algebra due to W. Zelazko.

DEFINITION. A p-normed linear space A is a linear space over the
complex number field C with p-norm ||z, 0 <<p<1, i.e., a functional on A
satisfying

1) ||2]|=0 and ||ef|=0 if w=0
2) lle+yli=llzll+liyll
8) 2z}l =|2 7| x|} where 2 is complex and x, y elements of A.

A p-normed algebra is a complete p-normed linear space in which
multiplication is defined satisfying

Heyl| <=l lyll, [lell=1 where e is the identity of A."

If a p-normed algebra A is a field we call A a p-normed field.

THEOREM 1. A p-normed field A is isomorphic and homeomorphic
with the complex number ﬁeld

PROPOSITION 1. Every ideal of A is contained in a maximal 'Ldeal :
Every maximal ideal s closed and codimension 1 and there is a 1-1
correspondence between mult@plzcatwe linear funcmonals and maximal
ideals given by ' '

M={zcA; @m(w)—O}

@Ou(x) =24, 1f t=m-le, m M cmd this decomposition follows from the fact
that A= M@ {ie). Consequently each multiplicative linear functional is
continuous. » o -

PROPOSITION 2. If M, is the compact space of all maximal ideals
of A (in M, the weak topology is introduced) then there is a continuous
homomorphism of A into the algebra C(IN,), the space of all CONLINIUOUS:,
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Junctions on IM,, given by

| L roed@=e) .
Moreover the ineqguality = =" ~u 0 e

s;p-m(M) |_p;§||?;]]“hol’.<%$;f0f each x of A.

THEOREM 2. An element x of A is invertible if and only if x(M) =+ 0,

Mc& I, or equivalently ’bf cmd only ’Lf go(x)q&O for each multiplicative
linear functional .

§ 2. APPLICATIONS. As in the theory of Banach algebras the
following facts, not found. in [1] though smlple seem to be some of
significance. S C ‘

.19 Suppose f(z) 184, hol@smm’phw funct@on wmn the umt d@sc Usuch...
that . Ty

if f(‘z)'::'-i anéﬁf ti{r‘f‘rd‘;‘lﬁ{:éo'for a fized p, 0<‘p<1' T (1-),;&

(md |f(z)l>0 for each z in U ‘

. Then 1/f(z)= Zcz Z]c |1’<m

PROOF Let A (U) be the space of all holomorphlc functlons f m'j
the unit disc U expressed as f(z)‘zzoanzr with 20 la,|?<<co. Itis clear

that 2f(2) belongs to A,(U) for 2&C and f= A,(U). -
Since sums of holomorphic functions are holomorphic, and holds the
inequality _ » v
S o JadbP<[aP+]b] forp, 0<p<1, (2).

it is easy to see that with 'f(z‘)——_:i a,z", g(z),='i b,2" their sum f(z)+g(2)

n=0 n=0

_5‘ (a,+b,)z" also belongs to A,(U). .
Thus A, (U) becomes a p-normed linear space under the p-norm ]lf]l \
_E la,|?. Moreover A,(U) is coniplete under this p-norm. Further
| (U) becomes a p-hormed algebra, under pomtwrse mult1phcat10n

For if £, geA (U) then f(z)g(z) 5‘(2 a,b ;)z" and hence-

n=0 4i+j=0

Hfgll—Zlyab l”éz 3 Jad, l”=HfH lHall.

S n=0 i+j=0 : n=0 1+j=0

Also, the constant function 1 is the identity of A,(U), and ||t 1|—;"1‘. |
Now put f(z)=#, then f,&A4,(U) and ||f;||=1. If ¢ is any multi-

plicative linear functional on A,(U) and ¢(f;)=a, then, by virtue of pro-

position 2, we have |a|pg 1 and consequently ]a] él If S is glven by

(1) then f=> a,f. A
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Since this series converges in A,(U) and ¢ is continuous on A, (U),
we conclude ¢(f)=f(a)(f< A,(U)).” Our hypothesis that ¥ vanishes at
no point of U asserts that f is not in the kernel of any multiplicative
linear functional and which shows from theorem 2, that f is invertible
in A,(U).. But this is what we have to show.

. 2°) Suppose VTRETIW are members of the above mentwned algebra

A,(U), ‘such that |£@)|+ - +|f (z)]>0 for every g U Then the¢e exist

Gy, e ,gneA (U) such. that Zﬁ(z)gl(z) 1 z&U):
 PROOF. The set J of all functlons Z f gz, Where the gﬁ are arbi-

trary members of A,(U), is an ideal of A,,(U). We have to prove that J
contains the identity 1 of A,(U), i.e., there is no maximal ideal contain-
ing J. By theorem 2, we have only to prove that there is no multipli-
cative linear functional ¢ on A,(U) into the complex number field such
that o(f;)=0 for every ¢ (1<=1<n). _ :

Put f,(2)=2 and ¢(f,)=«, as before. By the same reason as 1°) our
hypothesis implies that |fi(a,)}>>0 for at least one index ¢, 1<i<m
(a& U), follows ¢(f;) # 0. We have proved that to each o= I, there
corresponds at least one of the gwen function f; such that gp(f) + O and
which, as remarked, is to be proved , S

REMARK 1. Similarly as in case of Banach algebras we have also
‘determined all maximal ideals of A (U), in the course of the preceding
proof, since each is the kernel of some p &M, ;: .If a= U and if M, is
the set of all f& A,,(U) such that f(a) 0, then M is a maximal ideal of
A, (U) and all maximal ideals of A,(U) are obtained in this way.

REMARK 2. Let A(U) be the space of all continuous functlons in
the closure of the unit disc U whose restrictions to the open unit disc U/

are holomorphic ‘If f(z):Eco a zn fEA (U), then, by reason of the in-
equahty (2), follows (Z | @, [)? gE |, [P ‘ '

Thus f(z) is contmuous in the closure of the open unit disc U.
I—Ience A (U) is a subspace of A(U) in sence of a lmear Space

) Let A be the space of all formal power series 2 a, X", where

{%} is a sequence of complex numbers satisfying Z |a,|? a, < oo for a

-0

fixed sequence of .positive numbers {an}fw and p, 0 <<p<<l: If we deﬁne
& p-norm of z=, 4, X" in A by ||#]|=3|a,[a,, then 4 is a complete p-

normed linear space under usual operations on power series. We shall
prove the following facts, obtained by I. Gelfand [2], also hold in A.

With each pair z=3; a,X* and y=>3b,X" in A, their formal product
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LxY 7,3 by deﬁmmon XK Y= Z ( E b, ) X"

n=—o k=—oo
Then, the necessary and sufficient condition fm" the formal product
xxy of each pair of x and y in A to be again in A is that there exists

a positive constant ¢, for the sequence {an}fm, such that a,,.,= ca,a,

m+n ==

PROOF OF NECESSITY. First, to show that there exists a posmve
constant ¢ such that [|zxy| < cl|z]| ||¥]| for every x, y of A, we shall
prepare the following lemma, known in case of Banach spaces as
Gelfand’s lemma, which can be proved in almost the same way as in
Gelfand’s lemma.

LEMMA. Let L(x) be a subadditive p-homogeneous functional defined
on a complete p-normed linear space X, t.e., a functional L on X satis-
Sying .

1) 0= L(x)<<oo
2) L(z+y)=L(®)+L)
3) L(Ax)=|2|PL(x) for any complex 1 and a fixed p with 0 <p=1.

Then it is mecessary and sufficient for L(x) to be bounded is that L(x)
18 lower semicontinuous on X.

Hence we shall make use of the term “ a p-convex functional ”” for
“ g subadditive p-homogeneous functional ».

co N .
Now fix y=>,b,X". Since | ZN ab,_;|? is, for each N>0, continu-
— 0 k=—
: N co
ous p-homogeneous functional in x, sup| D) ab, |P=] D) a;b, ;| is a
N k=—N k=-—oco

lower semicontinuous functional on A. If we denote K,(x)={|z*yll,
then

Kvy(x):nﬁ nl Z a’lc n— klp»—Sllp Z nl i akbn—k|p

- N n=-—-N k=—o0

which shows K, is a p-convex and lower semicontinuous functional on
A. Then, by virtue of the above-mentioned lemma, K, is bounded on
[lz]] =<1 and therefore K(y)= sup [lexy]|| exists for every ¥ of A. More-

|"L‘ =1

over, since K is also a p-convex continuous functional, again by the
lemma, we see that K is bounded, i.e., there exists a positive constant ¢
such that K(y)=<c|ly|l. Consequently we obtain ||zs+y||=c]z]|| [|¥]]-
Now as « and ¥ are arbitrary, taking x=X™ and y=X", we have
< ca,a,

PROOF OF SUFFICIENCY. If there exists a positive constant ¢ such
that «,,,<ca,a, then x+y is contained in A and |jxxy|<c||z]] ||¥]]~
Since

m—l—n

TxY= i ( i a’kbn—k)Xn

n=—00 k=-—00

and

Hexyll= Z | Z ObpilPan= 27 | 2] Obpin il Ui

n=-—00 k=— mtn=—oco0 k=-—c0
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(o]

SG z i Ia’kbm+n—k].pa'man

m-tn=-—oc0 k=-—0o

<o 33 JauPa)( 33 baPan)=cilzll [[9]l.

7 am—{rnla’nl
Moreover, putting for = Za X", |]x|]’—sup n=—o0 p , We obtain

another equivalent p-norm to the orlglnal p-norm defined already, satis-
fying the multiplicative inequality ||z xy{|' < |{=||' |||} and ||1}}'=1 for
the identity 1 of A. Thus A becomes a p-normed algebra with the

identity under the p-norm ||z||’.

49)  For an element m:}‘t a,X™ of the above-mentioned p-normed
algebra A, it 1s mecessary and sufficient to be invertible in A is that the
Sunction @(r,t)= f‘.: a,r e vanishes at mo point of r=r<r, and

1L 1L
0<t<2r, where r,=(limea,”)?, r,=(lima,")?.
n——00 n—-+oco

Proor. Put z,=X, then x,=A. If ¢ is any multiplicative linear
functional on A and ¢(x,)=re* (0 <t < 2x), then ¢(x,")=7r"¢". As the

series Z a,x," converges in A and ¢ is continuous, we have ¢( Z a,%,")

n=-—00 n=-—-00

= E a,r*e™, and consequently ¢(x)=®@(r, t). Hence, by theorem 2, we

n=-—oo

have only to find », and r,, Now since, by virtue of proposition 2, || z,*|}’

=sup-¥min we have |rme|? <sup Tmin . And consequently qﬂpg(sup

m q m Ao,
1
Gmtn_ ) =, from which we obtained r?< lim (sup )—rl’ and r? >
a, n——00 \ m (44

m

. a A
lim (sup—m) no=pP,
am

Qp——00 m

On the other hand as the inequality Pn ésup Ymtn < ca,, holds for

ao Ap
n=0, +1, +2,..., we have r,=(lima, ")P and'r—(hma n)?
n——00 n—-+4co

We have proved ¢(x) # 0 for each o= I, which, by theorem 2, is to
be proved.
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