On a Unit-boundary of a Function Algebra

Kiyoko Nishizawa (西 沢 清 子)

Department of Mathematics, Faculty of Science & Technology Sophia University, Tokyo (Received April 10, 1971)

§ 1. Introduction

Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex valued continuous functions on X with the sup-norm. A subalgebra A contained in C(X) is called "a function algebra on X" if A satisfies the following three conditions:

- 1) The constant functions are in A,
- 2) A separates points on X,
- 3) A is closed under uniform convergence.

Let M(A) be the space of maximal ideals of A, i.e. the space of all multiplicative linear functionals on A, with Gelfand's topology. Then M(A) becomes a compact Hausdorff space and X is homeomorphically embedded in M(A) as a closed subset. ([1]^(*1))

Let Cho(A) be the set of all x in X which is an exteme point of $\{L \subseteq A^* : L(1) = ||L|| = 1\}$ as a multiplicative linear functional. The set Cho(A) is called the *Choquet boundary* of A and the closure of Cho(A) in X is called the *Silov boundary* of A and is denoted by $\Gamma(A)$. ([2])

§ 2. Definition and examples

DEFINITION. A closed subset F in M(A) is called a unit-boundary of A if F satisfies the following condition: for a function f in A which does not attain the value 0 on F, there is a function g in A with $f \cdot g = 1$.

According to the definition, M(A) is a unit-boundary for every function algebra, A.

REMARK. The definition that F is a unit-boundary is also described as follows; F is a closed subset of M(A) with $\{f(y): y \in F\} = \{f(x): x \in M(A)\}$ for all f in A.

We shall denote by \mathfrak{F} the set of all unit-boundaries of A, then \mathfrak{F} is not empty and becomes, as will be shown, the inductively ordered set

^{*1:} the number in brackets refer to the paper in Reference.

for set-inclusion i.e. when $\{F_{\alpha}; \alpha \in \mathfrak{A}\}$ is any totally ordered set in \mathfrak{F} , then the set $\bigcap F_{\alpha}$ belongs to \mathfrak{F} .

Now to prove this, we assume that a function f in A does not attain the value 0 on $\bigcap F_{\alpha}$. Then the following two cases will occur.

The 1'st case: There is an index $\beta \in \mathfrak{A}$: $F_{\beta} \cap z^{*2}(f) = \phi$.

Since $F_{\beta} \supset \bigcap F_{\alpha}$ and $f(F_{\beta}) = \{f(y) ; y \in F_{\beta}\} \oplus 0, f \text{ is invertible.}$

The 2'nd case: $F_{\alpha} \cap Z(f) \neq \phi$ for any index α in \mathfrak{A} .

We denote by $Z_{\alpha}(f)$ the set $Z(f) \cap F_{\alpha}$, and P the set of all cluster point of $\bigcup_{\alpha \in \mathfrak{A}} Z_{\alpha}(f)$. Since $P \cap F_{\alpha} \neq \phi$ and $\{F_{\alpha}\}$ is a totally ordered set, $\{P \cap F_{\alpha}\}_{\alpha \in \mathfrak{A}}$ has the finite intersection property. Therefore $P \cap (\cap F_{\alpha}) \neq \phi$, i.e. f attains the value 0 on $\cap F_{\alpha}$. This contradicts the assumption $f(\cap F_{\alpha}) \not \equiv 0$. Thus we know that the second case can not occur. From the first case the set $\cap F_{\alpha}$ is in \mathfrak{F} .

In general there is not the minimum unit-boundary in \mathfrak{F} , which will be shown in the following example.

EXAMPLE 1. Let
$$X = \left\{ (z, w) : |z| \le 1, |w| \le 1; ||z| - |w|| \le \frac{1}{3} \right\}$$
 (Fig. 1)

 $A = \{f \in C(X) : f \text{ is holomorphic in the interior of } X(=X') \text{ and continuous on } X\}.$

Then A is a function algebra on X. Every function in A can be extended holomorphically to the set $\tilde{X} = \{(z, w) : |z| \le 1, |w| \le 1\}$. ([3])([4])

M(A) is the set \widetilde{X} and X is a proper subset in M(A). Now if a function f in A is not 0 on X, then 1/f is also holomorphic in X. Therefore X is a unit-boundary. One of the minimal unit-boundary contained in X is the set $\{(z,w):|z|\leq 1,\,|w|\leq 1\,;\,|z|=|w|\}$. The other hand unit-boundary which is not contained in X is the set $\{(z,w):|z|=1$ or $|w|=1\}\cap\widetilde{X}$.

On the other hand we can show by the following example that there is the minimum unit-boundary of A.

^{*2:} the set $Z(f) = \{x \in M(A); f(x) = 0\}.$

EXAMPLE 2. Let
$$X = \left\{ (z, w) : \frac{1}{2} \le |z|^2 + |w|^2 \le 1 \right\}$$
 (Fig. 2)

 $A = \{f \in C(X) : f \text{ is holomorphic in } X \text{ and continuous on } X\}.$

As in the example 1, any function in A can be extended holomorphically to the set $\widetilde{X} = \{(z,w) : |z|^2 + |w|^2 \le 1\}$ ([3]) ([4]). M(A) is \widetilde{X} and X is contained in M(A) properly. As in the example 1, X is a unit-boundary. Let F_{δ} be $\{(z,w) : \delta \le |z|^2 + |w|^2 \le 1\}$ ($0 \le \delta < 1$). For each δ , F_{δ} is a unit-boundary. Therefore $\bigcap F_{\delta} = \{(z,w) : |z|^2 + |w|^2 = 1\}$ is also a unit-boundary, and $\bigcap F_{\delta}$ is the Silov boundary of A by the theorem of maximum modulus principle. By the theorem in §3 of this paper that every unit-boundary contains the Silov boundary, $\bigcap F_{\delta}$ is the minimum unit-boundary.

The following example shows us that there is a function algebra of which M(A) is the only unit-boundary.

EXAMPLE 3. Let
$$X = \{z : |z| = 1\}$$

$$A = \{ f \in C(X) : \int_{-\pi}^{\pi} f(e^{i\theta}) e^{in\theta} d\theta = 0, \ n = 1, 2, \dots \}$$

This function algebra is often called *disk algebra*, and any function in A can be extended holomorphically to the set $\{z : |z| \le 1\}$. So M(A) is the set $\{z : |z| \le 1\}$ and M(A) is the only unit-boundary, because the function z is contained in A, regarded as a subalgebra C(M(A)).

§ 3. Some properties of a unit-boundary

THEOREM. Every unit-boundary of a function algebra A on X always contains the Silov boundary $\Gamma(A)$.

PROOF. Let x_0 be an element of $\Gamma(A)$. By the definition, the Silov boundary is the closure of the Choquet boundary of A. The following theorem is due to E. Bishop and K. de Leeuw ([5]):

- "Let x be an element of X. Then the following conditions are equivalent;
 - (1) x is an element of the Choquet boundary of A,
- (2) for each nbhd U of x and each positive number $\varepsilon > 0$, there is some function f in A with $|f| \le 1$, $|f(x)| > 1 \varepsilon$, $|f(y)| < \varepsilon$ for all y in U X."

For each nbhd U of x_0 , there is some x_1 in the Choquet boundary. Then for x_1 and nbhd U, there is some f in A with $|f| \le 1$, $|f(x)| > 1 - \varepsilon$, $|f(y)| < \varepsilon$ for all y in X-U. Now 1-f is an element of A and $(1-f)(y) \ne 0$ for all y in X-U, then X-U is not contained in a unit-boundary F i.e. $U \cap F \ne \phi$. Therefore any nbhd U of x_0 intersects with F, i.e. x_0 is in F.

COROLLARY 1. Let A be a function algebra on X. If A is a maximal subalgebra of C(M(A)), then M(A) is the only unit-boundary of A.

PROOF. If there is a unit-boundary F except M(A), then we choose a point x_0 in $M(A) - F(\neq \phi)$. As M(A) is normal, there exists some nbhd $U(x_0)$ such that $U(x_0) \cap F = \phi$.

Now we can consider the following two cases:

The 1'st case; the point x_0 is an isolated point. Then we know that there is a function g in A with $g \in C(M(A))$, $g(x_0) = 0$, g(y) = 1 for all y in $M(A) - \{x_0\}$ ([6]). The existence of the function g contradicts the assumption that F is a unit-boundary.

The 2'nd case; the point x_0 is a cluster point. Then in the nbhd $U(x_0)$ there is a point x_1 different from x_0 . As M(A) is a Hausdorff space, there are some nbhd $V(x_0)$, $V(x_1)$ with $V(x_0) \cap V(x_1) = \phi$, $V(x_0) \subset U(x_0)$.

Now we can find the function f in C(M(A)) with $||f|| \le 1$, $f(x_0) = 1$, f(y) = 0 for all y in $M(A) - V(x_0)$. Since $M(A) - V(x_0)$ contains F and the unit-boundary F contains the Silov boundary by the theorem proved above, the function f can not belong to A. As A is a maximal subalgebra of C(M(A)), the generated function algebra B by f and A coincides with C(M(A)), i.e.

$$B = \langle f, A \rangle = \{ \sum_{n=1}^{\infty} a_n f^n ; a_n \in A \} = C(M(A)).$$

Again we can find a function h in C(M(A)) with $||h|| \le 1$, $h(x_1) = 1$, h(y) = 0 for all y in $M(A) - V(x_1)$.

As B = C(M(A)), the function h is represented as $a_0 + \sum_{n=1}^{\infty} a_n f^n$.

Restricting h to $M(A) - V(x_0)$, $h \mid M(A) - V(x_0)$ is equal to $a_0 \mid M(A) - M(A) = 0$ $V(x_0)$.

By $F \subset M(A) - V(x_0)$, h is identical with a_0 on E. So a_0 is 0 on E.

Since a_0 is a function in A and F contains $\Gamma(A)$, a_0 is the constant 0 on M(A). Consequently h is 0 on $M(A)-V(x_0)$, but this contradicts the construction of the function h.

Therefore M(A) is the only unit-boundary of A.

The inverse of the corollary 1 " if M(A) is the only unit-boundary of A, then A is maximal in C(M(A))" fails to hold in general. The example 3 is a counter example for this.

COROLLARY 2. If a function algebra A on X is a log-modular (or Dirichlet) algebra on M(A), then M(A) is the only unit-boundary of A.

To give the proof, we require some concepts; ([2], [7])

* Let $C_R(X)$ be the set of all functions which are continuous real valued functions in A, Re(A) the set of all functions in $C_R(A)$ which are real parts of some functions in A, A^{-1} the set of all functions in A which are invertible.

- ** A function algebra A is called Dirichlet algebra on X if Re(A) is dense in $C_R(X)$ under uniform norm.
- *** A function algebra A on X is called log-modular algebra on X if the set $\{\log |f|; f \in A^{-1}\}$ is dense in $C_R(X)$ under uniform norm. According to this a Dirichlet algebra is a log-modular algebra.

PROOF. Since by K. Hoffman ([7]), in a log-modular algebra on X, the representing measure on X of a point p in M(A) is unique and by applying the above result to the Chouet boundary of A, ([5]), X is the Silov boundary. As X = M(A) in this corollary, M(A) is the Silov boundary. By our theorem, M(A) is the only unit-boundary.

In the corollary 2, the assumption "on M(A)" is necessary. fact we can show by an example that a function algebra A which is a Dirichlet algebra on X may have a unit-boundary except M(A).

EXAMPLE 4. Let $S^2 = \mathbb{C}^{*3} \cup \{\infty\}$ be the extended plane. A function defined on S^2 is called analytic at ∞ if the function $z \rightarrow f(1/z)$ is analytic at the origin 0, or equivalently, if f is holomorphic and bounded on some deleted nbhd $\{z : |z| > \frac{1}{\varepsilon} \le 0\}$ of ∞ .

Let $X=\{z ; |z| \leq 1\}$, $A=\{f \in C(X) ; f \text{ can be extended holomorphical-}$ ly to S^2-X .

Then A is a function algebra on X. (0.100)

Now we show two facts; the first is that A is a Dirichlet algebra on X and the second is that X is proper subset of M(A) and a unitboundary of A.

The 1'st: It is well known that the "disk algebra" in the example 3 is a Dirichlet algebra. ([7]) Thus the restriction A to $C_1 = \{z \mid |z| = 1\}$ is a Dirichlet algebra under the transformation: $z \rightarrow 1/z$.

Let f be a function in $C_R(X)$. As $A \mid C_1$ is a Dirichlet algebra, there is a function g in A such that $|Re(g)(y)-f(y)| < \varepsilon$ on C_i .

Since Re(g) and f are uniformly continuous on X, there is some nbhd $U_{\delta} = \{z : 1 - |z| < \delta\}$ on which $|Re(g)(y) - f(y)| < \varepsilon$.

There is a function h in A with $h \in C(X)$, h(y) = 0 on C_1 , Re(y) = 0(f-Re(g))(y) in $U_{\frac{\delta}{2}}$ and $0 \le |h(y)| \le \varepsilon$ in $U_{\delta}-U_{\frac{\delta}{2}}$. Then h+g belongs to A and $|Re(h+g)(y)-f(y)| < 2\varepsilon$ for all y in X. Therefore Re(A) is dense in $C_R(X)$ i.e. A is a Dirichlet algebra on X.

^{*3:} C is the plane of complex numbers.

The 2'nd: Since every function f in A has the holomorphic extension f in S^2-X , S^2 is contained in M(A). Accordingly X is a proper subset of M(A). Now we shall show that X is a unit-boundary.

To do this, we shall make use of the concept of the variation of the logarithm of a continuous function along a closed curve.

For a continuous function ϕ on a closed interval [a,b], which does not vanish on that interval, a continuous logarithm of ϕ is defined as a function ν , continuous on [a,b], with $\phi=e^{\nu}$. Because of the uniform continuity of ϕ and the fact that the exponential function has a local continuous inverse, we know that for any continuous function on X such that $[a,b] \to \mathbb{C} - \{0\}$, the logarithm function is continuous. If γ is a continuous function on [a,b] and f is continuous and nowhere 0 on the curve $C=\gamma$ ([a,b]), then the variation of the logarithm of f along C is defined to be $\nu(b)-\nu(a)$, where ν is any continuous logarithm of f.

LEMMA. Let $\varphi: \mathbb{C} \to \mathbb{C} - \{0\}$ be continuous. For each r > 0, let V(r) be the variation of the logarithm of φ along the circle $C_r = \{z : |z| = r\}$. Then V(r) = 0.

For the proof, see G.M. Leibowitz [8].

By this lemma, we can prove that X is a unit-boundary. Suppose there is a function f in A which is nowhere 0 on X and at some points in S^2-X , f is 0, regarding f as a function on S^2 .

Z(f) in S^2 is a non empty finite set i.e. $Z(f) = \{z_0, z_1, \cdots, z_n\}$ (repeated according to their multiplicities), since $Z(f) \cap X = \phi$ and f is holomorphic in $S^2 - X$.

Let g be the function $(z-z_0)^{-1}(z-z_1)^{-1}(z-z_2)^{-1}\cdots(z-z_n)^{-1}f(z)$. Then g has no zero on C, $g(\infty)=0$ and is holomorphic in S^2-X .

By our lemma, the variation of $\log g$ along each C_r is 0. Since g is analytic at ∞ , by simple calculation we see $V(r) = 2n\pi i$ for all sufficiently large r (the integer n is the order of the zero of g at ∞), which is a contradiction. Now we know that a function f which is nowhere 0 on X is nowhere 0 on S^2 , so that f is invertible i.e. X is a unit-boundary. (in the example 4 we owe the 2nd part completely to G. Leibowitz [8]).

Prof. S. Kametani gave me the hint of the existence of the set called in this paper 'unit-boundary' and also Mr. M. Kita valuable suggestions. The author here wishes to express her thanks to both of them.

References

- [1] I. Gelfand, D. Raikov & G. Silov: Commutative normed rings, Chelsea (1964).
- [2] 和田淳蔵: ノルム環,共立出版 (1969).
- [3] L. Hörmander: An Introduction to complex analysis in several variables, Van Nostrand (1966).
- [4] 一松 信: 多変数解析関数論, 培風館 (1960).
- [5] E. Bishop & K. de Leeuw: The representation of linear functionals by measures on sets of extreme points; Ann. Inst. Fourier (Grenoble) 9 (1959), 305-331.
- [6] G. Silov: On decomposition of a commutative normed ring in a direct sum of ideals. Math. Sbornik 32 (1954), 353-364. Amer. Math. Soc. Translation 1 (1955), 37-48.
- [7] K. Hoffman: Analytic functions and logmodular Banach algebras. Acta Math. 108 (1962), 271-317.
- [8] G.M. Leibowitz: Lectures on complex function algebras, Scott Foresman (1970), 198-200.