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S 1. Preliminaries

In [1], [2], Prof. H. Bauer has proved the existence of the Choquet
boundary with respect to a separating family ¢ of lOW_er semicontinu-
ous functio:cis on a compact Hausdorff space £ and proved that parti-
cularly for a wedge &, the closure of the Choquet boundary is equal to
the Silov boundary. Prof. G. Mokobodzki and Prof. D. Sibony have
proved, for a locally compact, o-compact £, the existence of the Choquet
boundary with respect to a convex cone & with some ‘properties and
proved that the closure of the Choquet boundary is the smallest closed
determining set by applying Choquet’s theorem concernmg adapted
spaces.

In this paper we shall show that the same conclusions will be
obtained for a locally compact, paracompact 2 and a wedge &, according
to Mokobodzki and Sibony [5].

§2. Adapted spaces

Let £ be a locally compact space and C(£) be the vector space of all
continuous real-valued functions on 2. We say, according to Choquet;
that a vector subspace VcC(2) is adapted if it satisfies the following
conditions ;

1 V=V*—V+ where V+=VN\C*(Q), :

20 for any x < £, there exists v V such that v(x) >0,

30 for any v V+, there exists we VT, wzv such that for any
s>0 there exists a compact Kc 2 such that '

o ) mECK 20(x) < ew(x)
Then, we can state the following theorem according to Choquet.

THEOREM 1. Let V. C(82) be an adapted wvector space. For any
posztwe linear ffrom T, there exists a measure pzo on 2 such that

1) a/ny v&EV 18 p- mtegmble



18 : . H. WATANABE NSR. 0.U., Vol. 22

and (ii) for all v&V T(v):(vol/,e holds.
Let f be a non-negative function on £, g be a function on 2. We
call f dominates ¢ if for any ¢>0, there exists a compact K such that

r&=CK Do) Zef(x) .

For any f=0 on £, we denote by 0(f) the set of all functions dominated
by f. : '

THEOREM 2. Let £ be a locally compact, paracompact® Hausdorf

space. Then for any function g=0 on £, 0(g)\C(L2) s an adapted
space.

PROOF. Obviously 0(g) is a vector space. For any f& 0(g), it is
able to write f=f*—f~, where f*<0(9) and f&0(g). Since any con-
tinuous function on £ with compact support is included in 0(g), the
conditions 2° is satisfied. Let V(x) be a relatively compact neighbor-

hood for x & £. Then holds 2 —\ ) V(x). Since £ is paracompact, there
zeQ

exists a locally finite open covering {U,} of a refiment of {V(x)},co. For
any f&0(9), f=0, we shall construct by mathematical induction a

sequence {K,} of compact subsets. Since f< 0(g), there exists a compact
K such that

wecKréf(w)g—lz-g(w) -

We put K=K,. Assume that we have defined K,, --- K,,. Since f& 0(g)
there exists a compact K such that

. 1
WECK‘-?f(x)ggn:; 9(x) .

Then K, ,=\J{U,; U,N(K\JK,)+* ¢} is also compact, K., D K, and
1

2n+1

s CK Hf(r) = g9(x) .

Put 2,= C/K Then £, is closed and open. Indeed, for any vr& 2, there
n=1

exists a compact K,=« and £,D K.,, D K,&«. Hence £, is open.
Further, for any x,& £, there exists a open set U, with U,Dz and
U,N\82,+¢. Then there exists a natural number »n such that K, U,
+¢. From the construction of {K,}, we have K,,, D U,>«. Hence
x> &L,. Moreover it is clear that

1) We say that a topological space £ is paracompact if for any open covering
{Uy)» of @, we can find a locally finite open covering {Vg} of  to be a refiment of
{U,>, where we call covering {Vg} locally finite if for any xe&Q there exists a
neighborhood V, such that {8; V,N\Vg)=+¢ is finite.
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& C0, D f(2)=0.
Let (¢,) be a sequence of elements of C*(2) such that

(a) 0=¢,=1
(b) ¢ (x)=0 if 2&=K,\JCL,,
(c) o (x)=1 if 2&CK,NL,.

'Syince £ is locally compact Hausdorff and £, is closed-open, we can find
{¢,) satisfying the above conditions. Putting f'=3] ¢,f, we find

n4+1

v € 8,N\CK, 0= "1 g(0).

Hence for any ¢>>0, there exists a compact K — £, such that
2 & CK =5 f1(x) < eg(x) - |

Hence f' < 0(g9). Since f’ is continuous on £, and £, is closed-open, we
have
S ‘Qo ﬂ‘CKVH-l Z‘.?%f(%) gf/(x) -
Hence f& 0(f). :
We put 0(F)= fUFO(f) for a family F of functions f=>0 on L.

COROLLARY. Let 2 be a locally compact, paracompact Hausdorff
space and & be a family of mon-negative functions on 2 satisfying the
Jollowing conditions ;

figcCénf+ges.
Then 0(§) is an adapted space.

§3. The Choquet boundaries

Let 2 be a locally compact Hausdorff space and & be a family of
lower semicontinuous functions from & to R\ J{+c}. Wesay <=2 a
boundary point of £ with respect to & if the following condition is
satisfied ;

(p E NMH(R2), Slvld;z<+m, gvdpgv(w), Wweé) Dp=e,.

Then the Choquet boundary with respect to &, denoted by 4(¢) is the set
of all boundary points of £ with respect to £&. A closed subset FFc £ i8
called stable if for any x& F and any measure ¢ >0 on £ such that
) g;vdy < v(x) YVo&=§&,
u is supported by F. -
EXAMPLE. If u& ¢ has a compact support, the set {y; inf u(x)=
zxe

#(y)} is a non-empty closed stable set.
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Let v be a lower semicontinuous'non-negative function satisfying
‘ Svd‘ug'u(x) :
for any £ >0 on £ and x & £ such that v
S | % [“du < +oco and S udpgu(x) Vue g.

Then v is called a &-concave function. We denote by & the set of all?
§-concave functions.

EXAMPLE. If ue £ and the set F= {y 1nf u(x)—u(y)} is not empty,

the F'is a closed stable set.
Obviously we have

LEMMA 1. Any intersection of closed stable sets is closed stable and
any compact stable set includes a minimal compact stable set.

We suppose that for ahy <= R, there exists v €& such th_at;
0<<v(x)<<4oc0. We denote by 2% the set 2= N\ {xc 2; v(2)=0}. Then
we have ev1dently L

LEMMA 2. For a point xc CR2+, the following two conditions are
equivalent ; : ’ '

(1) =« is a boundary point with respect to &,

(ii) the set {x} is a minimal compact stable set.

THEOREM 2. Let 2 be a locally compact Hausdm"ﬁ" space and & be
a family of lower semicontinuous functwns on £ wzth compa.ct supports-
satisfying the following conditions ; '
(i) for any x& 2 there exists a u=§& such that 0<u(ac)<<x>
J(ii) & separates the point of £,
(111) 5 S+ EFD
Then 5(5) 18 not empty (md we have

(e é, wx) =0, Yo 0(8)) 2 (u(x) =0, Ve Q) .

PROOF. Trom &=+&*, there exists a ue& & and x,& 2 such that
u(w0)<0 Then the set K={y<= 2; 1nf u(x)=u(y)} is a compact stable

set. Therefore K includes a mlnlmal compact stable set K, Suppose
that K| is not reduced to one point. Since & separates the points of K,
there exists v&¢, such that K =(y& K, ; inf v(z)=v(y)} & K, Then K,

zeKy

is also a compact stable set which contradicts that ‘K, is minimal.
Therefore, we have K =f{x;}. From x,cCQ%, by lemma 2,  is a

1) Wé btrl’enote by &+ the set {feé&; f=0}. -
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boundary point and (€)= ¢, which shows also that if u(x)<<0, (v 2,
u(y)<<0} M\ 0(§) = ¢. Therefore, ,

(wEE, w(w) =0, ¥ e 3(8)) D(u(x) =0, Vo= Q).

We consider the existence of the Choquet boundary for a family &
of functions with supports not necessarly compact. We denote by
inf (&, 0) the set {inf (f, 0); FE§&}. We say that & linearly separates 2
is for any t+yc 2 and for any 1=>0, there exists uE€+ such that

wW(X) 7 Au(%).

THEOREM 3. Let 2 be a locally compact, paracompact Hausdorff
space and & be a family of lower semicontinuous functions on £ satis-
Sfying the following conditions ;

1) &DuU, — oo <<u(x)<<+ oo, Vo & L,

(i) &Du, voutveé

(iii) &t linearly separates £,

(iv) inf (€, 0) C O(&™) and &= E*.

Then 6(5) is not empty and satisfies
weE, v(@) =0, Ve d(§)) 5 (v(r) =0, Ve Q).

The proof will be established in several steps.

LEMMA 3. For any x,& 8 there exists a hE§ such that h>=0 on
2 and h(x)) <<+ oo.

PROOF. For any z& £ there exists a relatively compact neigh-
bourhood V(x). Since 2c U V(z) and 2 is paracompact there exists a

e
locally finite open covering {U,} to be a refiment of the covering {V(x)}.

We put £, the set of all the points of yEQ such that there exists finite
subsets {U, }1<J<nc{U} with z,& U,,, a] NU. ;7P (7=1, 2, ..+, n),
U, cy. Then 2, is an open and closed subset and we can write

2,=\JK, where K, is compact and K{cC K, ., ﬂK S, Since &t

linearly separates 2, for any xEQ there ex1sts S& & such that
0 << flx) <<+ oo. Hence we may find £, & such that 0 <<Fo(y) <<+ oo
for any y& K,. Accordingly we may find gneé such that g,(z, )<1/2n
and 0<<g,(y) for any y&= K,. We put. .

g,(x) if ooE.QO,
()= ,
+oo i 2&CQ,.
Since £, is a closed and open set, &, is lower semicontinuous and <= £

Putting h:ﬁ h,, we have heé, h(2)) <<+ oo and A>0 on 2.
n=1 :



22 H. WATANABE NSR. 0.U., Vol. 22

LEMMA 4. For any v&§&, vd=E&*, there exists a compact stable
Kc{xe 2; v(x)<<0}.

PROOF. Let v(x,)<<0. By lemma 3 there exists a we& £ such that
w>0 and w(x,) <+ oo. From inf (v, 0)=0(§*), we may suppose inf
(v, )& 0(w). Put '

: A={8up a; a>0, —avw}

and u=w-+ v, then w =& and the set #~(0) is not empty and is compact
stable. Further
w0 {xe 2; v(x)<<0}

which proves our lemma.
Similarly we shall be able to prove the following lemma ;

LEMMA 5. Let F be a closed stable subset of 2 such that {x&=2;
v(X)<<OyNF+£¢, with ve=é.  Then there exists a compact stable
Kc{xe2; v(x)<<O0} N\ F.

LEMMA 6. Any compact stable minimal K with K 2+ is reduced.
to ome point.

PROOF. Let z&= K, v & such that v(x)<<0. Suppose that there
exists #, & K, «, = x, then we shall show that there exists a function
u & & satisfying the following property ;

(*) u(x)>0 and u(x,)=0 or wu(x,)<<0 and wu(x)=0.

Indeed, if v(z,) =0, we may put u=v. If v(x)<<0, there exists a w& &+
such that w(x)# (v(x)/v(x))w(x). We may consider the case where.
w(x) << (v(x)[v(x))w(x). Then we can find positive intergers =, m such
that |
_w@) _m . w(®)
@) Tm )

and we get mv(x)-+nw(x)<<0, mv(x,)+nrw(x,)>0. Put u=mv-+nw, we
have w& ¢ and u(x)<<0, u(x,)>0. Therefore there exists a function
u & & with the property (x). Accordingly {y; u(y) <0} KL K. From
lemma 5 there exists a compact stable set K, C {y; u(y)<<0}/\ K. This.
contradicts that K is minimal.

From lemma 3, 4, 5, 6, Theorem 3 is proved.

THEOREM 4. Let £2 be a locally compact, paracompact Hausdorfl
space, and & be a family of lower semicontinuous functions on £ satis-
Sying the conditions of Theorem 8. Then 5_('_5) 18 the smallest closed set:
F having the following condition ;

(*) weEE, v(x) =0, Ve F) D ((v(x) =0, V2 & Q).
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PROOF. From theorem 3, 3(€) satisfies (x) condition. If we prove
the following lemma, for any x& CF there exists a positive measure p
such that S, C F and

S vdp < v(x), YweE.

Since g, we have xdd(£). Hence d(£) = F. Therefore §(&) is the
smallest closed set satisfying (x) condition.

LEMMA 7. Under the same condition with theorem 4, there exists,
Jor any x= 2, @ measure p>=0 on £ supported by F such that

S vdp < v(x), Y& €.
PROOF. Letz,& Q. H=0(*)\C(F) is an adapted space on F by
theorem 1. For any ¢& H, we put
P(go):i'nf {v(x,); vEE, v=¢ on F}.

Then, P is a sublinear form on H. By Hahn-Banach’s extention
theorem there exists a linear form on H such that T'<<P. It is clear
that T is positive. Since H is an adapted space, there exists a positive
measure g on F such that

[ odu=Ti0)<Prg).

For any v& & we have

S vdp=sup S edu .
$EH

Hence
S vdp=<v(x,), YwEE.

In the same way we may prove also the following characterization
of d(é).

PROPOSIOION. The necessary and sufficient condition for <= £ to
be an element of 4(¢) is that

p(x)=inf {f(x); FEE f=¢}

for any continuous function ¢ on £ with compact support.

References

[1] H. Bauer: Minimalstellen von Funktionen und Extremalpunkte. Arch. der Math.
11 (1960), 200-205.

[2] H. Bauer: Silovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier. 11
(1961), 89-136.



24 ‘  H. WATANABE ) NSR. 0.U., Vol. 22

[3] G. Choquet: Le probléme des moments. Sémi. Choquet. 1 (1962).

[4] G. Mokobodzki & D. Sibony: Cones de fonctions continues. 'C.R. Acad. Sc.

~~ Paris, 264 (1967), 15-18. : ’

[5] G. Mokobodzki & D. Sibony: Cones adaptés de fonctions continues et théorie
du potentiel. Sémi. Choquet. 6 (1966/67).



