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§1. Introduction. In a previous paper [6], the author investi-
gated some spectral properties of semi-non-support operators in am
ordered Banach space. This paper shows further precise spectral pro-
perties of positive irreducible operators which is equivalent to semi-
non-support operators in a.special space C(S) where S is a compact
Hausdorff space.

Concerning the spectrum of pdsitive operators, the following re-
sult was obtained by H. H. Schaefer [7] [9];

THEOREM A. Let T be a positive irreducible operator in C(S) whose
resolvent R(2, T) has a pole at 2= r(T)V. Then the point spectrum on the
spectral circle® coincides with the set of all k-th roots (k>=1) of unity
multiplied by r(T) each of which, proper value of T, is a simple pole cf
R, T).

Recently, F. Niiro [5] has shown that, in L, (1<<p<<w), the spec-
trum of a similar operator on the spectral circle consists only of sim-
ple poles (of course, these are proper values) and coincides with the.
set of all k-th roots (k==1) of unity multiplied by »(T).

In this paper, we shall prove the following two theorems;

THEOREM 1. Let T be a positive irreducible operator in C(S) whose
resolvent has a pole at 2= r(T). Then the residual spectrum of T on the
spectral circle s void.

THEOREM 2. Let T satisfy the same condition as in theorem 1. Then
the continuous spectrum of T on the spectral circle is void.

Combining theorem 1, 2 and theorem A, we shall obtain, in the
case of C(S), a result similar to that of F. Niiro mentioned above. At
the same time this answers affirmatively to the problem (b) of H.H.
Schaefer [8] in the case of positive irreducible operators in C(S).

1) #(T) denotes the spectral radius of T.
2) The spectral circle is the circle {231 2]=r(T)}.
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(Added in proof) Recently the present author and F. Niiro could
‘prove both theorem 1 and theorem 2 in the general case of a Banach
lattice. The proof will be given elsewhere.

§ 2. Fundamental notions. We shall denote by C(S) a real (or
-complex) Banach space of all real (or complex) continuous functions
on a compact Hausdorff space S with the usual supremum norm and
-define

|2 {(s) = x(s) | (s€S)

_ |+ o = || —x

2 2
If S is not a finite set, C(S) is a non-reflexive Banach lattice with the -
positive cone K= {x; x(s)=>0 (s&<S)}. Let B, fand v(f, 4) be the family
-of all Borel sets in S, a Radon measure on B and the total variation
of f on a Borel set A respectively. It is well known that the dual
space C(S)* is the Banach lattice of all real (or complex) Radon meas-
ures on S where

., (for real x).

I1F1 = o(f, S)
[fI(A) =v(f, A) (ACD)
f+=—]f|2i f_=i|2_—f- (for real f).

"We consider also a real (or complex) Banach lattice L, (1 <p< o) with
the natural norm, order and absolute value. It will be noticed that, in
all cases, || and |f| are defined for any « and f, real or complex.
We denote by E one of the spaces L, (1<p=<co) or C(S), by K
‘the positive cone of E and by E* and K* the duals of £ and K re-
spectively. An element x <= E is called a non-support element of K if
J(@®)>0 for every non-zero f& K*. In FE, the notion of mnon-support
elements of K coincides with that of quasi-interior elements of K de-
fined by H.H. Schaefer [8]. In L, (1<p<<co) with o-finite measure®,
& is a non-support element of K if and only if x(s)>0 a.e. and, in C(S)
or L., if and only if « is an interior element of K. We denote by
¥ (E) the Banach space of all bounded linear operators from K to E
‘with operator norm. For T'& &(E), »(T), R(2, T), o(T), o(T), PT), R(T),
C(T) and T* denote the spectral radius, the resolvent, the spectrum,
the resolvent set, the point spectrum, the residual spectrum, the con-
tinuous spectrum and the conjugate operator of T respectively. Since
o(T)y=0o(T*) and {RQ, T)}*=R(2, T*) [2], it is easy to see that »(T)
=r(T*) and that A=2, is a pole of R(2, T) if and only if A=2, is a

.3) See, for this, footnote 3) in [5].



July Spectral Properties of Positive Irreducible Operators 3

pole of R(2, T*).

An operator T&Q(FE) is said to be positive if TKC K. The follow-
ing definition of irreducible operators is due to H. H. Schaefer [7] [9};

DEFINITION. An operator T&R(E) 18 said to be irreducible if there
exists no non-trivial closed ideal imvariant under T.

This notion of positive irreducible operators coincides with that
of positive indecomposable operators defined by F. Niiro [5] in
L, (1<<p<<oo) and that of quasi-interior operators in E defined by
H.H. Schaefer [8] and that of semi-non-support operators in E defined
by the author [6]. Therefore, we can apply theorem 1, 2 and corollary
1 in our paper [6] to irreducible operators in £ whose resolvent has a
pole at A=nr(T").

In the following part of this paper we shall assume that T is a
positive irreducible operator in & whose resolvent has a pole at A=»(T)
and, for the sake of simplicity, that »(7T) is equal to 1 and denote by
I' the spectral circle of T, i.e., I'={1; || =r(T)=1}.

§3. The voidness of the residual spectrum of 7 on I. Our
main purpose in this section is to prove that, in C(S), the residual
spectrum of 7T on I'is void. In L, (1 <<p<<Tco), thé corresponding result
was proved by using the fact that T'* is also positive irreducible in L *
{56]. However this fact depends too much on the reflexivity of L,.
Namely if, in C(S), T* is positive irreducible then S is shown to be at
most countable (corollary 2). Therefore we shall consider a restric-
tion T* of T* to an invariant subspace P E* which is the space of
all f,-absolutely continuous measures where f, is a certain positive
measure. Then the following properties can be proved:

(1) The spectral circles of T* and T'*, both commde with I' (lem-

ma 4(1)), :

2y P(T*YNTI=P(T*)NTI (proposition 1),

(3) 2=2, on I is a pole of R(2, T*) if and only if it is a pole of

R(2, T*) (proposition 2(ii)),

(4) T* 1is also positive irreducible in P E* (proposition 4)

Since the method used by F. Niiro in L, [5] may be applied in the
case of L,, by using (4) we obtain

(5) Any proper value 2, of T* on I' is a pole of R(%, T*,) (corol-

lary o)
Combining (5) with (3), we have

6) P(T*)N\TI'cP(T)NTI (corollary 4).

Therefore, by (2), (6) and the well known fact R (T)C P,(T*), it is easy
to see that the residual spectrum of T on I' is void.

Hereafter, we denote by FE only the space C(S), by z, the non-
support element of K satisfying
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Tx, = x, and 2, ] =1 ,
and by f, the strictly positive functional in E* satisfying
T*fo =1, and So(x) =1
where the existence of such x, and f, is assured by theorem 2 in [6].
Let P, be the operator on E* defined by
P.f= }L/(f/\%fo) (feK*")

P.f=P.f.—P,f. - (real fFEE)
Pf = PRO+iP(Jf)  (FEE¥).
Then P, is obviously a lattice homorphic projection with
NIPll=1, 0=P,<I and Pf,=f,.
Therefore P)E* is a Banach lattice. Let Q0=I—Pq. Then we have
1Qll=1o0r 0, P@ =0 and 0=Q,<I.

This decomposition I = P +@Q, is the Lebesgue decomposition where P E*
coincides with the set of all f,-absolutely continuous measures on S
and Q,E* coincides with the set of all f,-singular measures on S.
Therefore, it is clear that if |f| is an element of P,E* then f is also
an element of P, E*. We begin by proving the following lemma :

- LEMMA 1. '

i) P,T*P,=T*P,
i) QT*Q,=Q,T*
(iii)y P,R(2, T*)P,= R, T*)P, (1C=D)
(iv) QRX T%)@,=QR2 T*)  (1ED)
where D 18 the unbounded component of o(T*).
‘PROOF. (i) It is sufficient to prove (i) on K*. Let f be an arbi-

trary element of K*. Then, for every positive integers » and m>n
the following relation holds:

T*(f/\%fo)é T*(%f()) = nfogmfo ’
that is, ' ‘
{T*(f/\ nfo>} /\ mfo = T*(f/\ nfo) .

Therefore

BT (f N\ nf)y= \AT*(F \Nnfy) Amfo} = T*(f \nfy)

m

which implies

» 4) Since {fA nfo}‘ is increasing and dominated by feE*, fAnf, convefges strongly
to Pyf as n—oo in E*=C(S)*.
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P,T*P,f=T*P,f.
(ii) From (i), @ =I—P, and QP,=0, it follows that

QT*Qy = QT* — QT Py = Q,T* — Q,P,T*P, = Q,T* .
(iff) It is well known that R(2, T*)= 3 —
n—-0

the series converges in the sense of operator norm. Combining this
with (i), it is easy to see that

for |A|>1 where

i =] T~(<n ) ©0 PT nP 0 >I<
POR(Z’ ff)Po:Po(nzw‘F)Po 7:;—‘0 I nzo PR

=R, TP,  (for |A]>1).

Since {1;|2|>1}CD and R(2, T*) is holomorphic in D, it follows from
unicity theorem that

PR, T¥)P,=R(, T¥)P, (1=D).
(iv) The proof is the same as that of (ii) (use'(iii) instead of (i)).

By lemma 1 (i) we see that P E* is a subspace of E* invariant
under 7* However Q,E* is not necessarily invariant under 7T*%,
Therefore we shall consider the restriction of 7* to P, E* and that of
Q,T* to Q,E*. Let these restrictions be denoted by T'*, and T*, respec-
tively. Then it is clear that T* and T*, are elements of ¥(P,E*) and
(Q,E*) respectively. It is also clear that T'* = T'*, holds if and only if
Q, = 0%. After these preparations, we prove the following proposition ;

PROPOSITION 1. On I, the'po'éfnt spectrum of T* coincides with the
point spectrum of T*, i.e.,

P(T*)N\T' = P(T*)NT .
Further the proper space of T* for A& P (T*)N\I' cotncides with the proper

space of T*, for A.
PROOF. It is clear that a propsr vector of T* for A& P (T*) is

5) For example, let
E=C([0,1]),

1
f0<x)=j x(s)ds (x€E)
0
and
Tx=f(x) -1 = (x€E).
Then T is a positive irreducible compact operator in E and satisfies
r(T)=1, T1=1, T*f=f(1)f, and T*fo=fo .
Let s be an arbitrary element in [0, 1] and f; be the point measure at s. Then f; is
clearly fy-singular but T#f; is f,-absolutely continuous since T*f;=f;(1)f,. Thus, for

such an operator T in E, Q,E* is not invariant under T*.
6) Therefore, proposition 1, 2 and 3 mentioned later are trivial in the case of

Qo=0.



6 I. SAwASHIMA NSR. O0.U,, Vol. 17

also that of 7'* for A. Let f be a proper vector of T'* for A& P, (T*)N\I.
Then f£0 and T*f=2Af. Bince |f|=|T*f|<T*|f|” and %, is a non-sup-
port proper element of 7 for 1 it follows that

T*fl=1f1.

Since the proper space of 7* for 1 is one-dimensional by theorem 2
in [6], it follows that

lf] =afOEP0E*
which implies f& P, E*. Therefore f is a proper vector of 7%, for
A& P(T*)N\TI. This completes the proof of proposition 1.

For the proof of proposition 2 we need the following lemmas 2, 3
and 4.

LEMMA 2.

(1) If 2&p(T*) and R(Q2, T*)P,=P,R(2, T*)P, then 2&o(T*)N\o(T*,),

R, T*)P,=RQ2, T*)P, and R, T*)Q,=Q,E(4, T*)Q,.
Conversely, if A& o(T* )N\ o(T*,) then
AEo(T*),  RQ, T*)P,=P,R(2, T*)P,
and
R, T*)=R, T*)P,+ R4, T*)P,T*R(2, T*,)Q,+ R(%, T*,)Q, .
(i1) If 2&€o(T*) N {p(T*)\J o(T*,)} then
R4, T*)P,=P,R(1, T*)P, .
(i) If 2&€o(T*) N {o(T*)\Jo(T*,)} then
A& o(T*) N\ p(T™,) -
Av)  o(T*) N\ o(T*)=o(T*) N\ p(T*)=po(T*)) (\o(T*).
Proor. (i) Let 2&po(T*) and R(1, T*)P,=P,R(2, T*)P,. Then, it
is easy to see that
R(2, T*)P,(AI—-T*)P,=P,,
(AI—T*)R(2, T*)P,=P,
and that the restriction of R(2, T*) to PE* is an operator in (P,E*).
Therefore, it follows that

7) Let f=%f+i3f. Then, for every [0, 27] and A<B
(cos GRf+sin 43F) A<| (cos GRF+sin 65 f) (A4) |
=lf( A ]=sv(f, A =|fI(4).
It follows from the positivity and linearity of 7* that
{cos OR(T*f) +sin IF(T* )y (A) =T*|f|(4) (60, 2z), A=SB)
and hence

T*f(A) |=T* A .
Thus, | T*f(A) I=T*|f1(A) (As®B)

I T*f1=T*f].
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A€ p(T*) and R(A, T*)P,=R(2, T*)P,.

Since R(1, T*)P,=P,R(2, T*)P, implies Q,R(1, T*)=Q,R(, T*)Q,, it fol-
lows from lemma 1(ii) that

QOR(Zv T*)QO(ZI— T*Z)QO = QO
and

(AI—T*)QR(2, T*)Q=@Q, -
Therefore, it is easy to see that

1€ p(T*,) and R, T*)Q,=Q,RQ2, T*)Q, .
Conversely, let 2&Eo(T*) N\ p(T*,). Then there exist

R(a, T*)E &(P,E*)y and R(2, T*,)E(QE*).
Put

R,=R@, T*), R,=R(% T*) and R=R_P,+RPT*RQ,+R,Q,-
Then,
R &(E%),
(AI—T*)R=(A[—T*)R,P,+(A—T*)R,P,T*R,Q,+ (A— T*)R,Q,
=P, + P, T*R,Q,+ P,(AI— T*)R,Q,+Q,(AI— T*)R,Q,
=P,+P,T*R,Q,—P,T*R,Q,+Q,=1I
and '
R(I— T*)=R,P(A—T*)P,+ R,P(Al—T*)Q,+ R,P,T*R,Q,(A[— T*)
+R,Q,(AI—T*)
=P,—R,P,T*Q,+R,P,T*Q,+Q,=1.
From this it follows that |
' A&p(T*),
RQ, T*)=R(@, T*)P,+ R4, T*)P,T* R, T*)Q,+ R, T*)Q,
and
R@, T¥)P,=P,R(2, T*)P, .

(i) Let 2&o(TH)N(T*)Jo(T*,)). Suppose first 1&o(T*)N\o(T*)-
Then there exist

R, T*)&E*) and RQ, T*)EYP,E*).
Since QR(2, T*)P(AI—T*)P,=0 (by lemma 1(i)), it follows that
QR(2, T*)P,=Q,R(2, T*)Py(Al—T*)P,R(2, T*)P,=0.
Suppose next ZEp(v‘T*)[\p(T*z). Then
R, TS E*) and R, T*)E UQE*).
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Since QAI—T*)QR(, T*)P,=0 (by lemma 1 (ii)), it follows that
QR(A, T*)P,=R(, T*)Q,AI—T*)Q,R(1, T*)P,=0.
In any case it was proved that
QEQ, T*)P,=0
and hence
P,R(2, T*)P,=R(, T*)P,.

(iii) is clear by (i) and (ii).

(iv) is also clear by (i) and (iii).

LEMMA 3. If 2=2, (|14,|=1) i1s a pole of R(Z, T'*) then, for each
J=1, 2, either 2=2, 18 a pole of R(4, T*;) or 2,& p(T*,)®.

PROOF. Let 2,(]2,/=1) be a pole of R(4, T'*). Then there exist a
neighbourhood U(4,) and a positive integer %k such that, for 21& U(Q,)

o, |
AEo(T*) and RQ, T*) =) A(i—2,)" (1)

n=-k

‘where the series on the right hand side converges in the sense of
operator norm. From |[4,/=1 follows

U() © 1) =D
‘which, along with lemma 1 (iii), lemma 2 (i) and (1), imply
USRS a(TH) N a(TH)
R(, T*)P,=P,R(1, T)P,= 3 BAP(A—2) (A UR)SA,)
and ' o
R(2, T*,)Q,=Q,R(2, T*)Q():nionAnQo(ﬂ—*o)" 2 UR) S 1{4A)) -

Namely, R(Z, T*,) and R(4, T*,) have above expansions at 1, in &(P,E*)
and in ¥(Q,E*) respectively. Since PA,P, or QA,Q, may be 0 for all
negative integer =, either 1=2,1is a pole of R(2, T*,) or 3,&p(T*,)(i=1, 2).

LEMMA 4.
1) r(T*,) =1
(ii) r(T*,)<<1.

PROOF. By lemma 2 (i) it is evident that

1> DT o(T*) N\ o(T*,)
whence,
r(T*)<1 7=1,2).

8) This result will be improved in proposition 2 (ii) and Lemma 4 (ii).
9) XOY={1;1€X and 2&Y}.
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On the other hand, by proposition 1, »(T*)>1 is clear. Thus
r(T*)=1.

To prove (ii), suppose the contrary, i.e., »(T*,)=1. It follows from
the positivity of T*, that 1&o(T*,)'”. From this, lemma 3 and the fact
that 2=1 is a pole of R(2, T*), it follows that 2=1 is a pole of R(1, T*,).
Therefore there exists a positive proper functional f in QE*'Y, i.e.,

fEQE*, f=0, f+0 and T*f=f.
From T*f=Q,T*f=T*,f=f and the fact that xz, is a non-support proper
element of 7T for 1, it follows that

T*f=f.
From this and proposition 1 follows f& P E* which contradicts f& Q,E*
and f==0. Therefore
r(T*,) <1
which completes the proof of lemma 4.

In the following we shall denote »(T'%,) by 7,
PROPOSITION 2.
(1) o(T*)) coincides, in {A; || >nr}, with o(T*). In particular,

o(T*)NT =o(T*)NT .

(ii) 2=2, (12,]=1) is @ pole of R(2, T*,) if and only +f it is a pole of
R(2, T™).

PrROOF. (i) By lemma 4 (ii), it is clear that

o(T*) D{A; [A>r} DI
From this and lemma 2 (iv) follows (i).

(ii) Let 2=2, be a pole of R(1, T'*) and |4,]=1. Then it is a pole
of R(2, T*) or A,&p(T*,) by lemma 3. Since A,& o(T*) it follows from
(i) that 23,&a(T*,). Therefore, 2=21, is a pole of R(Z, T*).

Conversely, let 2=, be a pole R(4, T*)) and [1,|=1. Then 1=2,
is an isolated singular point of E(2, 7%) and |2,/>7, by lemma 4 (ii).
Hence there exists a neighbourhood U(4,) such that

UR) {4} C {25 [ =>r )N\ e(TH) .
From the latter part of lemma 2 (i), it follows that
R, T*)=R(4, T*)Py+ R4, T*))P,T*R(A, T*)Q,+R(2, T*,)Q,

for 2& U(2,)&{2,}. Since ,&o(T*) (by (i)) and R(1, T*,) is holomorphic
in U@,), R, T*) and R(2, T*) have a pole with the same order at

10) This is an important and well known property of positive operators in general
ordered Banach spaces [17; Th. 1, [4]; Th. 4, [8]; Prop. 1.
11) The existence of such f is assured by, for example, theorem 5 in S. Karlin’s

paper [4].
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2=2,. Thus, the proof of this proposition is completed.

The following proposition will be needed later for the proof of
theorem 2 in § 4. A

PROPOSITION 3. Let 2 be tn {2; |2|>r}. If the range of AI—T*, is
dense in P E* then the range of AI—T* is also demse in KE*.

PROOF. Let (AI—T*,)P,E* be dense in P, E* and f be an arbltrary
positive functional in E* and ¢ be an arbitrary positive number. By
|| >, 4 belongs to o(T'*,) and hence R(1, T*,)Q,f is an element of Q,E*.
Since (AI—T*)P,E* is dense in P,E* and P,f+P,T*R(X, T*,)Q,f&P,E*
it follows that there exists a functional A& P, E* such that

|| (A~ T*)h—{Pof+ P,T*R(2, T*)Q,f} <. (1)

It is easy to see that, by a simple calculation, the functional on the
left hand side of (1) is equal to the functional

(AL—=T*){h+ R(4, T*)Q S} —f .
Therefore, there exists a functional h+ R(1, T*,)Q,f& E* such that
(AL —T*){h+ R, T*)Qf} —fll<e.

Consequently, (AI—-T*)E* is dense in E* which completes the proof of
proposition 3.

We shall next prove that 7T*, is a positive irreducible operator
with the resolvent having a pole at A=1. To do this, we require the
following lemma.

LEMMA 5. f, is a non-support element of P,K*.

PROOF. Since P E* is the space of all fi-absoluyely continuous
Radon measures on S, it follows from Radon-Nikodym’s theorem that
P,E* is isomorphic to the space L(S, f,) as a Banach lattice and f, cor-
responds to 1 in LS, f,). Since 1 is a non-support element of the
positive cone, f; is also a non-support element of P K*.

PROPOSITION 4. T*, is a positive irreducible operator in P,E* and
2=1 18 a pole of R(A, T*,).

PROOF. 2=1 is clearly a pole of R(, T*) by the assumption for
T. It follows from proposition 2(ii) that 2=1 is also a pole of R(2,T*)).
Since the proper space for 1 of T* is a one-dimensional subspace con-
taining f,, the proper space for 1 of 7'* is also a one-dimensional sub-
space containing f, & P E*. Further, f, is axnon-support element of P, K*
by lemma 5. By theorem 1 in [6], the proper space for 1 of (7*)*'is
easily seen to be also one-dimensional in (P,E*)*. Since x, is a non-
support element of K with Tx =z, w, is strlctly positive as a linear
functional defined on P E*. Therefore

(1) 2=1 is a pole of R(2, T*),
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(2) the proper space of T* for 1 is a one-dimensional subspace
passing through the non-support element f, of P, K*,

(3) the proper space of (T*)* for 1 is a one-dimensional subspace
passing through the strictly positive functional z, & (P E*)*.
Thus, by theorem 2 in [6] and above (1), (2) and (3), 7%, is a positive
irreducible operator in P E* which completes the proof of this pro-
position.

COROLLARY 1. The following statements are equivalent to each other.

i) @,=0

(ii) f, ©s @ non-support element of K*.

(iii) T* s a positive irreducible operator.

PrROOF. If Q,=0 then T*=T%*, which implies (iii) by proposition 4.
If (iii) holds true then (ii) is clear by theorem 2 in [6]. If (ii) holds
- true then ¢(f,)>>0 for every non-zero ¢ &= K**. Let @, #0. Then there
exists ¢, such that

VoS (QE™)*, ¢,#+0 and ¢,=0.
() =v(QS)  (fEEY),

@, is an element of K** and ¢,(f,)=0 which is a contradiction. There-
fore (ii) implies (i).

COROLLARY 2. If f, s a mnon-support element of K* them S is at
most countable.

PROOF. By corollary 1, Q,E*={0} holds. Hence every point meas-
ure f, at s& S is f;-absolutely continuous. Therefore, it follows that

SH{sh>0  for any s&S.
Since f,(S)=v(f,, S)=If,||<<co, S must be at most countable.

Defining

Now, we shall show the following proposition in the case of L,.

PROPOSITION 5. Let U be a positive irreducible operator im L, whose
resolvent has a pole at A=r(U)=1. Then any proper value of U on the
spectral circle 1s a simple pole of R(Z, U).

As the method used by F. Niiro to prove the similar result in
L, (1<<p<<eo) [6]"™ may be applied also to this case, the proof will be
omitted!®.

COROLLARY 3. Any proper value of T*, on I' is a pole of R(A, T*)).
This is clear by proposition 4, 5 and the fact that P, E* is isomor-
phic to L,(S, f,) as a Banach lattice.

COROLLARY 4. The point spectrum of T*, on I' is contained in that
of T on I, i.e., '
12) See corolla;Z theorem 5 and the begining part of §4 in [5].

13) Proposition 5 may be proved also by the method used to prove theorem 3.3
and 3.4 in [9]. “
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PT*)\I' CP(T)NT .

PROOF. Let 2 be in P(T*)MN\I'. Then, by corollary 3, 2is a pole
of R(2, T*,) and hence, by proposition 2 (ii), 2 is also a pole of R(1, T*).
Therefore 21 is a pole of R(2, T'). This implies that 2 is a proper value
of Ton I

As we mentioned at the begining of this section the following
theorem 1 is a consequence of proposition 1, corollary 4 and the well
known fact R (T)c P(T*).

THEOREM 1. Let T be a positive irreducible operator in E and A=
r(T)=1 be a pole of its resolvent. Then the residual spectrum of T 1is
void on I

§4. The voidness of the continuous spectrum of 7 on I'. Our
purpose in this section is to prove that the continuous spectrum of T
is void on I We shall sketch the outline of the proof.

‘First, by using the fact that {x,} converges weakly to 0 if and
only if {|«,|} converges weakly to 0, we shall prove

1) C(TIYNT c{P(T*)JRL(T*)}\I"  (proposition 6).

Next, we shall derive

(2) R(T*)N\I=¢ (proposition 7)

from positive irreducibility of (7*))* (lemma 7) and theorem A by H.H.
Schaefer mentioned in § 1. Combining (1), (2) and corollary 4 we have

CAT)N\T C P(T*)N\I'c P(T)N\T

from which follows
Ca(T)mF = ¢.

Now we shall go in the detailed proof with following lemma 6:
LEMMA 6. Let x,&F (n=1, 2, --.) and a complex number A (|Aj=1)
satisfy thz following conditions ;
lim || Az, — T%,]|=0 and lla,||=1.

n—+00

Then
lim f,(12,)) =1.

n—00

In this proof, we shall make use of an argument analogous to that
used in the proof of theorem 2 by F. Niiro [5].
PrROOF. Let P be the projection to the propser space of T for 1
and @ be I—P. Then,
PI=TP=P, QT=TQ and Pzr=f(x)x,.

Put y,=1x,—Tx,. Then
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lim{|y,|[=0 and Tz, |=2,]—¥,l-

n—00

Since (T—1Q=T-—1 it follows that

From this and the positivity of R(¢, T') for £>>1 follows that for every
&>1

which implies

Plz,|+(E—1ER(E, TYQlz, |+ R(E, T) Y, =2,1 =0.
Then

Sollz, )+ (E=DINRE, T)leall Qe [ +1TRE, THYllI =2,]| =1
where || |lgz means the operator norm in L(QFE). Since R(¢, T) is a

bounded operator in E for arbitrary fixed £>1, it follows that
| lim £,(| 2, )+ (E— DI R(E, T) ol QI =1 .

n-»o0

Since £ may be made arbitrarily close to 1 and [|R(¢, T)llez is
uniformly bounded in a neighbourhood of 19, it follows that

im fi(le,) =1 .

MO0

PROPOSITION 6.
Co(TYNT CH{P(T*) U R(T* )} T

PrROOF. Let 2 be in C(T)/\I'. Then, there exists a sequence {x,}
in K such that

limHan—Tan:O and |[|lz,||=1. (1)

n—00

Hence, from lemma 6, it follows that

im f(l,) =1. (2)

From o(T)=0(T*) and proposition 2 (i) follows
A P(T* )\ JRLAT*)\JC(TH*)}NT .
Let 2& C(T*)\I'. Then (AI—T*)P,E* is dense in P, E* and therefore
(AI—T*)E* is also dense in E* by proposition 3. Since
A {AI=T*)f Y (@,) =F(AL—T)x,} ,
it follows from (1) that

14) By corollary 1 in [6] R(2, T) has a simple pole at 2=1, and hence the leading
coefficient of its expansion is equal to P. Therefore the restriction of R(4, T) to QF is
holomorphic in a neighbourhood of 1.
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lm {(A[—T*)f}(x,)=0 for any f in E*.
Therefore {x,} converges weakly to 0 as m—co and hence {|z,|} also
converges weakly to 0 by the well known property of E'. This con-
tradicts (2). Thus, 2 C,(T*,) and hence

ASAP(T*)\J RAT* 3 NT

which completes the proof of proposition 6.

LEMMA 7. (T*)* is a positive irreducible operator in (P,E*)* and
A=1 1s a pole of R(, (T*)*).

PROOF. It is clear by proposition 4 that 1=1 is a pole of R(Z, (T*,)*)
and the proper space of (7T*)* for 1 is a one-dimensional subspace
passing through %, considered as an element of (P E*)*. It is well
known that (PyE*)* is isomorphic to L.(S,f,) as an ordered Banach
space and x,& (P, E*)* corresponds to ,& E C L.(S, f,). Since z, is an
interior point of K, x,& L.(S, f,) is also an interior point of the posi-
tive cone of L.(S, f;). Therefore xz,= (P, E*)* is a non-support point of
(P,K*)*. By theorem 1 in [6], it is easy to see that the proper space
of (T*)** for 1 is one-dimensional in (PE*)**. Since f, is a non-
support element of P K*, f,& (P;E*)** 1is strictly positive. Thus, by
theorem 2 in [6], (T*,)* is a positive irreducible operator.

PROPOSITION 7. The residual spectrum of T*, on I' is void.

PROOF. To prove this proposition suppose the contrary, i.e.,
2L, ER(T*)N\T. Then 2=2, is a proper value of (T*)* on I'. Since
(P,E*)* is an abstract (M)-space with the order unit and therefore can
be considered as C(S,) for a certain S, [3], it follows from lemma 7
and theorem A that =2, is a simple pole of R(1, (T*)*). Therefore
A=2, is a simple pole of R(4, T*)) and hence it is a proper value of T*,.
This yields a contradiction

WER(T*)NP,(T*)=4¢.
Thus, R(T*)N\I" is void which completes the proof of this proposition.

As we have mentioned in the begining of this section, combining
proposition 6, 7 and corollary 4 we have :

THEOREM 2. Let T be a positive vrreducible operator in E and 2=r(T)
=1 be a pole of its resolvent. Then the continuous spectrum on the spec-
tral circle I' 1s void.

Finally, combining theorem 1, 2 and theorem A, we have
THEOREM 3. Let T satisfy the same condition as theorem 2. Then
the spectrum of T on I' consists only of simple poles of its resolvent and

15) See, for example, [2].
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corncides with the set of all k-th roots of wwity, k=>1.
REMARK. Theorem 3 answers affirmatively to the problem (b) of
H.H. Schaefer [8] in the case of irreducible operators in C(S).
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