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The purpose of this paper is to show a method of constructing
a Jacobian variety isogenous to a product of two non-isogenous elliptic
curves. We first treat in §1 the classical case making use of the theory
of complex tori; a normal form of Riemann matrix will be given for
each Jacobian variety obtained. In §2 and the subsequent sections
we treat the abstract case, where we assume that the rings of endo--
morphisms of the two elliptic curves are both isomorphic to the ring
Z of rational integers. Any Jacobian variety of such type can be.
obtained by our method. Also we can determine the structure of the.
rings of endomorphisms of Jacobian varieties of such type; and prove,
as a simple application, that the ring of endomorphisms of the Jacobian.
variety of a generic curve of genus 2 is isomorphic to Z.

§1. Let A be an abelian variety isogenbu‘s to a product of two.
mutually non-isogenous elliptic curves £ and E’. We consider in this.
section the case in which the universal domain of our geometry is the.
field C of complex numbers. Then E (resp. £’) is isomorphic to a.
complex torus of dimension 1 with fundamental perieds {w,, w,} (resp.
{wi, wj}), and A is isomorphic to a complex torus C?/D of dimension 2
with the following fundamental periods matrix (Riemann matrix)

_fw, w, 0 0
=10 0 w,  w, r

where T is a non-singular 4x4 matrix with entries in Z. First we.
shall reduce £ into a simpler form. Since T may be replaced by TU.,
where U is any unimodular matrix with entries in Z, we can assume
that 7' is of the form

A B
(1) T-{5 ¢

T may again be multiplied on the right side by any unimodular

matrix U=([0]1 5) so that A-1B is replaced by U-N(VU;'4+A-B)U,.
2

(A, B, C are 2x2 matrices).
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Put A‘le%(g 3), (a,b,¢,d, n)=1. There is an integer ¢ such that

(a+nt, b,c, dy=1. We take V= (% 8) U, We can then take unimodular
matrices U, U, such that U;(VU;'+A~B)U, is of the form %(’5 g)
Hence we can assume without loss of generality that the minor ma-

‘trices A, B appearing in (1) have the relation

k- 0
A'B=| " 1) n>0, n,keZ.

O —

n

Then replacing E (resp. E') by E, (resp. E)) with fundamental
‘periods (w,, w)A=(+«, ar) (resp. (w}, wy)C=(=*4, 7)), we. know that
‘A is isomorphic to a complex torus C?/D with fundamental periods

2 = g’ %T ff ;,) In the rest of this section we identify A (resp.

E\ < E) with the complex torus C?/D, (resp. C?/D,) with fundamental
(1) 6 g (T),)) Put 2,=2,7,. Since pe-
riods of E,x K/ contain those of A, there is a natural isogeny g of A
on K, x E] such that v(g)=|det T, |=n

Now suppose A is a Jacobian variety of some curve. Let 6 be a
théta divisor on A. There is an isogeny 2 of E, X E, on A such that
Aop=mn%,, §, being the identity map of A ; therefore, if we put Y=21"%(6),
then g (Y)=n'6¢ modulo algebraic equivalence. We know that any
divisor on E, x E; is algebraically equivalent to a linear combination
(with integral cofficients) of two elliptic curves E,x0 and 0x E] (Weil
[3], Th. 22). Hence there are two integers x and y such that Y=
(B, x0)+y(0x E)). We can write the relation®?® ¢, -ip="popyop by a
matrix equality

n E(6) :ch(

periods matrix £2, (resp. QO:(

vl O)Tl, where - I:(O —1).

0 2af 1 0
Since E(f) is a matrix with entries in Z and det E(f)=1, we have
n=n'2?y*; ny=0, ky+a=0 (mod n').

‘Whence we have z=y=mn* (Notice: since # is positive, >0 and y=>0)
and k+1=0 (mod n).

We have thus seen that if A=C?/D, is a Jacobian variety of some
curve, then k+1=0 (modn). Conversely, we can see from the above

1) =+ signs are determined so as to make Imz>0 and Im z/>0.
~2) Let A be an abelian variety and X be a divisor on A; we take the dual variety
A of A. For a point # on A, we denote by # the point on A representing the linear
class of X, —X; then the map: u—4 is a homomorphism ¢y of A into A. _
3) ‘p means the transpose of .

AP mrewe A -

-
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calculations that if k=-—1 (mod =) (in £,), then there is a positive
divisor X on A such that (X, X)=2 (cf. Weil [5]).?

' Next, it is easy to see that there are only two abelian sub-.
varieties on A=C?/D,, i.e. the complex torus with fundamental periods

{(g), (%T } and [(n/(g k))’ (7?#)} and if n>1 they intersect at least.
at two points, e. g. the origin and the point represented by ( S,) (E(—OT )
This implies that if n>1, A4 is not a product of two elliptic curves.
Therefore, by virtue of Weil [4] Satz 2, we can conclude that A=
C?|D, can be a Jacobian variety if and only if »>1 and k=—1 (mod »).”>
In case when k=—1 (mod n), we apply a coordinate transformation

u’:-}b-(u—{—v), v'=v, and obtain a mormal form of Riemann matrix of"

1
1 (ot ’
0 e (v+7) = )
0 1 ! nt'/

’

A=C*/D,: (

§ 2. We now proceed to the case where the characteristic p of our:
universal domain is arbitrary ; the method developed in the rest of this.
paper is purely algebraic.

We consider an abelian variety A of dimension 2; when A is iso-
genous to a product of two non-isogenous elliptic curves with rings
of endomorphisms isomorphic to Z, we shall say that A is of type (N).
If A is of type (IN), then there are just two abelian subvarieties of
dimension 1 on A, which are not isogenous to each other (cf. Weil [3],
Prop. 26); we denote them by E and E’. Let u and v be independent
generic points of E and E’ respectively over an algebraically closed
field k. (From now on we keep this meaning for k) Then we can
define an isogeny A: Ex E'>(u, v)»u-+v=A. The isogeny 2 induces
isomorphisms on E and E’ respectively. This impies in particular that
the subgroup in E (resp. E’) obtained by projection of elements in the
kernel Ker (1) of 2 to E (resp. E’) is isomorphic to Ker (2). Therefore
the system of invariants of the abelian group Ker (1) must be of the
type (n, mn), where n>1, m=>1 are rational integers; moreover if the
characteristic p is positive, then p does not divide » (notice that the
group of points on E whose orders are p is a cyclic group of order p).

The separable closure K of k(u-+v) in k(u, v) is an abelian function
field (cf. Serre [2]); namely there exists an abelian variety B, defined
over k such that the function field of B over k is isomorphic to K.
By inclusion relations between function fields we can define naturally

4) In what follows we denote by (X, Y) the interesection number of divisors X
and Y.

5) It is easy to see that if n=1, then there is no divisor X with (X, X)=2, X>0,
except E;x04+0xEf, so that A can not be a Jacobian variety.
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‘2 purely inseparable isogeny 4,: EXE'—B and a separable isogeny
2, : B—A, such that 1=2,-4,, We put v(1,)=p°. In what follows we shall
say that such an A is of type [»% (n, mn)]. (If the characteristic p=0,
we put p°=1)

Here we need some definitions. Let 7; A—B be an isogeny of an
abelian variety A onto another abelian variety B (the dimension of A
being arbitrary). If there exists an isogeny p: B—A such that por
=md, where m is an integer and &, the identity map of A, then we
shall say that r divides m or m is a multiple of r. The smallest posi-
tive integer m which is divisible by r will be called the least integral
-multiple of r; we shall denote it by m,(r). It is clear that any integral
multiple of 7 is divisible by m(r).

We now return to our case of A1: ExE—A, A being of type
[p° (m, mn)]. We can state

LEMMA 1. The least integral multiple my(2) of 2 is the least common
-multiple {p°, mn} of p* and mn.

PROOF. We put N={p?, mn}, N=p°N,, (N, p)=1. Let u, v be inde-
pendent generic points of E, B over k; and §, & the kernel of 2,
Nbo,,» respectively. Then k(A(u, v)) is the fixed subfield of k(2 (u, v))
under Galois maps induced by O, and k(Nu, Nv) that of k(u?’, v**) by &.
‘Since k(A,(w, v)) Dk, v*°) and HC®, we have k(A(u, v))Dk(Nu, Nv).
This impies that N is a multiple of 2. On the other hand m, (1) is a
‘multiple of 2, : Ex E'—B. Put m (2)=p'N,, (N, py=1. Since 2, is purely
‘inseparable, we have k(2,(u, v))Dk(u*’, v*"). We can readily see that u
‘is of degree p°® over k(4,(u, v)) and of degree p* over k(u*’, v**). There-
fore we have p*|m,(2). Next noticing that the kernel of m (4)dz, must
contain a cyclic group of order mn, we have mmn|my ). This settles
-our assertion.

Let X be any divisor on A. Since Ex0 and 0x E’ make a basis
.of the group of divisors on E X E' modulo algebraic equivalence =,
there are rational integers a, b such that

«(2) A Y X)=a(Ex0)+b(0x E).
.As an easy consequence of Lemma 1, we have

LEMMA 2. a=b=0 (mod {p°, mn})
PROOF. The relation (2) means that the map ¢;-1x 1S repre-

sented by the matrix (g 2) (namely is given by the correspondence :

Ex E'>(u, v)—>(au, bv)e EX E'). On the other hand ¢;-1x="4¢x4; hence
k(u-+v)Dk(au, bv), Noticing that if au belongs to the field k(u-+v), then
v also does, we see that a and b are multiples of 1; hence a=b=0
{mod {p*, mn}).



December On Certain Type of Jacobian Varieties of Dimension 2 53

§3. Since (A7Y(X), 27Y(X))=v(A)(X, X), it follows from the relation
(2) that v(2)(X, X)/2=ab; namely, if we put m=m/p’, (m/, p)=1, then

(4) (X, X)/2=0 (mod m/p’~¢) (the case; e<f)
(4 (X, X)/2=0 (mod m'p*7) (the cass; e>>f).

These relations (4), (4/) imply that if- m/>>1 or e=f, then, for any
divisor X on A4, (X, X)/2+1. Since a théta divisor on a Jacobian variety
of dimension 2 has the self-intersection number 2, we see that A can
not be a Jacobian variety, unless A is of type [»% (n, p*n)].

§4. We shall now determine the structure of the ring End(A4) of
endomorphisms of A. We suppose A is of type [»% (n, mn)]. Let a be
any element of End (4). Notations being the same as in the preceding
section, we know that

(3) a’l(‘u+v):au+bv ,

where a, b are rational integers; we also sse that, for given «, rational
integers a and b are uniquely determined. Dznoting the identity map
- of A by &, we have (a—bd,)(w+v)=(a—b)u. This implies that a—b is
a multiple of 1; Ex E'—A (see the proof of Lemma 2); therefore by
Lemma 1 we have a=b (mod {p°, mn}). Conversely it is easy to see
that if @, b are two integers such that a=b (mod {p°, mn}), then the
correspondence « defined by (3) gives an endomorphism of A. We can
thus state:

End (4) is isomorhpic to the ring of matrices (‘3 0)’
=b (mod {p°, mn}).

§5. We shall now show that, for arbitrarily given integers ¢=>0,
m=1, n=1, (n, p)=1, there exist abelian varieties of type [p°, (n, mn)].
It is easy to see that there are abelian varieties of type [1, (n, mn)].
To treat the case when ¢>0, we need

LEMMA 3. Let A be an abelian variety of type [1, (1, p°)]. Then the
dual variety (Picard variety) A of A is of type [»% (1, 1)].

PROOF. We denote by E, E’ the two elliptic curves on A and
by 2 the isogeny of EXE' on A defined by 2 (u, v)=u+v, ucHE, veFE'.
By definition we know that Ker (1) is a cyclic group of order »(2)=p°;
if Ker (1) is generated by a point (z,2') on EXE’, then the point 2
(resp. ') on E (resp. E') is of order p°. We put E =FE/{z} (resp. E=
E'[{z'}) where {2} (resp. {}) is the cyclic group generated by z (resp. z)
and denote by u, (resp.v,) the canonical image of the point u (resp. v).
‘Then there exists an isogeny p¢ of A on E x E; such that pg (u-+v)
=(u, v,). We put X=FE x0+0xE|; then we can see that p '(X)=E-+ E
(cf. Weil [3], Prop. 33) and also that A7 (g Y(X))= () (X)=p*(Ex0+0
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x E"). Thus we have the following commutative diagram :

A
ExE —> A — EXE,

gol"lp"l (X) l
. ‘2

ExE «— A «— ExXE|

i @10z l(?:identity
¥

[4

here. ¢2~1ﬂ~1(X):(18e 189) Put ¢,a@mu+v)=u*+o* Then k(u*)ck(u,)

and k(v*)Ck(v,). Suppose k(u*) is mnot equal to k(u,). Then k(u*) is
isomorphic to the function field of an elliptic curve (say) E*; and we
have two isogenies r,: E, X E/=(u, v,)—u* v)eE*x E| and r,: E*XE]
S(u*, v,)—u*+v*cA, such that ‘gm=r,ox,. This implies that g is the
composition of two isogenies ‘k, and ‘rk : p='k 'k, ‘r,: A—E*XE,
g, E*X E/—E/ x E,. If we put ‘s, (u-+v)=(uf, v,), then we have k(u,y
Ch(ud)Cku)Nk(u+v) and k(u,)=kuf) (Notice that v(k)=vr(x,)>1).
Noticing that k(u)/k(u,) is a separable cyclic extention of degree p°, we
know that k(u)/k(u)) is a separable cyclic extention of degree p', t<Ze;
therefore k(uf)Dk(pu). Consequently we have k(u-+v)Dk(pw); this
means that the least integral multiple of 2 divides p*. Since t<Ce, this
is a contradiction. Hence we have k(u*)=k(u,) and similarly k(v*)=k(v,).
Since ‘2u and (consequently) 'z are purely inseparable (cf. Serre [2])
and v(yg)=7p° the proof of our Lemma is completed.

Let now A, be an abelian variety of type [»° (1,1)]; we denote
by E and E’ the two elliptic curves on A, and by 2, the isogeny of
ExFE on A, dnfined by the correspondence 2,(u, v)=u-+v(uck, vekl').
We can take a subgroup $ of ExE', with invariants (n, mn), such that
EX0ONH=0xENH={0, 0)}. We put A4,(D)=9,; then since 2, is purely
inseparable, also END,=FENH,={0}. We consider A=A /H, and the
canonical isogeny 1,: A,—A; namely 2, is separable and its kermel is
;. Put 2=1,4,. We shall show that 2 induces isomorphisms on E and
on E'. We denote by E, (resp. E|) the image variety of E (resp. E')
by 2,, and by u, (resp. v,) the image point of u (resp. v). On accounts
of our construction of the group %, we see that 2, induces purely
inseparable homomorphisms on E and on E’; namely k(u) (resp. k(v))
is a purely inseparable extension of k(u,) (resp. k(v,)). This implies that
k(u, v)Dk(u+v); since k(u-+v)(w)=k(u, v), we see that k(u, v)="k(u, v)
and consequently k(u)=Fk(u); similarly k(v,)=Fk(v). Our assertion is
thereby proved. We thus have seen that A is of type [p° (n, nm)].

§ 6. In this section we shall prove a preliminary result. Let 2
be an isogeny of an abelian variety 4 onto an abelian variety B; let
my(4) be the least integral multiple of 2. If v(2)=m, (1), then we shall
say that 2 is eyclic. It is easy to see that when 1 is separable, the
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kernel of 2 is a cyclic group if and only if 2 is cyclic in our sense.
LEMMA 4. If 2: A—B is cyclic, then ‘2: B—A is also cyclic.
PROOF. By definition there exists an isogeny p: B—A such that
ur=m,(2)0,. We can readily see that Ap=my(1)0s. This implies that
tutd=my ()05 and therefore m,(2) is a multiple of ‘4. Since the dual
variety of A is isomorphic to A and the same for B, it follows that

m,(2) is the least integral multiple of tA. Noticing that v((1)=v(1), we
see that ‘4 is also cyclic. : :

§7. We shall now show that, for arbitrarily given two integers
e=0 and n>0, (n, p)=1, np°>1, we can find out Jacobian varieties
among abelian varieties of type [p°, (n, p°n)]. :

We take an A, of type [»% (1, n)], where (n, p)=1; let E and E'
be elliptic curves on A, and 2, be the isogeny of ExE’ on A, defined
by A(u, v)=u-+v, u€k, veE'. By Lemma 1 the least integral multiple
my(2,) of 2, is p°n; therefore 2, is cyclic. Hence by Lemma 4, ‘4, is
cyclic. It is known that ‘i, is separable (cf. Serre [2]); therefore
Ker (‘1)) is a cyclic group of order p*n. We consider the divisor E'+4 E'
~on A,. Then we know that ;' (E+E=pn(Ex0+0x E'); this implies.
that the following diagram :

A
ExE A,
" wa) | e
( 0 pn t,ll A§0E+E’
Ex E « A

is commutative. By elementary group-theoretic considerations it fol-
lows that the system of invariants of the abelian group Ker ¢z, is
(n, p°n).

We can see that the subgroup 3,=ENE" of Ker ¢z, is cyclic and
of order m; consequently there exists a cyclic group 3, of order p‘n
such that Ker ¢, »=258,+3, (direct sum). We consider A=A, /3, and
the - canonical isogeny 1, of A, on A. It is clear that 4 is of type
[p% (n, p°n)]. According to [Nishi [1], Lemma 1], there exists a positive
divisor 'Y on A, such that Y~E+FE and Y,=Y for all points ¢ in B,.
Then by virtue of (Weil [3], Prop. 33), there exists a positive divisor
6 on A such that Y=2;(6). By conputing self-intersection numbers
we see that (0, §)=2. Since A is of type [p° (n, pn)], A is not iso-
morphic to a product of two elliptic curves, provided np®1. There-
fore, by virtue of (Weil [4], Satz 2), A must be a Jacobian variety, 6
being a théta divisor on it.

Now we shall consider the converse. Suppose that J is a Jacobian
variety of type (INV); we have seen in preceding § 3 that J must be of
type [2% (n, p*n)]. Let E and E' be two elliptic curves on J; let 4:
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Ex E'—J be the isogeny defined by A(u,v)=u-+v, u€E, veE'. There
exists an abelian variety A, of type [p% (1, n)] and isogenies 2, : Ex E’
—A, and 2,: A—J such that 2=2,4,. It follows from Lemma 2 that
elliptic curves on A4,, which we denote by the same notations E, E',
make a basis of the group of divisors modulo algebraic equivalence.
Consequently there are positive integers a and b such that 2;'(6)=aFE
+bE’, where ( is a théta divisor on J. By computing self-intersection
numbers, we easily see that a=b=1; namely A;'(0)=E -+ E’. This means
that Ker ¢z, must contain Ker (4,). On the other hand the isogeny 4
must induce identity maps on E and on E’; therefore ENE'/N\ Ker (1,)
={0}. Taking orders of these groups into account we see Ker ¢z,
=(ENE")+Ker (1,) (direct sum).

We thus have seen that any Jacobian variety of type (IN) can be
obtained by the method described above.

REMARK 1. Let J be a Jacobian variety of type (IN). Notations
being the same as above, we have observed that A;'(0)=E+E’; and
this is true for every positive divisor X on J with self-intersection
number 2; hence 4;'(0)=1;(X) and consequently =X for such divisor
X. This implies that the structure of J as a Jacobian variety of some
curve of genus 2 1s uniquely determined. In other words a curve having
J as its Jacobian variely is uniquely determined up to isomorphism.

REMARK 2. Suppose two non-isogenous elliptic curves E and E'
are given. We construct a Jacobian variety J (resp. J') of type (V)
starting from EXE’; let 1 (resp. ¥) be the isogeny of ExE' on J
(resp. J”) described in § 2. Then it can be proved that J and J' are
isomorphic to each other if and only if 2 and 2 have the same kernel.

Whence we see that for given E X E’ and p°n, (n, p)=1, there are

p(p*)n’® l[’I (1— ;2 ) mutually non-isomorphic Jacobian varieties of
qln

g: a prime

type [p% (n, np®)], where ¢ is Euler’s function and when p=0, we put
pe=1.

§ 8. We can now show that the ring End (J(C)) of endomorphisms
of the Jacobian variety of a generic curve C of genus 2 is isomorphic
to the ring Z of rational integers. We have seen in §3 and in § 6 that
for any positive integer » there exists a curve C, of genus 2 such that
End (J(C))) of the Jacobian variety of C, is isomorphic to the ring

Rn:Rn:Hg g) . 4,07, a=b (mod n)}. We know that there is an

injection map ¢ of End (J(C)) into End (J(C,)) induced by a specialization
of C to C,. BSince the identity element 6 of End (J(C)) is the linear
extension of the diagonal correspondence of C, the identity element of
End (J(C)) is mapped on that of End (J(C))) by ¢« Suppose End (J(C)) is
not isomorphic to Z. Then there is an element a=End (J(C)) which is
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not an integral multiple of the identity element 8. Take a curve C,

mentioned above; put c(a):(g %)EEnd(J(Cl)). Then by our assump-

tion, we have a+#b. Put a—b=c=Z; a—bd=r<End (J(C)). Then reZz,
r’=cr, ¢c#+0. Now, we know that, for any positive integer m, there
is an injection map ¢, of End (J(C)) into the ring Rm={ (g 2); 0, be”,
x 0
0 vy
sequently £=0, y=c; or x=c¢, y=0. Therefore we have ¢= +(x—y)=0
(mod m). Since m can be arbitrarily large, this is a contradiction.

a=b (mod m);. Put z,,%(r):( ) We have x+y, x*=cx, y*=cy; con-
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