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I. Introduction

One of the most spectacular scene ever we had seen may be a rising-
fire ball and mushroom cloud caused by an atomic explosion. We have
seen in many photographs and movies that an air mass heated by the
energy released from the nuclear reaction rises quickly and forms a.
tremendous volume of mushroom cloud and slowly diffuses away. The.
purpose of this work is to investigate the physical background of this.
kind of phenomena, that is, to study the free convection flow caused
by an instantaneous point source of heat in a uniform medium. Of
course, this is one of the most important problem in industry and
meteorology also.

The flow fields caused by thermal buoyancy effect have been studied
over centuries and the basic equations governing them and the solu-
tions for various typical cases have been described in numerous text.
books?®®, The early investigations were concerned mainly with
steady free convection from a heated body with simple shape, e. g,
a point source, a flat plate and a circular cylinder etc. and tried to.
find out similar solutions using the boundary layer approximation.
On the other hand, investigators of meteorology have been interested
in the unsteady convective motion of air masses in connection with
the developments of cumulus clouds. A great number of reports of
observations and calculations have been published on the subject.
Among these, the following are noteworthy concerning the present:
study. Woodward carried out observations riding on a glider in
‘thermals’ (buoyant air masses) in the atmosphere and investigated
the nature of vertical motions of air”. Scorer derived formulae for
the width of the thermals and the distance travelled by them on the.
dimensional analysis, and he made experiments in which the buoyant
air mass was simulated by a liquid mass colored with dye and falling
in water at rest”. Morton, Taylor and Turner presented the theories.
of convection from maintained and instantaneous sources®. They
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treated a buoyant mass as a whole instead of investigating its internal
structure, and discussed the final height of bouynat mass as function
of buoyancy and density gradient. They carried out laboratory ex-
periments by releasing a light fluid in a tank filled with heavier
fluid, and observed the motion of smokes and cloud and in the atmo-
sphere compared with their predictions. Further, Turner investigated
the convective motion of buoyant liquid comparing with that of vortex
rings and vortex pairs™®. Morton calculated the flow and the tem-
perature field in a thermal vortex ring and in the ambient fluid®.
His analysis is carried out by expanding in series in Rayleigh number
A and restricted in the case of small A, so that the results are not
applicable for many real phenomena.

The unsteady free convective flows are so complicated in mnature
that the exact and detailed analysis of them is very difficult and would
have to resort to very extensive numerical calculations. However,
there is the possibility for the similarity solution (self-similar solution)
in the case of free convection due to a point source of heat'®.
Moreover in the early stage of buoyant motion, the fluid velocities are
80 small that linearized approximation is allowable. By the use of
‘this procedure, a great deal of informations about these phenomena
may be supplied : e. g., How the distance travelled by a buoyant mass
of liquid is affected by Rayleigh number (or Grashof number) and
Prandtl number ? etc. The process of this approximation is described
in section II and calculation for a special case is shown. This result
seems to be in good agreement with the experimental results presented
in section III. General characteristics of the velocity and temperature
field will be analysed by this method and reported in future.

As mentioned above, the laboratory experiments concerning the
unsteady free convection have carried on by releasing a mass of a
light (or heavy) fluid into a heavier (or lighter) medium at rest and
by observing only the height and growth of scale of the ‘ buoyant’
mass. The measurements of the transient temperature of the fluid in
such cases need rather delicate techniques. The optical interferometry
is most favorable for this purpose, because it has very high sensitivity
to small temperature change and it does not disturb the field, but the
ordinary Mach-Zehnder interferometer is so hard to adjust that it is
almost unpractical for actual measurements of temperature field in
the fluid. Then we have developed a double refraction interferometer'?,
‘which is very easy to adjust yet keeps all the merits of the Mach-
Zehnder interferometry. '

The flow patterns were visualized by introducing small aluminum
powders on the field. The media in use are water and the mixture
of water and glycerin. By varing the heat quantity released from a
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source, the temperature of water, and the mixing ratio of water and
glycerin, the experiments for the fairy wide range of Grashof number
and Prandtl number were performed. The details of conditions and
results of experiments are presented in section IIT and some discussions
are made.

II.. Analysis of Convective Motion
Basic Equation ’

Let us consider the flow and temperature field caused by an in-
stantaneously released heat energy at a point in a uniform medium.
The temperature field immediately after the time of heat supply is
illustrated in Fig. 1 (a). As the time passes;, the mass of the heated
fluid slowly moves upward due to buoyancy force being resisted by
viscous effect, the heat diffuses into the ambient fluid, and the result-
ing temperature distribution is as shown in (b). The flow caused by
this convective motion deforms the temperature distribution, and finally
the buoyant fluid mass forms the mushroom shape as shown in (c).
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Fig. 1 (a), (b), (c). Isothermals in a buoyant mass of liquid.

The basic equation which we should consider for this problem are
the equations of conservation of mass, momentum and energy. For
an incompressible fluid flow, they are

dive=0,
dv 1 2
v .+(U.grad)v:Bﬁ———grad p—i—VVU, (1)
0

Z—er (v-grad)d=kl*g ,

respectively, where v is the velocity of the fluid, p is the pressure,
6 is the increase in temperature over that of the undisturbed value,
and ¢ is the time, p, v and & are the density, the kinematic viscosity
and the thermal diffusivity of the fluid, respectively. The thermal
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buoyancy factor B is the product of the thermal expansion coeflicient.
B, and the acceleration of gravity g, i.e. B=—fg. The temperature.
difference 6 is assumed so small in the whole field that these physical
properties of the fluid may be supposed to be independent of tem-
perature change. Since the velocity of convective flow is also small,
the viscous dissipation term in the energy equation has been neglected.

We adopt a rectangular co-ordinates, the 2- and the y-axes being
in a horizontal plane, the z-axis along the direction of the buoyancy
force. In this co-ordinate system, the basic equations are

fa) .
ou ov 4 aw 0,

A ~ ~ ~ 2 2
Ou+u°u+vou+wou=—i0p+u(n 8u+6u)’
ot ox oY oz o o ox* oy* 0z’

) ~ 2 2 2
av+uov+v v+wov:_1 8p+u(6v+81)2+8v) (2)
ot ox oY 0z o 0y ox? oY 0z?

A [ 2
oW ow 0O ow _BH— 1 ap ( w o 0w ),
ot ow oy oz o 0% 0z?
22 2
80+ 6‘6+v86+wﬁ:ﬁ(08 80 6)
ot ox oYy 0% ox’ oy* 62

where %, v and w are the components of fluid velocity. Let us consider
that a definite amount of heat is released instantaneously at the origin
of the co-ordinate system at t=0. The initial conditions are
u=v=w=0=0 at t=0,
except at the origin, where there are singularities in velocity and
temperature. For ¢>0, the whole field is regular, and the boundary
conditions are
=v=w=0=0 at infinity, (3)

Further we may assume the motion and temperature distribution to
be symmetrical about the z-axis, then

Uu=v=0, h
and
ow _ ow -0
ox oy ¢ at x=y=0. (4)
ol __8_0:0’
ox oY J

Since the heat dissipation is neglected, the excess of the heat
quantity in the whole field over the undisturbed state remains constant =

foe]

Q=,ocVSSS¢9bdxdydz,

-0
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where ¢, is the specific heat of the fluid at constant volume, or

o0

Sggﬁdwdydz:-const. = ngV =Q . | (5)

— o0

Self-similarity

The parameters which concern the present problem are thermal
diffusivity &, the kinematic viscosity v, the thermal buoyancy factor
B and the total amount of temperature excess @', as easily seen from
the above discussions. The dimensions of these quatities are

[£]={L*T™],
[v]=[L*T™],
[B]=[LT~*C],
[Q]=[LC],

where [L], [T'] and [C] denote the dimensions of length, time and
temperature, respectively. Because [v]=[r] and [BQ']1=[*], we can
define the two non-dimensional parameters as follows:

o=v/k,
(6)
G- B¢
OCyY

Usually ¢ is called the Prandtl number, and G is a parameter which
corresponds to the Grashof number in the case of natural convection
from a heated body. All the flow quantities are determined by 7=, ¢
and these four parameters. Then, we see by the dimensional consi-
deration, that all the non-dimensionalized quantities in the flow field
are determined by o, G and only one other parameter. It has a form
rlt?, where r is a spatial co-ordinate and ¢ is a certain constant which
shall be determined by physical considerations or experimental evidence.
This is the self-similarity.*

Experimentally it is shown that the height of the highest tem-
perature point from the origin is always proportional to T, then we
introduce a characteristic length h=2+/kt. Using this characteristic
length each variable is non-dimensionalized, respectively as follows:

x=hX, y=hyY, z=hZ,
2k

uzTU, vz_h—V, w=TW, (7)
QR 6
b= pCVF'

* On the contrary, the free convective flow caused by line source of heat streched
horizontally is not self-similar, because a characteristic for this case is the temperature
excess per unit width and it has the dimension [L2C].
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In the present study we treat the free convective motion in an un-
limitted fluid without any boundary surfaces, then the variation of
the pressure may be neglected and terms expressing its gradient are
omitted hereafter.
In terms of these non-dimensional quantities the basic equations.

are transformed into the following forms:

oV A% ow

oxX "oy ez

0,

(U—X) gg (V- Y)Z—g+-(W—Z)—Z%— U=-2rU,
=)0+ (V=) 2 (=20 V=2 v, (8)
(U—X)%%Jr(V— Y)%+(W—Z)%—ZV— W=_‘;_72W+%@,
(U—X)%JF(V— Y)g—@;Jr(W—Z)%g_—?)@:V?@.

The boundary conditions given by egs. (3)~(5) are easily rewritten in
terms of new variables, especially the last equation is expressed as

[e ]

m 0dXdYdZ—1. 9)

- 00

The development of the general features of the field as shown in
Fig. 1 suggests that it may be convenient to translate the origin of
the co-ordinate system as the buoyant mass rises along the vertical
axis. Then we put

Z'=7Z—7,,

and accordingly W'=W-—-_Z,.

In the frame of this translated co-ordinate system, the phenomena
are always axisymmetric and moreover are nearly spherically symmetric
at least in the stage of beginning of the convection. Therefore it is.
natural to use the spherical polar co-ordinate, that is, to transform
(X, Y, Z") and (U, V, W) into (R,d, ¢) and (Vg V,, V,) respectively.
Remembering that the velocity and the temperature fields are axisym-
metric that is

0
—%__ ) V,=0,

we obtain the following equations:
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(Va—R) 6;];13 + ;’5‘ aaT;R - Zf — Vi—2Z,cos %
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— ;Z Vie— éz 88?9 — Z(E;Gﬂ Vg +%@cos&,
(Va—R) 8@? + ? a@? + V%Vﬂ —Vy+2Z,sin6 (11)

o [(2'Vy L2 OVy 1 8,2V19+ cotd 9V,
2 \ OR? R oR R* 89? R? oY

L2 0Ve Vs _%@ sin g,

R 99 R? sin? ¢
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2 \oR* R 6R R®> 9° R 88

The boundary conditions are

d=0 and =; Ve=0 and 0V =0,
o
(12)
R—oo ; Ve=—2,c089, Ve=2,sind,
and
o 21
ZESS OR'sing-dRd9—1. (13).

00

These equations (11) and boundary conditions (12) and (13) determine
the V,, V, and 6 as functions of R and ¢, which constitute the self-
similar solution for this problem.

Approximate Solution for the Buoyant Motion

- For the comparison with the experiments which are described in
section III, we are interested in the distance travelled by the buoyant
mass of the liquid and the temperature distribution in it in the early
period of convection. Since the velocity of the fluid is very small as
well as the temperature excess @, at this stage, the linearized appro-
ximation may be effectively used. The temperature excess is supposed
to distribute symmetrically about the origin R=0, and we confine our
considerations only about the states on the vertical axis (=0 or z).
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~

. .In this approximation we need only to treat the following equations

0*Vy ( 1 R\ 0OV, ( 1 1 ) 2 G
—— B 42t = R ) V=6,
8R2+R+o>8R o 2] TR Y g
(14)
1 9% ( 1 ) 00
= 9% LR+ 1| %2 +30=0,
2 OR? A R 6R+
“with the boundary conditions
R—co Ve=—2,,
(15)
47;8 ORMR=1,
0
in order to determine V, and 6 as functions of E only.
From the second equation of (14) and (15), we have
1
@:‘-—7;3/76 B . (16)

'This solution gives the temperature pattern as shown in Fig. 1 (b).
‘The typical mushroom shape as shown in Fig. 1 (¢) may result from
the original equation. Therefore, in the present approximation the
highest temperature in the flow field is observed at a point of R=0,
‘its temperature is proportional to G and A% In other words, the highest
‘temperature is proportional to the energy supplied and t=%2

The distance travelled by the buoyant mass of liquid Z, is the
‘height of the point of the highest temperature above the point of heat
release and it is determined by the equations (14) and (15) together
‘with the velocity V5 It is easily shown that Z, and V, are propor-
‘tional to G, and this prediction is to be compared with the experi-
‘ments.

III. Experiments

Apparatus

A 18.6x5.9x20 cm?® fluid container was made from pyrex glass, and
‘the two side walls of it, each of 18.6 x20cm? were finished optically
flat and flxed completely paralell with each other. (Photo. 1.) At the
inner bottom of it, two sets of electric terminals were atached for
heating. Pure water or mixture of glycerin and water is fllled in it
keeping temperature and mixing ratio uniformly throughout the
-container.

The point source was made of a small tungsten coil of about
7 ohms placed 15 mm above the bottom. This coil was heated by an
electric current in a short time, and its intensity and duration were
precisely controlled by a control unit specially prepared. A photograph
of this control system is shown in Photo. 2. '
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s v T . oo e
Photo. 1. Water tank. Photo. 2. Control unit of heating

= Tl

:‘current.ﬁ

For optical measurements, a double refraction interferometer,
similar to the system developed by R. Chevalerias, Y. Laton and C.
Veret (11) has been constructed. This apparatus is very easy to operz}te
and yet has high sensitivity than the ordinary shlielen system. The
diagram of this system is shown in Fig. 2. As seen in figure, two
Wollaston prisms and crossed polarizer are used instead of knife edge
of the ordinary shlieren system. These Wollaston prisms (compensators)
have dimensions as shown in Fig. 3. Passing through the condenser
lens C and the first polarizer P, the light beam from lamp house S
focuses at the pin hole H and the first compensator Q,. The compen-
sator is in the focal plane of the spherical mirror M, ; working section
bounded by the glass walls of good optical quality (water container T')
is crossed by the paralell light. The spherical mirror M, makes the
image of compensator Q, or that of the source S at the compensator
Q,. The mirror M, also makes the image of the working section in
the plane of the observation screen E. An analyser A and the filter
F dre placed before the screen E. The difference in the optical path
between the two interfering beams depends on the difference of the
dencity, or that of the temperature of the fluids passed by the beams.

M

)

Me

: Y
0, AF
\Z// ' - 22m

Fig. 2. Arrangement for a double refraction interferometry. Fig. 3. Wollaston prism.
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Photo. 3.

Interferogram of temperature field, water, 25°C.
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=2 sec t=4sec

Photo. 4. Flow pattern water, 25°C.
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The interferograms were taken at intervals of two seconds after the
heating of the source using a motor-driven camera system placed at
the observation screen E. A typical example of a series of a photo-
graphs are shown in Photo. 3. As seen in photographs, the inter-
ferometer was adjusted so as to make a unifringe field of monochro-
matic light of 5461A separated by the filter F' from a light of mercury
lamp, and then the fringe shifts correspond to the temperature dif-
ference. The position of the point of the highest temperature is easily
determined from these photographs, moreover they give temperature
distribution of the whole field qualitatively, though it needs rather
tedious work in order to obtain quantitative results.

On the other hand, to visualize the flow field, we made use of the
aluminum dust method, and took photographs in 1 sec exposure at the
same condition as the interferometry. Some examples of a series of
photographs under the same condition as Photo. 3 are shown in Photo.
4 for comparison. They clearly show the nature of the flow around
a vortex ring.

Scope of Experiments

The experiments were carried out in pure water at various tem-
perature and in the mixture of glycerin and water with wvarious
mixing ratios maintained at 20°C. The heating energy was changed
from 0.14 cal to 0.28 cal by controlling the electric currents (280 mA
and 350 mA), and the duration (1.04 sec and 1.30 sec) of it, but maxi-
mum energy is limitted by a bubble formation at the heat source.
The values of the physical constants under various experimental condi-
tions are tabulated in Table (a) and (b). It may be noted that the

Table (a)
Water
y I 8 o G, G,
°C x 10—2 x 10-3 x10-3
cm? sec-! cm? sec™!

5 1.519 1.36 0. 040 11.16 24.3 30.8
10 1.308 1.37 0. 087 9.55 71.3 89.2
15 1.141 1.38 0.150 8.31 161 201
20 1.007 1.40 0.200 7.20 276 345
25 0.897 1.42 0. 250 6.34 435 546
30 0.804 1.45 0.302 5.53 660 823
35 0.720 1.47 0. 350 5. 00 933 1165
40 0. 661 1.49 0.400 = 4.43 1290 1160
45 0.605 1.51 0.430 4.05 1652 2080
50 0. 556 1.54 0.458 3.67 2090 2620
55 0.514 1.56 0. 490 3.33 2640 3290
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Table (b)
Mixture of glycerin and water
Content of v © B o G, G;

glycerin x 102 x 103 x16-8
% cm? sec™?t cm? sec3
10 1. 280 1. 364 0.23 9.39 413 472
20 1. 687 1. 305 0.26 12.91 252 317
30 2.230 1. 260 0.29 17.76 166 208
40 3.410 - 1,207 0.32 28.28 81.0 101
50 5. 380 1.159 0.35 46.3 36.8 45.9
60 9. 480 1.111 0.38 85.4 13.3 16. 6

value of coefficient of thermal expansion of water strongly depends
on the temperature, in fact it is null at 3.96°C. On ,the other hand,
the mixing ratio of glycerin and water seriously affects the value of
kinematic viscosity.

Experimental Results.

Under the above-mentioned experimental conditions the parameters
varies in the range 3<7o<85 and 13<<(G<73290, respectively. The height
of the point of the highest temperature is proved to be proportional
to the square roots of the time as shown in Fig. 4 (a), (b). In almost
all cases, the points corresponding to the measurements in a series
lie so fairly on a straight line respectively that the individual points
are not shown but for a few examples. This relation has been used
to reduce the self-similar equation. As seen in this figure, the gradi-
ents of straight lines increase with temperature at low temperatures,
but over 25°C such a definite tendency is not found. This gradient
increases evidently with the increase in the heating energy as shown
in Fig. 5. In Fig. 6 (a), (b), these gradients or the non-dimentionalized
heights of point of the highest temperature Z, are plotted against the
Grashof number. As the linearized approximation theory predicts,
the values of Z, are proved to be proportional to G for the same 0. The
calculated result for the special case when o=1, and G=8=%? is also
shown in the same figure which is in good accord with the experiment.
Fig. 7 which shows the relation between Z /G and ¢ suggests that Z,
is proportional to the Prandtl number also in the present case.
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Fig. 4 (b). h~+'t mixture of glycerin and water (20°C).
(i) For various mixing ratio, heating current 280 mA, duration
1.03 sec.(ii) For various mixing ratio, heating current 280mA,
duration 1.30 sec.
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