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- 1. Introduction

The relations between the topology of a fixed space S and that
of the space M of the measures on S have been studied by several
authors,”?® among which in 1951 by J. H. Blau the following result
was obtained :? '

“If S statisfies the second axiom of countability and is a countably
compact, Hausdorff’s space, them the space M of all normalized positive
regular outer measures for which open sets are measurable is compact for
the weak topology of M.’

From this proposition the condition of countability may be re-
moved as is established for example in the text book of N. Bourbaki,”
in which the condition of countably-compactness is replaced by that
of compactness. _

Now the theorem we are going to establish is:

Theorem 1. [f S is a countably compact, normal Hausdorff’s space,
then the space M becomes compact.

By a measure on a topological space S, we shall mean a set-
function (outer measure) m satisfying the following conditions (1)-(5):

(1) 4oo>m(A)=0 for any AcS and m(s)=0 (¢ denoting the null
set)

(2) AcBom(A)=m(B)

() AcUA>mA= 3 mA)
(4) ACSjm(A)_—:ian m(G) (G being open)

() open sets are measurable with respect to .

Let us denote by M and MC(S) respectively the set of all measures
with total measure 1 and the set of all real valued bounded continuous
functions defined on a topological space S, of which the latter becomes
by the usual supremum norm, a Banach space.

Then, every function f&MC(S) is measurable with respect to any

measure mcM, so that the integral S fdm is well defined.

By a neighbourhood of m, =M, we shall mean, for each £>0 and
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for any finite number of f, ..., £, (f;,&MC(S) for 1<j<m), the set

U(m0§ fly ---7fn‘; 6):

mimeH || fydm =\ 1, dm

e fOI' j:l,...,n

which assigns to M what is so called the weak topology.

A topological space .is countably compact if and only if any
countable open covering of it contains a finite sub-covering.

From this definition it is evident that any continuous image of
a countably compact space is itself countably compact so that every
real valued continuous function on a countably compact space attains
its extremum values since, in a space with countable base, countably
compactness is equivalent to compactness, and if S is countably com-
pact, MC(S) is identical with C(S), the set of real valued continuous
functions defined on S.

2. The proofs and some results

Let us now begin with establishing the following 3 lemmas.

Lemma 1. Let S be a countably compact, novmal, Hausdorff’s space.
Suppose a hnear functidnal Lf on C(S) satisfy the following conditions (1),
(2) and (3);

1) L(af+B9=al(f)+BL(Y) (a, B being real) _

(2) L(1)=1 (1 denoting also the constant valued function with the
value 1)

(3) f=0>LF=0.

Then there exists a measure m=M such that, for all f&C(S), holds

| Lf=SSfdm.

Proof. Only the outline of the proof will be given here, since
further complementation is quite easy.

Given an open set G in S, let us denote by ¢, the characteristic
function of G. Let us put now

FG) ={f10=f(x)=cu(x), F&C(S)} -
Evidently F(G) contains the constant function 0, and if G==¢, by

the normality of S, it also contains non-constant functions.
Now for any two open sets G, and G,, writing

FG)+F(G,)={f+4IfEFG) $=F(G,)},
it follows that
(4) F(G,)+F(G,) D F(G\VG,)
(5) GlﬂG2:¢:>F(G1)+F(G2)CF(G1UG2)
in the proof of which the assumption of normality is necessary.
Define now for any open set G, a non-negative number

B ke
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m(G)= sup Lf .

JEF(G)

It follows that

6) m(S)=1, m(¢)=0

(N G,CGom(G)=m(G,)

®) m(G,VG,)=m(G,)+m(G,)

9 Glr\Gz—¢:>M(G UGz) m(G,) +m(G,)

(10) Gc U GComG)= zm(G)

in which (6), (7) (8) and (9) are almost 1mmed1ate and (10) will be
proved replacing the condition of compactness in the usual proof of
the corresponding proposition by that of countably-compactness.

To define an element of M by making use of m obtained- already,
let us put for an arbitrary subset A of S

m*(A) :ia'nf m(G) .
Then
11) m*(G)=m(G) for any open set G;.
(12) m*(S)=1, m™(¢)=
(13) ADB—om*(A)=m*(B); ‘
(14) Ac UA :>m*(A)£ Zm*(A ).

Thus m* is a regular measure belongmg to M, for Wh1ch open
sets are measurable.

By the well defined integral with respect to the measure me*
constructed above, the functional Lf is so represented that

FECS)SLf = SS £ dm*.

To prove this equality, as is well known it is only to show that
for every positive f&C(S) the following inequality holds:

Lfgg £ dm*.
N
Let n, be a natural number such that for all x&S
(0 f)=n, -
‘Then we have '
n270
* _ k E—1 k
O (oS ol s &)
no2"0 -1 v no270~1 -
=lim E ——m*(Gnk)_llm E ﬁm*(Gnk)

Where G,— {xlf(x)>—§n—} (k=0,1, ..., n2"—1).
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Since every G,, is open, there exists for each ¢>0 a function
 fu&=F(G,,) such that
(**) Lf i +e>m(Goe) =m*(G,y) -

But for functions f,.=F(G,;) we have obviously

o S Fu=f()

so that

ng2™0 -1

5 O LfwsLf .

From this and (*) and (**), since ¢ is independent of #, we have
ng2™0 -1

Ifz g D m* G\ fam* (reo)

whence
Lr=\ fam*
S

which completes our proof.

Lemma 2. Let S be a normal Hausdovff’s space. If, for all non-
negative f—MC(S),
-\ ram =\ _ram, memm=n)

then we have m,=m,.

Proof. It is only to show that for any open set G we have
m(G) =m,(G), since m, and m, are regular measures.

From the definition of measure there exist for any ¢>0 two closed
sets F,(cG) and F,(cG) such that '

ml(G__F1)<E’ mz(G““F2)<5 .

Writing F=F,YF,, it follows

(15) m(G—F)<<e, m(G—F)<e.

F being closed and contained in G, there exists, by Urysohn’s
lemma,” a continuous function f(x) deflned on S satisfying 0<7(x)<1
for =S, f(x)=1 for x&F and f(x)=0 for x=G°, the complementary
set of G. , , :

Hence f&=MC(S) and from (15) we have

| fam=m &)<\ ram+e ram=m@)<| ram+e

which shows |m,(G)—m,(G)| <<¢ and consequently we have

my(G)=m,(G)
as ¢ is arbitrary.
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Lemma 3. [If S is a mormal- Hausdorff’s space, then the space M
becomes Hausdorff’s space.

Proof. From Lemma 2, we may find, for mleM, m,—=M, m,==m,, a
non-negative function f&MC(S) satisfying

sz dml#gsf dmy -

( [ .
Putting igs f dml—gs fdm,| =2, it tollows

Um,; ;) A Umy ;s £ €)=
which shows that M satisfies the separation axiom of Hausdorff.
Remark. m is determined uniquely by the mapping : f-»S'fdm.
Proof of Theorem 1. It is obvious that the functional ’

| m(p) =\ ram

defined on C(S)=MC(S) satisfies the conditions (1), (2) and (3) of Lemma
1. Since the set I;={y| —||fI|=<y<||fI} is compact in the real number
space R for any f&=C(S) where Hf]l_sup |f(x)], by the well known

theorem of Tychonoff,” the topologlcal product
E=T] I

JECS)

becomes compact, in which, as a neighbourhood of a point g,&F, we

may choose for each ¢>0 and for each finite number of f;c=C(S)
(j=1, ...,n) the subset

Viey: fir oo fus o ={u|nEE | u(f;) —u,(f;) | <e for 1<j<m}.

Since mcM is determined by the mapping : f—m(f) as remarked
at the end of Lemma 3 and m(f)=I, for any f&=C(S), m may be con-
sidered as a point in K with the “ f-component ” m(f) for f=C(S).
Thus the set M together with its topology may be regarded as a
subspace (not as a linear space) of £. Let »/ be a point of E belonging
to the closure of M. Then, for each >0 and for three functions f£,
g and af+ 4 belonging to C(S), a neighbourhood of n/ ’

Vi ; f, g af +89 ;¢)
intersects with M, that is to say, there exists an mc&M such that
| (af + BF) —mlaf +BF) | e [m/ (f) —m(f) | <e, [/ (§) —m(9) | <e..

From these inequalities we have thebfollowing equality
(16) m/(af+pg)=am'(f)+ Bm/(9),
since ¢ is arbitrary and - -
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m(af+Bg) = Ss(af+/39) dm:agsfdmjLﬂgsg dm=am( f) + fm(9) .

In a similar way, it is easy to show that first »/(1)=1 and secondly
m'(f)=0 for any non-negative function f&=C(5).

Thus, »/(f) satisfying all the conditions of Lemma 1, there exists
a measure m—M such that for any fEC(S) we have

m()=\_ram

which assures that #/ is an element of M, showmg that M is closed
in E, - and consequently compact.

Remark. The results proved above contains the result of J.H.
Blau mentioned in §1, though the neighbourhood in his theorem are
considered only for non-negative functions belonging to C(S).

In an analogous way as above, the set M’ of all measures m
satisfying m(S)<1 may also be topologized so that the following
lemma may hold, the proof of which is almost the same as that of
Lemma 1.

Lemma 4. Let S be a countably compact, normal, Hausdorff’s space.
Suppose a linear functional Lf defined on C(S) satisfy the conditions of (1)
and (3) of Lemma 1 and the following condition (2') (which is weaker than
that of (2) of Lemma 1):

@) FECO> LA

Then, there exists a measure m—M' such that

FECS)SLf = SS fdm.

From this, it is able to derive as above the following :

Proposition. If S is a countably compact, normal, Hausdorff’s space,
then, M’ becomes a compact, Hausdorff’s space.

Now let us establish a theorem which may be regarded as a gen-
eralization of one of the results obtained by Kryloff & Bogoliouboff.®

Theorem 2. Let S be a normal Hausdorff's space which may be ve-
Dresented as a limit of an ascending sequence of sets {S,} (in a strict sense)
satisfying v

(A7) each S, is closed and countably compact in S

(18) S,c Sk, n=1,2,...) (Si,, denoting the open kernel of S,.,)-

Then, a necessary and sufficient condition for M’ to be compact is that
for each 0, there exists an integer n,=mn,(c) such that
| (19) meEM'>m(S—S,)<e.

Proof. Let us first remark that just like Lemma 3 M’ becomes a
Hausdorff’s space. ;

Necessity. Supposing the contrary, for some ¢>0 and for any
natural number » there existed a measure m=wm, M’ satisfying
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(20)  m(S—S,)=¢,.

The set of m, thus obtained must be an infinite set since if the
set were finite, there would exist a sequence of measures

Mgy Wy oee (B, <1,<..0)
such that m, =m,,=..., while by (20)
mnj(S—Snj)geo for 7=1,2,..

so that mnk(S—Snj)geO for 7=1,2,... and for k=1,2,... which would
be a contradiction since for a fixed &

M’ being compact, the infinite set {m,} has a point m,=M’ of
accumulation.

For a fixed %, there exists by the normality of S a function
Fo=MC(S) with 0= f.(x)<1 such that

xS fu(x) =1, x€ESL D fi(%)=0.

Then the function ¢,(x)=1—f.(x) also belongs to MC(S) and satis-
fies for n>k \

(21) S Gy A, =1(S — S s ) ZMa(S — S,) =6,
S
while
22) Ssgkdmogmo<8—sk>-

Since m, is an accumulation point of {m,}, there exists an mc
{m,|n>k} such that
—60.

@) [\ seam— g.am, <
S S
From (21), (22) and (23) it follows

1

M(S—S)= 5 e,

which, making k—co, contradicts lim me(S,) =m,(S).
k—
Sufficiency. Since, like the proof of Theorem 1, by making use
of Tychonoff’s theorem, we can conclude that the topological product
E=TI I, (L={z—-Ilfll=y=Il7I)

FEMC(S)

is a compact space, in- which the set M’ may be considered to be
contained, it is to be shown that M’ is closed in E.
Let I be an element of M’e. Then it is obvious that
L(af+89)=al(f)+LL(%); ILAI<|IfIl; Lf =0 for f=0,
whence it is only to show that for some m,&=M’ holds

FEMOS)SLf— SS Fdm, .
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To prove the existence of s, we have only to follow the con-

struction in the proof of Lemma 1, by putting m,(G)= sup Lf for
1EF(G)
every open set G. It is easy to verify that m—=m, fulfils the condi-

tions (6)-(9).
To show m=m, satisfies also the condition (10), let us first remark

that there exists by the normality of S a continuous function 4,&=
MC(S) such that

=S, oh,(x)=1; x&S% >h,(x)=0; 0<h,(x)<1 for x&S.

By the condition of our theorem, there exists for each >0 a
natural number », such that

MEM’:)W%(S - S’no)<5 .

By the definition of L&M'?, there exists for each f&MC(S), f=0,
and for each £>0 a measure mc&M’ such that

\ ram—rr|<e |\ rhi,dm—L(sh,)

where f#, evidently belongs to MC(S).
Since

¢,

Lf-L(fh,

< ]szdm~Lf{ + ] { oy dm—Li b

+ ! SS £ dm— SS fha, dm | <2+ “f—fhm M(S—5.)

<2¢+e|lfll, we have lim L( f&,)=Lf.

Choosing a funct;oﬂ fEF(G) for which

(24) Lf+ez=my(G),
we shall put f,(x)=max {f(x)~¢, 0}, from which follows |f(x)—f(x)|<Te,
sup |f,(x) —f() | == £, —fEMCS) and |L(fi—)I=Ifi—fll<<e whence
;fter all we have

(25) Lfi=Lf—e.

But since v

{x1f1(x) « A (0)=>0} C{x]| f(X) =} NSy

— F (x| f(#%)>0}ASns,C kQGmsW

in which F, is a closed set of S,,, and S,., is a countably compact
set, there exists a finite number of open sets G, (i=1,...,7) such that

[ 1
FnC \_JIG]%[\S”_HC K_{le ’

which also shows that for <1 flhnEF(leU...UG,CL)CF(le)U...UF(GkL)~
or we may write:

flkn:.gl+"'+gl ; 9IEF(GL1)’ ey glEF(le) .
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From this follows
L(f k) = ZLEE 2m(Ge) < 2mi(Go)
in which making #—co, we have
Lf1 =lim L(flk”)g,;mO(G") .
Hence by (24), (25) we have
my(G)ZLf +e<Lf, +2e= > my(G,) + 2
n=1
which shows that m—=wm, satisfies also (10).
Next putting m,*(A)=1inf m,(A), it is easily seen that m* is an
ACG
outer measure for which open sets are measurable, m,*(S)<1, m,*(G)
=m,(G) for open G and
reMCS>Lr=\ fdm

which completes our proof.

The author wishes to express his cordial thanks to Professor
Shunji Kametani for his orientation and kind guidance of this
research.
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