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1. Introduction
The equation
ed*u/dt*+(w'—1)du/dt +u=0

is known as the van der Pol equation. As «—0, solutions of this equa-
tion on reaching =140 tend to jump to u=—2. N. Levinson made
clear how to determine the jump curve for solutions of a system of
the following type

ed*ul/dt*+g(t, u, x, e)du/dt+h(t, u, x, ¢)=0,
dx/dt=f(t, u, z, e)du/dt+o(t, u, x, ) ,

where % is a scalar, but « is a vector [3]. In this paper we shall study
the case when # and x are both vectors.

2. Definition of a Discontinuous Solutions

Let z and U be m- and m/-dimensional vectors respectively, and
let ¢t and ¢« be a real variable and a real nonnegative parameter re-
spectively. We shall consider a system of equations -

ed:Ulde+A(t, U, z, e)dU|dt+a(t, U, %, €)=0 ,
dx/dt=B(t, U, z, e)dU|dt+b(t, U, =, ¢) .

We shall suppose that every component of the matrices ff, B, and the

vectors a, 5, and their first order partial derivatives with respect to
(t, U, ) are uniformly continuous and bounded as functions of (¢, U,
x, ¢) when (¢, U, ) in an open set R in the (¢, U, x)-space and =0 is
small. _ :

Putting Ay¢, V, y)=A(t, V, y, 0), ete., we shall write the so-called
degenerate system as
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{ Ao(ty V: y)dV/dt—I—&o(t, V; y)=0 ’

2.1 - -
(1) dyldt=Byt, V, y)dVidt-+byt, V. v) .

We shall define a discontinuous solution S, of (2.1) as a curve in
the (¢, V, y)-space. S, is also assumed to be in R.
Let a point P,=(s,, V,, ) be in R, and assume that real parts of

all characteristic . roots of A, are positive at P,. Let V(t), y(t) be a
solution of (2.1) with initial values at P,, and it is assumed to be con-
tinued in R until t—s,—0. Let V,=V{(s,—0), ¥,=%(s,—0) exist, and as-
sume that the point P,=(s,, V,, ¥,) is in R. Assume that real parts of
all characteristic roots of A(t, V(t), y(t)) are positive for s,<t<s,,
whereas the matrix A(s,, V,, ¥, has 0 as a simple characteristic root,

and other characteristic roots of fio(sz, V., ¥,) have positive real parts.
Then without loss of generality we can assume that the first row and

the first column vectors of A(s,, V., y,) are equal to zero. Therefore
letting m’=1+4+n we can write the original system and the degenerate
system (2.1) respectively in the following form:
ed*u/de?+g(t, w, w, x, e)du/dt +B(t, u, w, x, e)dw/dt

+h(t, u, w, x, €)=0,

ed*w/dt*+a(t, w, w, x, e)du/dt-+A(t, u, w, x, e)dw/dt

(2.2) +a(t, u, w, x, €)=0,
dx/dt=f(t, u, w, 2, e)du/dt+B(t, u, w, x, e)dw/dt
\ +b(t, , w, , €),
and

go(t; ,07 7', y)dv/dt_l_ﬂo(t’ ,U» ’r’ y)d/r/dt_*_ho(ty ’U,"r, y)~_—0 ’
(2.3) alt, v, r, ydvldi+ AL, v, r, y)dr/di+at, v, r, y)=0,
dy/dt=f(t, v, 7, Y)dv/dt+ B¢, v, r, y)dr/dt+by(t, v, r, y) ,

where # and v are scalars, but w and r are n-dimensional vectors. On
the other hand

A:(g’ﬁ), a,=(h>, B=(f,B), b=b,

a, A a

where ¢, h are real scalars, a and « are real n-dimensional column

vectors, £ is a real n-dimensional row vector, A is a real n by n

matrix, f and b are real m-dimensional column vectors, and B is a real

m by n matrix. We have the same formulas for A, ete.
Put U=(u, w), V=(v, r) and P,=(s;, v 7 ¥x) (k=1,2). At P,
we shall assume

Y
P -—‘b k. ad
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(2.4) {g":O o @=0, - A=0,
. ho<0,  (89,/0y)fo+0g,/0v+0 ,

where dg,/0y is an m-dimensional row vector whose components are the
first order partial derivatives of ¢, with respect to components of y.
On the other hand we shall assume

(2.5) 90— BAi ', >0

for (¢, v, 7, ¥)=(¢, v(t), 7(t), y(t)) when t (<s,) is suf‘ﬁciently' near to s,.
Let y=¢(v) be a solution of the system

(2.6) dyldv=F(S;, v, T3, Y)
with initial value ¢(v2):y2. Let v, be the first value of »>v, such that

@.7) S 982 ¥, 72y B(0))d0=0 .
o0 Y
The curve _
(2.8) t=s,, r="r,, Yy=o¢() , 1, <V, ,

is assumed to be well defined in R. Finally along the curve (2.8) we
shall assume that

(2.9) | =0

and that real parts of all characteristic roots of the matrix 4,—g,1, are
positive, where 1, is the k& by k£ unit-matrix. o
Put y,=¢(v;) and P,=(s,, v, 73, ¥;). Assume that all characteristic

roots of Ay¢, v, r, y) have positive real parts at P,. Let u(t), #(t), (t)
be a solution of (2.3) with initial values at P,, and it is assumed to be
continued in R and with Re 2,(¢) >0 (=1, 2, ---, n, n+1) for s,<t<s,,
where s;>s,, and the 2,(t) (=1, 2, ---, n, n+1) are characteristic roots

of the matrix Ao(t, ?Aj(t)’ (1), §(t)). Put P,=(s;, 9(s;), 7(sy), Y(8s))-
A discontinuous solution S, is defined by connecting two curves

v=u(t) , r=r(t), y=y() ,
| v=0(t) , r==ut) , y=9y(t) ,
with the curve (2.8), where V(t)=(v(t), r(t)).

3. Main Theorem

We shall denote by |c| the norm of a vector ¢ which is defined by
the maximum-value of the absolute values of components. Put

|A|=max {|Acl|; |c|=1} ,
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where A is a matrix.

THEOREM: If 6, 6,, 6; and ¢ (>0) are small e/nougk there 1is a
solutions u(t), w(t), x(t) of (2.2) over the interval s,<t<s, for any
initial values satisfying

lu(s;) —v(s)l +w(s) —7(s)I =0y, |
(3.1) |[du(s,)/dt—dv(s,)/dt]|+|dw(s)/dt—dr(s,)/dt| <6,/e
lw(s1)_y(31)\§33 ’
and as 6, 0, 6, and ¢ tend to zero the curve representing the solution

u(t), w(t), x(t) in the (t, u, w, x)-space tends to S,. Moreover for any
fixed 6>0

lu(t)—v@O+lw@)—r@®l,  le@—y@)|, -
and
\du(t)/dt —dv(t)[dt| +|dw(t)/dt —dr(t)/dt]

tend uniformly to zero over the intervals s,<t<s,—0d and 8,4+t
<s,—0 respectively. This is also true for

lu@)—o@)+lw@)—#@) ,  le@)—y@)l,
|du(t)/dt—d(t)/dt|+|dw(t)/dt—d(t)/dt| ,

Jor the interval s,+J0<t<s,.
In order to prove our theorem, we shall use the following lemma: [1]

LEMMA 1. Let A(t) and a(t) be an n by m matriz and an n-
dimensional vector respectively, components of which are continuous
for 0=t<T (T'>0). Letting p(l), ++-, pt) be characteristic roots of
A(t), we shall assume that

(3.2) Re pj(t)é-po<0 (j=1, 2! *t %y /n’)

Jor 0Zt<T, where p, 18 a positive constant independent of t. Then
Jor every solution u(t) of the system

(3.3) edu/dt=At)u+a(t) ,
we have the estimate

B4 u@I=K{luO)le~ @™ +maxla@s)}  (0=¢=<T),

where K 1is a positive constant independent of u(t).

Proof: Let A be a constant matrix such that |[4|<M, where M is
a positive constant. Suppose that real parts of all characteristic roots
of A is less than —p,. Assume that 0<p<p,. Then we have
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(3.5) lexp (At)l <Ke*

for t=0, where K, is a positive constant depending only on M, p, and
p [2]. ’

Letting 0<r<7<T, we shall put

(3.6) B(z, 7)=max {|A(t)—A®)|; r<t, ' <7’} .

On the other hand, let @(¢, ) be an % by n matrix satisfying
(3.7) , edd(t, 7)/dt=A(t)O(, 7) ,

and
(3.8) Oz, )=1,.

Since

 d0)dt=A(D)D+ (A — A} D

we have

3.9 o, 7_.)_____6(1[8)4(7)(5-7)_'_ }—Ste(”e)““x“”{A(s)—A(r)}¢(s, r)ds .
g J7

Hence
0(¢, DIKfe-om-0+ L, o) | e-ema-vio(s, nids}
for r<t<+<, where K, is a positive constant dependmg only on p,, p,
and max {|A(s)|; 0<s<T}. Let
| W(t)=|0(t, 7)o@t~ |
Then
v(t) <K, {1+iz§(r, ) Sir(s)ds} .
€ T
This implies
StT(s)dséKaSte(””K“ﬁ(”"x”‘s)ds .
Hence
q;-(t)éKoe(ua)xoﬁ(«r,f')(n—-r) .

Then
(3.10) [O(t, 7)| < K, e/ EeBran-pje-n
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for r<t<7.

Now let us take p so that 3p,<p, and let 7"—z be so small that

we have K,B(r, )—p=< —34p,. Then we have
(3.10%) |@(¢, r)ngoe‘C"o/”X‘*’)
for r<t<7.

Since solutmns u(t) of (3. 3) can be written in the form
(3.11) u(t)=0(t, O)u(O)-l——S o(¢, s)a(s)ds
e Jo

and since components of the matrix A(f) are uniformly continuous for
0<t<T, our lemma can be easily obtained.

4. Proof of Theorem, Part I

At the outset let us consider the interval 8, <t<s,—0, where ¢ is
an arbitrarily fixed positive number. Putting

we have

ed* W/dt+ A(t, W+ V(t), z+y(2), )d W/dt+c(t, W, 2, ) =0,

“2) | deldt=B(t, W+ V(b), 2+y(), dW/dt+ait, W, 2, <) ,

where

(4‘-3)’ olt, W, 2, = {A(t, W+ V(t), 2+y(t), 6)—20(15, V(t), y(i))}dV/dt.
+{a(t, W+ V(¢), z+y(¢), e)—at, V(i), y(t)}
+ed?V/dt? ,

T(4.8)  alt, W, 2, ©)={B(t, W+ V(¢), 2+y(2), e)—By(t, V(t), y(¢))}d V/dt
+{b(t, W+ V(t), 2+y(t), ) —by(t, V(E), ¥(t))} .

Since dV]dt=—Ayt, V(t), y(£))a,(t, V(¢), y(t)), the second order deriva-
tive of V(¢) with respect to ¢ exists and it is continuous for slst< 8,—0.

Let U(t), x(f) be a solution of (2.2) with initial values satisfying
(8.1). Then W(t)=U(t)— V(¢), z(t) x(t)—y(t) satisfy the system (4.2)
with initial values satisfying

(4.4) [W(s)I<d,,  |dW(s)/dt|<d,le,  [2(s)|<0; .
- Let us take positive constants p,, p, and p, so small that

(4.5) les(t, W, 2, IS L{IW+el} +9(e)  (1=1, 2)
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and
(4.6) |B(t, W+ V(t), 2+9(t), o)|<L,,
when \’
4.7) (Wi<p, , Zl=p,, 0=ZeZp,, 8=t<s,—0,

where L, is a positive constant and ¢(¢) is a positive-valued function of
e such that ¢(¢)—0 as e—0. Further we can assume that real parts of

all characteristic roots of /I(t, W+ V(t), z+y(t), ¢) are not less than a
positive constant p, for (4.7).
Now by the use of lemma 1 we have

(48) AW (B)/dt|< K}-2e- 0= L, max {| W(s)|+ 1)} +o(o)}
& $1§S§b
and

(4.8) |dz/dt| < Lo{|d W/dt|+[W(e)|+12(0) 1} +#(e)

when (¢, W(t), 2(t), ¢) is in (4.7). Let 0,<p, and 0,<p,. Then we have
(4.8) and (4.8") at least in the neighborhood of s,. Assume that (4.8)
and (4.8") are true. Since

W) < S ;ld W(s)/dslds+o, ,

le(t)| < S \da(s)/ds\ds+6, ,

and
|d W/dt|+ |dz/dt| < (Lo+1)|d W/dt|+ L {| W)+ [2(8)]} + ¢(e) ,

we have
WO+ OIS Lo o+ o0+ | [AW(s)dslds]
where L, is a positive constant. Hence
1d W/dtlgKO{%w@o/zw“—w+L2§;|d Widslds -+ L(6,+,+9()}
where L, and L, are positivé cdnstants. Finally we get
Y AW/ ds|ds < L6, +8,+8,+¢(e)) -
5

This proves our theorem for s,<t=<s,—d,
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5. Proof of Theorem, Part II

Let us consider the heighborhood of the point P,. At the beginning
we shall remark that

dv/dt = —(ﬁod')"/dt—l— h’o)/go ’
dr/dt=—A; (a,dv/dt+ay) .
Hence
dv[dt =(B. A7 a0—ho)[ (90— BoAT 'at,) .

o, B, and ¢g,~0 as t—s,—0. At the point P, h,<0 and A;' exists.
Since (2.5) is true for t<s,, we have
limdv/dt=+ .
t—’82—0
Let »*<w, be near enough to v, so that as ¢ increases from s, to-
ward s, there is a value of t=1* near to s, such that

v(c*)=v* ,

and such that dv/dt is large for 7*=<t<s,. Let us denote the point
(*, v*, r(c¥), y(z*)) by Q. We can choose @ as near to P, as we wish.
Since t*<s,, by applying the results of the preceding section, we
see that, if &8, &,, &, and ¢ are small enough, then for some value of
t=t* we have u(t*)=v*. It should be remarked that ¢* tends to «* as
8,, 0,;, 6; and e—>0. Therefore the point (t*, v*, w(t*), x(t*)) tends to Q
as 6, 6,, 6, and e>0. We change from ¢t to v as the independent
variable. Since dr/dv=(dr/dt)(dv/dt)*, we have dr/dv—0 as v—,.
Therefore for any small positive constants é,,-0;, d; and 6, we have

(.1) { r)—rl<o,,  ldr(v)/dv|<s;,

0<dt(v)/dv<ds, Ily(v)—u,l<d;
for v*<v<w,, if we choose @ near enough to P,.

Now changing from ¢ to # as the independent variable, we derive
from (2.2) the following system ‘

edp/du=p*(g+pdw|du)+p'h ,

ed’w/du*+p{(a+pa)+(A—(9+ ph)1,)dw/du
(5.2) —(Bdw/du)dw/du} =0

dx/du=f-+ Bdw/du-+pb ,

dt/du=mp .

Let v,<v**<v,, Since the curve (2.8) is in R, we can choose posi-
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tive constants p,, p, and p, so small that the domain defined by

vESusorr w—r<p,, t—s,|<p,,
5.3) { Sus I J=0 [t—s,1=p,

min {|z—¢((v)]; v,=v=v**}=p,,
is also in R. Then if p,>0 is sufficiently small, the components of A,
B, etc. and their first order partial derivatives with respect to (¢, u,
w, x) are uniformly continuous and bounded as functions of (¢, u, w,
2, ¢) when (¢, u, w, ) is in the domain (5.8) and 0<e<p,. Let L, be
the upper bound of those quantities in absolute value.

For v<wv,, we have

dg,/dv=(8g,/ot)dt/dv+ (Bg,/or)dr|dv
+(09,/0y)( ot Budr |dv+bdt|dv)+ 09,00 .

On the other hand, we assumed (2.4) and (2.5). Furthermore we got
dt/dv—0 , dr/dv—0

as v—ov,. Therefore at P, we get
(09,/0y) fo+09,/0v<0 .

Then we can assume that
(0g/0x) f+0g/ou=—M<0

when (¢, u, w, ) is in the domain (5.8) and 0=<e=<p, where M is a
positive constant. _
Without loss of generality we can assume that

lw(@*)—rl<8,<p,,  ldw(v¥)/dul<s,,
(5.4) 10<p(v)<8,  [HF—sl<2*—si<p,,
lw(’v*)“yzl<a7<93 . | .

In general Lj* stands for a constant depending only on » and L,. For
example the Lipschitz’ constants for « and # will be denoted by L,
and on the other hand, we shall assume that

|og/6t|+|0g/ow|+ |og/oy|(|Bl+ b)) < L, ete.

in R. | |
Let N,, N, and N, be positive constants such that
{LZ‘(N1+N2)<%M, N, (v** —v*)<p,—6,,

5.5
( ) N2(v**_v*)<f)2_2lf*_szl ’ N3<Pa .

Without loss of generality ‘we can assume that
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0, < N, ,
(5.6) Se<min {—2N,LF(1+ LF)(N,+ N,+ 1)(v** —v*)/hs, N} ,
87<N3 [
where ' A
(57) h())k=h'o(32’ Vyy Ty yz) .

Then the condition ,
(6.8)  ldw/dul<N,, Ipw)I<N,, |ew)—p@)<N,,
is satisfied at least in the neighborhood of v*, where

Y, u=v,),

p(u)  (u=vy) .

Assume v*=<u=<v**. Then as long'as (5.8) is satisfled we get
(6.10)  |lww)—rl<p, (B —sl<p,  lwW)—w)<p.

We shall suppose N, so small that real parts of all characteristic
roots of the matrix A—(g+ph)l, are not less than p,>0 as long as (5.8)
is satisfied.

Since

(5.9) Hu) =1

dg(t(u), u, wu), x(u), ¢)/du
=pdg[dt+ (0g/0w)dw/du+ (Bg/0x)( f+ Bdw|du+ pb)+0g/ou

we have
(5.11) ‘ dgldu< —3M<0

as long as (5.8) is satisfied. - .
Under the assumption (5.8) we shall derive another set of estimates

for dw/du, p(u) and x(u)—$(u).
When u<wv,, we have

|2(w) — 2(v*)| < LF(N,+ N+ 1) (v,—v*) .
This implies
(5.12) () — A < LE(Ny+ Nyt 1)(0,—v*)+ 9,
when ugv, If u=w,, 43(7») satisfies
dldu=Fyss %, 72, $) -
Therefore, letting
) =w(u) —d(u) ,
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we have
dp(u)|du=F(t, u, w, $+b, & —FfuSe U, T2y )+ Bdw]/du+pb .
Hence
|dp/dul < L {I$|+ [t —sa + lw — 7|+ Ny + Ny + ¢(e)}
S LI+ (N + N)A+0** —0%) + 2[* — 85|+ 0,4+ ¢1(e)}

where ¢, is a positive-valued function of ¢ which 'tends to zero as «—0.
Therefore

(5:18) 1B+ | [dd/duldu< B+ LK)
+ LEKH (N No) (L4 0% — %)+ 2lc* — s,|-+ 8,1+ 4u(e)}

where
ok

k= Tebie.

¥

The assumption (2.4) implies that we can assume
(514) ]lg(t’ w, w, ¥, e)léL;‘{lt_szl_}‘Iu_“vzl'{_lw“—rzl_%‘lx*yzl‘{”sbz(s)}

when (¢, u, w, z) is in (5.3) and 0<e<p,, where ¢, is a function of ¢
which is similar to ¢,. On the other hand as long as (5.8) is satisfied
we get

(5.15) |(u) — 2 (v*)| < LF(Ny+ Np+-1)(v** — ™) .

Further under the same situation, g is a decreasing function of w.
Therefore -

(56.16) g+pdw/du<<g(t*, v*, w*), x(v¥), ¢)

- FNLFH{lE— 8ol + [ — 0, 4 [w— 1+ |2 — 9. + Pole)}

<g(t*, v*, w*), 2(v*), ¢)
+ N.Li {(N,+ Ny 1)1+ LE)0** —0*)+ [t —s,|+ lw(v*) — 73]
+|2(v*) — .|+ du(e)}

<g(t*, v¥, w(v*), x('v*)’ e)
+ N L {(1+ L&) N, + N+ 1)(v** —v*)+ 0,46,
+2[c% —s,|+¢o(e)}

It is easily seen that g(t*, v*, w(v*), x(v*), ) is positive when 6,, d,, &,
and ¢ are sufficiently small.
Since hf<<0, we can assume

h<ihs
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for the domain (5.3) and 0<e<p,. On the other hand
where

M= N,\LF{(1+ L)Y N, + Ny+ D)(0** —v*)+ 8,46,
2% —s,[+ o)} + 9%, v, w(v¥), B(v¥), ¢) .

As long as (5.8) is satisfied, p remains positive. Further if
(5.17) p=—2M/h¥
for the first time at a value of u, we have
edp/du=p*g+ pdw|du~+ ph) < p*(M,+p3h§) =0 .

This is impossible, since p reaches the value (5.17) for the first time.
Therefore as long as (5.8) is satisfied, we have

(5.18) 0< p(u)< —2M,/hs .

Now we shall give an estimate for dw/du. By virtue of (5.18) we
may consider Y=dw/du as a vector-valued function of ¢. Y satisfies

(6.19)  edY/di+(A—(9+ph)1,)Y+(a+pa)+LY)Y=0.
By the use of lemma 1 we get

(5.20) (dw/dul S K, {00 LN+ N,)
+max |a(t(z), 2, w(z), x(2), oI} .

vE22Z20

The assumption (2.9) implies that
(6.21)  |a(t(2), 2, w(z), 2(2), ¢)|
S Li{It—sil+ (0= v*)+lw—1r,|+ o) —$(2) |+ 44(e)}
S LE{ N0 —0%)+ No (0, —0%)+ 21" 5 + 0, 40
-|—Su*ldw/duldu} ,
where ¢, is a function similar to ¢,. Hence
dw/dul< M;+K0L5“Su \dw/duldu ,

where

(5.22)  M;=K[0;+ L {(N2+ N,)+ N,(w** — v*)+ N, + (v, — v*)
-+ 2|T*'_32| + 54"|" ¢3(€)}] .
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Thus we obtain
(5.23) Id’lgU/dul<M66K°l°*(”**_”*) .
Therefore under the assumption' (5.8) we have the following estimates:

[dw/du|< K,(N,+ N,+ Ni+4),
(5.24) 0<p(u) < KN {(v** —v*) N, + N+ 1)+ 4} + 4,
le(u) — ()| < K(K*+ (N, + N,)+ 4 ,
where K,, K, and K, are sufficiently large positive constants, and 4 is
a positive constant which can be made as small as we wish if we choose

0, 0,, 6, and e sufficiently small. .
Let us consider the system of equations

K1(N2+N3+N%+A):M ’
(5.25) K, N {(v** —v*)(N,+ N,+1)+ 4} +4=N, ,
K(K*+4)(N;+N,)+4=N; .
If we assume that (v**—o*) is sufficiently small, then K* becomes

small. Hence there exists a real-valued solution N,(4), N,(4) and N,(4)
such that :

N(0)=0, N(0)=0, N(0)=0.

This solution is analytic in 4, and N,(4)>0 (=1, 2, 3) for small positive
values of 4.

Now choose v** so near to v, that (v**—2*) is small enough. Then
keep v** fixed. Take 4 so small that N,(4) (7=1, 2, 8) satisfy all of
conditions given above. Then choose d,, d,, §;, and e so small that (5.24)
is satisfied under the assumption (5.8). As a consequence, we get

dw/dul<N,, 0<p@)<N,, |o(u)—dw)<N,,

under the assumption (5.8). This proves our theorem for v*<u<v**,
It should be remarked that v** can be kept fixed even when ¢,, J,,
d; and ¢ tend to zero. :

6. Proof of Theorem, Part IIIL

By using an argument similar to that used in the preceding section
we can prove the following lemma:

LEMMA 2. There exists a positive constant L* such that, if
’I)**éu*évs , TP , wr* — ¥ < L* ,

then for any positive numbers 8, 0;, &, 0, 0s and N there exist two
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positive numbers N’ and N"' such that if

) —r<0,,  ldwu)/dul <5, ,
0< p(u*) <4, , ltu*)—s,| <5, ,
() — p(u*)| <3,

and

0<puw)=N
Jor w*Zusu**, then we have

wjdul SN, o) —p(u)| SN
for w*=uu**, where

{ d(u) (uiéva) ’

€ Hw= Ya (wzv,) .

Further we can make N’ and N as small as we wish by taking o,
05 06y 07y 0y &, N and max (u**—wv,, 0) sufficiently small.
From the results obtained in the preceding section, we can derive

lw(v**)—r3| <0, , |dw(v**)/dul| <5, ,
(6.2) 0<p(v**) <3, , t(v**) =8l <o, ,
| |2(v**) — p(v* )| < .

Therefore we can prove the following lemma:

LEMMA 3. Let u* be a real number sufficiently near to v,., Then
Jor any positive number N there exist two positive numbers N' and
N’ such that 1f (6.2) s satisfied and

(6.3) | 0<p(u)< N
Jor v¥*<uu*, then we have
(6.4) dw/dul <N, |a(w)— )| <N”

Jor v¥*=usu*. Further we can make N’ and N as small as we
wish by taking &, &, &, ¢, N and max (u*—wv,, 0) sufficiently small

Let 0, be positive and small. Since gy (s, v, 73, ¢(v))<0 when v>v,
is sufficiently near to », and v, is the first value of v >w, such that (2.7)
is satisfied, we have

(6~5) S: go(szy Uy Ty, ¢('Z)))d’l)> — 0y
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for v**<v=<wv;,—d, when §,,>0 is sufficiently small.
Now we shall consider the neighborhood of the curve

t=s,, w=r, , r=¢(u), v*Zugv,—0,.
We shall prove that
(6.6) 0<p(u) =0,
is satisfied for 7
(6.7) v**éugvs—;ﬁg ,

when 8,, 8,, 0; and ¢ are sufficiently small.
Under the assumption (6.6) we have

[ @+ pawjawin> 2,
Uy
when ¢,, 8, 0;, 6; and ¢ are sufficiently small. Therefore we have
e/p(u)zs/p(@2)~5u (9+ Ldw/du)du — Suphdu >30,,— Lo, .
1)2 '1)2

Then assuming ;< 8,/(4L§), we get p(u)<4(¢/dy,). Choosing ¢ so small
that 4(e/dy,)<ds, wWe get

0<p(u)< dg

under the assumption (6.6). This result together with lemma 3 proves
our theorem for (6.7).

7. Proof of Theorem, Part IV

Put u*:v3~69, and let w**>v, be so near to v, that we have

9>%95 ,
for
lw—r,|=p, , lt—s,l=ps, wr=susur*, 0=e=<p,,
min {|lz—¢(u)|; v*Su=v} =p,,
where

95“=go(82, Vsy Tay ya) .

It should be noted that gF is positive.
Since

‘e/p(u*) _-_—e/p(v"“)—— E::(g—kﬁdw/du—l— ph)du ,
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e/p(u*) can be made as small as we wish if we choose ¢, &,, J; and ¢
sufficiently small. '

Now assume that the solution ¢(u), w(u), x(u) of (5.2) can be con-
tinued until v =u** with condition

0<p(u)<N .
Then we get
dw/du|<N',  |e(u)—dw) < N”

for w*<u=swu**. Since
e/p(w)=e/p(*)— |’ g+ pW)du—|" (pdw/duw)an>0
the integfal
[ o+ pmydu

is made less than
On+ LEN'(w** —u*) ,
where
0<e/p(u*)< oy .
Therefore at a value of u in the interval u*=<u=<u™* we get
g+ Dh< LFN'+0,/(w** —v;) .

Let 6, 0,, &5, ¢, N and u**—wo, be so small that the right-hand member
of the inequality is less than g/4. We fix N and u** hereafter. Since
we got

Ph< —gil4,
we have A<0 and

p>95/(4L¥) .

This implies that there exists a value of u in the interval w*=<u=<u**
at which we have p=min {gF/(4L§), N}. At this point we shall change
from u to ¢ as the independent variable. Then we have a situation
similar to that in § 4.

Thus the proof of our theorem is completed.

8. Remarks

Along the jump curve (2.8) » remains constant by the assumption
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(2.9). However if we consider a system of the type

ed*u/dt*+ gdu/dt+ fdw/dt-+h=0,
(8.1) e d*w/dt*+ adu/dt+ Adw[dt+a=0,
dx/dt=fdu[/d¢+Bdw/dt+b,
where o is a positive number, then we can define the jump curve

without the condition (2.9), and » need not remain constant along the

jump curve. Namely we shall suppose that, at a point 0=(0, 0, 0, 0),
we have ' ‘

) { 9,=0, a,=0, fﬁo=0 ’
‘h0<0 ’ (ago/6y)fo+ago/av<0 .

Let ¢,, ¢, be a solution of the equations

(8.2)

(8.3) gt A jdv=0,  dg,jdv=F,+Bidd/dv
with initial conditions o
(8.4) #(0)=0,  ¢0)=0.

Let v, be the first value of »>0 such that

B5)  [1900, v, 3.0}, BON AL+ VAL )+ )dv=0

Assume that real parts of all characteristic roots of the matrix A, are
positive along the curve

(8.6) t=0, 0=v=v,, r=¢(v), Y=d(v).
Finally Wé shall assume that at the point (0, v, qsl(vl); ¢.(v,)), we have
- (8.7) | Go—PoAs >0 . o

Then we can prove the following result:

Let 6,, 0,, 0,, 6,, 05 and &; be sufficiently small positive constants.
Suppose that

t*1<0, , lw(tN=dy,  du(t®)/dt=o5",
(8.8) lw(EN=d,,  |dw(t*)/dt|<o,du(t™)/dt ,
le(t*) =0 .

Then there exists a positive-valued function T(6,, 6,, 05, 0,y 05y O, €) Of
0y, 0y, 04 04 05, Os, &, sSuch that, for any initial values satisfying (8.1),
there exists a solution u(t), w(t), x(t) of (8.1) over the interval 0=t<T.
Furthermore as 6,, 0,, 05, 6,, 65, 0, and ¢ tend to zero the curve re-
presenting the solution wu(t), w(t), x(t) in the (t, w, w, x)-space tends
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to the curve (8.6).
In fact if we put

(8.9) w=¢(u)+w , r=¢(u)+%& ,
we get
ed*u/dt*+(g— LA 'a)du/dt+ fdw/dt+h=0 ,
e dMb/dt’ +(a+ Adg, [du)du/dt+ Adw/dt-l— a
(8.10) 4+ (d*p,/du?) du/dt)?
—e”{(9—BAT'a)du/dt+ fdw/dt+h} dp,/du=0 ,
dx|dt =(f+ Bdeo,/du—dp,/du)du/dt+ Bdw/dt+b .

Therefore by changing from ¢ to # as the independent variable, we get

edp/du=p*(g—BA; -+ Bdib[du)+p*h ,
e dw/du+ pl Adw/du+ a+ Ade,/du+ pa
+e7{(e/ p)d’p,/dw’ — (dop,/du+ dib[du)(g — F AT o,
+ pdib/du+ph)}1=0,
dz/duw=( f+ Bde,/du —dp,/du)+ Bdw|du+ pb ,
dt/du=p .

(8.11)

Then by the use of an argument similar to that used in the proof of
our theorem we can prove the statement given above.
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