Natural Science Reportv, Ochanomizu University, Vol. 7, No. 1, 1956 1
BEROKELFRE BABIFERE 574 $15
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There are many who study the generalization of the notion of integrals,
where vector-valued functions are concerned with; among whom- special
mentions are made here of G. Birkhoff (2], B. J. Pettice (7], R.'S. Phillips (8]
and C. E. Rickart (9). Adepting the method due to S. Kametani (4] who,
giving stress upon the additivity. of integrals, has defined an integral of real-
valued functions, we shall define integrals of vector-valued functions, investigate
some properties of the integrals thus obtamed and consider the relatlons to
some other integrals.

To begin with, let us make a brief mention of the definition due to S.
Kametani (4). Let f be real-valued, bounded functions defined on a fixed set
S, B a o-ring of sets CS to which S belongs as a member, and # a positive
measure defined on B. To each f, measurable or not, there exists an additive
set-function F'(¢) defined on B:which satisfies for every o¢B

m(e) intf(s)=F(e)=m(o) supf(s).

If such a set-function F is uniquely determined, then- F(S), by definition, is
an integral of f over S. This definition is identical with that of Lebesgue’s
type.

We shall express here our grateful thanks to Prof. S.Kametani for his
kind encouragement and valuablée remarks given us throughout these researches.

1. Terminology, fundamental notion:and notations.

{ % ; P} denotes the set of all the elements which have a certain property P.
. By E, we shall mean a locally convex topological vector space introduced
by J. von Neumann (6] which is as follows :

I. E is a vector space over real numbers (1, p. 26).

II. There is a complete system B of neighbourhoods about the zero vector
6 whick satisfy the following conditions 11,—I1I,.

II;, 6¢V for every Ve®D.

Il x€V for every Ve implies x=0.

II; Vi, VoeB implies the existence of Ve such that Vs CViNVs.

II, Ve implies the exzsz‘ence of V' eB such that V'+V'CV where V' +V7
={X1+%y ; %1, X6V }.

II; Ve implies the existence of V'eB such that o«V' CV for all loz] =1
where oV/'={ax ; xeV"'}
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Il x<E and Ve imply the existence of a veal numbey « such that
xeaV. ' '

II1. VeDB implies V+V=2V.

From the above conditions II;—IIs, we see at once that the operations of
vector sum and scalar multiplication are continuous. Also it is obvious that
scalar multiplication ax gives a continuous mapping : (a,x) —ax from RxE
to E where R is the totality of real numbers. We may suppose evidently that

“every neighbourhood of 6 is symmet7ic : V==V, It is also evident that E is
a regular Hausdorff’s space. From III and the continuity of scalar multiplica-
tion, we can conclude with ease that every neighbourhood V is a convex set :
AV+(A—A)V=V for 0=A=1. ' '

A® denotes the closure of A. AxB={axb;acAbecB}. aA={aa;acA)
(aeR). Co A, the convex cover of A, is the smallest convex set which con-
tains A. For later use, we shall summarize here some of the wellknown
relations without proof :

(A+B)*DA*+B" specially (A+%,)%=A%+x%,,

aAd=(aA)*, A%=N(A+V),

vER

CoA={3Nia;: f;lx,-=1, 2,20, ajeA}, Co(CoA)=CoA, CoaA—aCo A,
=1 i=

Co (A+B)=Co A+=Co B.

Let B be a o-ring of subsets of a fixed set S, which is and will be assumed
without specific mention to belong to B. The set 6€B is called measurable as
usual. We shall denote by 72 (¢) a non-negative, completely additive measure
defined on B with 7 (S)<oo. For any point-function % (s) with range in E,
% (¢) denotes the set of the values taken by x for seg, that is

x(6)={t;t=x(s), seo}.
It is evident that x (6) D% (¢’) when 6D0’. The charasteristic funstion of o,
denoted by x.(s), is a real valued function defined by setting x,(s)=1 for sco
and - x-(s)=0 otherwise. Then by a simple funtion we mean a vector-valued
function defined by o

. n
%(8)=2Xs(s)C;
=
where 05€B (7=1,2,--,7), n being a natural number, 6:MNo;=0 if 7=/, and
c;eBE (j=1,--,m). x(s) is bounded if and only if x(¢) is bounded as a set
in E, which means, to each Ve®, there exists a A>0 satisfying the condition
Ax () V. R _

We shall often speak of a diwision of o, denoted by 4 or 4={c;}, as a
partition of ¢ into finite or countable disjoint sets ¢;e¢B. We say a division
41={c}} is a subdivision of a division _Agé {6/} when to each 6} of 4; there
exists a 67, of 4, containing ¢}, which will be denoted by 4:=<4;. - To any
pair 4;, 42 of divisions of ¢, we may associate a-third division, denoted by
Aied3=45+4,, defined by 4;:d,={c}Ne6}; £=1,2,-, 7=1,2,-}. We may
remark here d;.45=4,, 4,+4;=4,, from which we can conclude that to each
pair of divisions 4; and 4, there is a division 4 which is simultaneously a

“vaaven e
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subdivision of both 4y and 4s. Let N be the totahty of natural numbers. We
denote by 7 and 7; a finite subset of N. Then we “shall write 7;=7, for
7,7y {%;) being a point-sequence in E, Z x; denotes the finite sum of x; for
all ; belonging to 7. Accordingly, when {A } is a finite or countable sequence
of sets in E, Z A; means the set {2 %j; %;€A; ).

It seems convenlent for our purpose to give here a brief mention of Moore-
Smith’s limit (5. p.103) with respect to the system 2 of neighbourhoods about
6. Given {xy; VeQ}, suppose, for a certain x€E, there exists, to each V a
Voe® such that V;CV, implies (xvl—x)eV': in notation

v ave ; iCVe — (xy,—x)eV.

Then x is said the lémit of {xy} with vespest to B in the sense of Moore-
Smith, Also we say that {xy} converges to x. By this definition of limit,
the idea of completeness may be generalized by considering, instead of

Cauchy’s fundamental sequence, the fundamental V-sequence {xy,}, that is,
in notation as follows :

vV, av, ; Vi, VoCV, — (xvl“xvz')EV

We are lead to say that E is complete in the sense of Moore-Smith if and
only if every fundamental L-sequence has a limit in E. A set-function F(¢),
defined on B, with range in E, is said to be completely aiditive if and only

if o~=_®10~j, 0:Noj=0 (=), o;€B imply
. J=

_ZIF(O‘J')=F(6‘),

‘7= ’ .
which means that the left hand-side is convergent and the sum is equal to
the right hand-side. For later use, we need the notion of absolute continuity

of set-functions. Let F(¢) be a completely addltlve set-function. . If, to each
V, there exists a 6,>0 such that

m(6)<8, implies F(O‘)GV,_

then F(o) is said to be absolutely continuous with respect to the measure 2.

2. Basic functions,

Definition 2.1. Let x(s) be a function defined on S with vange in E.
x(s) ¢s called basic on ¢e€B if and only if to each meighbourhood VeL there
exists a finite division Ad={o;;j=1,-,n} of o such that for any pair of
points s!, s of the same 6; holds x8')—x(s'")eV, or move briefly %(o;)—x(0;)
CV(i=1, -, n).

From this definition we see immediately that if x(s) is basic on S, then
it is basic on any measurable subset 6CS, and that a basic function is bounded.
It is also evident that the family B(S) of all basic function on S forms a
linear space over R. A simple function is basic. If we introduce a topology
into B(S) by means of uniform-convergence in the sense of Moore-Smith, then
the subspace of all the simple functions is dense in B(S). From this we can
easily derive the following Lemma 2.1.
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Lemma 2.1. Let x(s) b2 a function belonging to B(S) in which E is as-
sumed complete. Then there is a set-function F(o)=F(x,0) defined on B
with range in B, satisfying the following conditions (I,) and (1.

e F(x,0)em(e)(Cox6))* for all 6€B
(I3) F(x,¢) ¢s co'mtlez‘ely additive as a set-function.

Proof. If x(s) is a simple functlon given by x(s)= Z)(,, (s)c; (¢c;€E, oil 10;
=0{z=x7)), then the set-function F(x,¢) defined by F(x 6)= Zm(aﬂo“])c,

- has the properties (7;) and (I3).

Now, every x(s)eB(S) is a uniform limit of some sequence {%,(s)} in the
sense of Moore-Smith in which each %, is a simple function. Consequently
with each %y, a set-function F(xy, ¢) satisfying (I;) and (I3) can be associated.
It is easy to see that { F(ay,0); Ve¥B} is a fundamental L-sequence for each
fixed o and converges to a limit lim F(%y,¢)=F(x,¢), which is easily seen
to be independent of the choice of {xy}. Thus F(x,0), satisfying ([;) and
(I3), is the required one and our lemma is proved.

3. The definition of the integrals and their properties.

We have shown that there ef_xists a set-function satisfying (I;) and (I3) -

for the family of basic functions. To define our integrals, we shall follow
after the definition mentioned before of integrals of real valued functions, but
take into account of their uniqueness condition.

Definition 3.1. Given a function x(s) taken values in E defined on S, let
us suptose that there exists a set-function I(x,o) with range in E such that

(I I(x,6)em{a)(Co %(6))* for any measurable ocCS,

(I3) I(x,0) is completely additive.

If a set-function satisfying (I,) and (Ip) is uniquely determined, then
we shall say that I(x,0) is the integral over S of x(s) with respect to the
measure m and also that x(s) ¢s integrable over S and shall wyite

I(x,6)= Sax (s) dm

From the definition we see immediately that if x(s) is integrable then
ax(s) (aeR) is also integrable and if further x(s) is bounded, then I(x,¢)
becomes absolutely continuous as a set-function. Further we shall prove the
following : .

Theorem 3.1. " If x(s) is integrable over S, it 'follows that it is also
integrable over any set ¢eB. ' '

Proof. We have only to show that the uniqueness condition of the inte-

gral over 6, is verified.

Supposing the contrary, let F,(¢) be any set-function satisfying (I;) and
(1) for any measurable oC o, (instead of S) and

F,(60)=x S‘Tox(s) am (3.1)
Let F be the extension of F, defined by
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F(6):Fo(6069)+g x(S) dm for all ¢¢B.

Since F(¢) must satisfy (f;) and (Ip), we would have from the uniqueness
condition of the integral over S

F(o)= S x(s) dm for all ¢¢B,
g
whence especially
S | x(s)dm:F(ao‘):Fo(aa)

This contradicts (3.1) and proves our theorem.

To investigate the properties of integrable functlons we shall make use of
the following definition which may be regarded as a generalization of the
notion of basic functions.

Definition 3.2. We shall say that a function x%(s) definei om S with
vange in B is measuyable 0% 6, zf and only if to each 0€B, (;‘CG’O ani to
each VeB, there exists a countable division 4, of o, such that for any sub-
division A= {c;} of 4y, there exists a 7, for which n#=n  implies

%}(Co M(Gmﬁfj)x<6ﬂ0‘j))a—%(co m(eMa;)x(eMe;))*CV,
which we shall denote in notation as follows :
VV, d4y ; Vd=4y :
Amy; w=my —>%}(Co m(e(6;)x(6Ma;))®
”‘%(C" m(ee;)%(eMa;))*CV.
We see easily that basic functions are measurable. Moreover we shall see

later in section 4, that any function which is integrable in the sense of Phillips
1S measurable.

Let us remark here that if (o) is completely additive, then to each sub-
division 4= {c;} of 6 and to each V there exists a 7}, such that

(%F(Gj)"F(G))EV for all #=xy,

which means that the series 3 F (¢y) is unconditionally summable to F(¢) (9.
p. 50137.
Theorem 3.2. If for any Sunction x(s), measuvable on 6,, a set-fun:tion
I(x,0) satisfies the condztw%s (1)) and (I,), it is uniquely determined on o,.
Proof. Let I,(x,0) be any set-function satlsfylng (1) and (I3). The
condition of measurab111ty of x s) shows that to each ¢ and to each V, there
corresponds a 4y and 7y such that

Z(Co m(aﬂ*d,-)x(zfﬂaj))“ - Z(Co m(o‘ﬂo‘])x(o‘ﬂ(ig))“CVfor all #=ny.
T

Since I and I, are both completely additive, there exists a 7r{,; for Wh_1ch if
T2 ?i"v then .

(I(x, G)——%I('x, oNe))eV

(1(%,6) —ZLo(%, 61163 €V,

so that, for any w=m, U ! !, we have
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I(x,6,—1,(x, 0‘)6%1(96, G'm()‘j)’—%lo(x, oNe)+2V

C3V.
whence ,
I(x,6)—1,(x,6)eN(3V)={6)
veD .
taking into account of the arbitrariness of V. Thus the theorem is proved.
Corollary 3.1. Basiz fun:tions are integrable ovey S provided that E be

complete,
Corollary 3.2. If x(s), a fun:tion defined on S, is measurable on ¢, and

permits set-funstions satisfying (I,) and (I,), then x(s) is integrable over oo.
Lemma 3.1. The sum and constant multiple of measusable funztions on
oo, ave measuyable on o,.
Proof. Since the proof is obvious, we shall omit it.
~ Lemma 3.2. Let x{(s) be a funztion defined on S with vrange in E and
let {oj} be amy countable division of c€B into measurable sets o¢;€B.
Then to each V there exists a 7, such that if w=m, then

m(L%o‘,')Co %{c) Cm(c;Co x(c)+V. o : - (3.2)
Proof. Let us remark here that for any set A in E we have
aCoACLCoA—(B—a)x, (3.3
provided that 0=a< g, x,€Co A. ' '
If we replace A, o« and 8 in (3.3) by x{0), m(%)o‘,-) and m(e) respectively, .
then we shall obtain
m('%tjo*j)Co x(6) Cm(e>Co x(G)+(m<6)—m<7LtJO‘j))XO,
whence taking z large enough so that (nz(cf)—m(%)o‘j))xoev may hold, we

shall have the required result (3.2).
Theorem 3.3. [f measurable function x(s) and y(s) are integvable over

Go, then so are the sum (x+y)(s) and ‘
S (x+y)(s) dm= S x(s)qu—S y{s) dm.
‘ (o) . . Gy, [
Proof. Let us define a set-function F(x+y,0), for 6Co,, 6€B by
F(x+y, )= 2(s) dm+ | yis)dm. -
B ) 5 I o .

We have to show that F(x+y, ¢) satisfies (I;) and (fz), which means by
Lemma 3.1 that x+y is measurable and by Corollary 3.2 that x¥+y becomes
integrable. By this that consideration, we have only to show that F(x+y,0)

satisﬁes (11), as we find with ease from the complete additivity of Sox(s) am
and Say(s) dm that F(x+y, ¢) satisfies (I3).

From the measurability of y(s), we may find, to each V, a 4y such that for
every 4={o;}=4y, there exists a =, for which

2T, — %m(aﬂo*j)ycbﬂﬁj)—%m(qﬂmy(maj)CV.

By the complete additivity of integrals S y.s)dm and g x(s) dm, there exists
[ Yo
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a 7, such that for all #=7, holds

[ 5s) am—3, Smg_x@ dmev (3.5)

7
and

S(ry(s) dm—3, Smwy@) AmeV. (3.6)
By Lemma 3.2 there exists a 7/, such that for all 727
Com(aJa;)(x+y)(o)CCo m(o)(x+y)(o)+V. @D
Then we have, for all 727 ,U7z,U7),

g(rx(s) am+ ggy(s) am

EZS x(s) dm+V+ZS y(s) dm+V (by (3.5) and (3.6))
T o'ﬂa‘]- T o‘{'](r].

TS m(eN;)(Co xloNe)) +Em ‘563 (Co (661 +2V
C%‘, m(a(a;)(Co x(aMoy)+V) 4—% m(aﬂq'j)(Co yeNao)+V)+2V
C% m(eNe;)Co(x{cM ) +y(cMNa;))+2m(e)V+2V
C% m(eM ;) Co((x+y)(6Mo;) +y{eMa;) —y(eMa;))+2m(e)V+2V
CCo S m(aNay) (%-+3)(o16)+V42m(o, V42V (by (3.4))
CCo maNoy) (¥+3)()+V+2m(0) V2V
CCo m{)(x+y)(6)+V+V+2m(c;V+2V (by (3.7))
=Com(o)(x+y)(a)+(4+2m(c))V. |
Since V is arbitrary, we can conclude
|, 7(s) dme+ | yis) dme [0 (Com(e)(x+3)(0) +(U+2m(e)V)
={(Comic)(x+y)(0))°.

This shows F(x+y, ) satisfies the condition (I;) and our theorem is proved.

4. Relations to other integrals.

To investigate the relations of our integrals to other integrals we shall
make use of the following theorem the essential part of which is due to C. E.
Rickart and R.S. Phillips.

Theorem 4.1. For a function x(s), defined on S with rvange in E, fo be
measuyable and termit sei-funmctions satisfying (I)) and (Iy) it is necessary
ani suffizient that there exists a set-function I(x,0) with range in E such that

VV, 34y ; 4=z 4,, 7, : _'
T2T 4 — % mi{oMai% oMNoj)—I(x,6)CV . 4.1

The condition is nothing but a condition that the set-function F(o)
=m(c)x(c) should be SV-integrable in the sense of Rickart (9.p.502]. Also
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we remark here that the same condition is that of the integrability of x(¢) in
the sense of Phillips (8. p.119]. '

Proof. Necess:ty. lLet x(s) be a measurable function for which there exist
set-functions I(x, o) satisfying (I;) and (I;), then Iix,6) is our integral by
Corollary 3.2. From the measurability of £ s) and the complete additivity of
I(x,0), we may easily conclude that the condition (4.1) is necessary.

Sufficiency. The set-function, satisfying the condition (4.1), is Phillips’s
integral of x¥(¢) as mentioned above. . According to one of the results obtained
by R.S. Phillips (8. p.122], I(x,¢) satisfies (I;). Since the measurability of x(s)
is obvious by (4.1), we have only to show that I(x, ) satisfies (I;). From our
assumption, there exist some division 4= {o;} and a set #CN which satisfy

I(x,0) e% m(ocMoj)x(aMa;)+V.
Further, from Lemma 3.2, we have for a sufficiently large =
Co mioN gtj 6;)%6) %ja‘j) CCom(c)xe)+V.
Thus we may conclude
, I{x,6)eCom{c)x(c)+2V
which shows
I(x,0) Gvgﬁ(CO'M<6)xC'6>+2V) =1(c)(Co %(6))*

and our theorem is proved. ‘

This theorem shows that at least for measurable function x(s) our integral
is in the sense mentioned above identical with that of Phillips or Rickart’s
SV-integral. _

Pettice’s integral is concerning with the functions with ranges in Banach
spaces. The following theorem gives some relation of our integral to that of
Pettice’s.

Theorem 4.2. .Let x(s) be a function defined on S with range in Banach
space. If x(s) is integrable in the sense of Pettice, then it is also integ/a-
ble in our sense,

Proof. It is sufficient to show that Pettice’s intégral P Sd‘x(‘s)‘dm satisfies
(I;) and the condition of uniqueness, since Pettice himself gives the complete
additivity of his integral as a set-function (7.p.283). But the condition of
uniqueness is almost immediate since x(x{s)) is integrable as a real-valued
function where % is an element of the set E of all the linear functionals de-
fined on E.

To prove that (f;) is satisfied, let us .remark first that ¥ «#{s)) is integra-
ble for every %¢<E, so that we have

(P) | x(s)dme N {x; %) em0)(CoE(x(6)))" ).
o xCE

Now we shall make use of the fact that every closed convex subset A of E is
the intersection of all the closed half-spaces {x; xx <a} (acR, ¥XcE) which
contain A(3.p.73). '

From this fact we can conclude

e
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NA{x;x(x)em(c)(Cox(x(6))*} =m 6)(Cox(6))"
XCE .
which shows ‘
(P) S-x(s)dmem(o‘)(Co x(6))%.

Thus the theorem is proved.
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