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1. Introduction. A large amount of investigations in the theory
of probability has been devoted to study behaviours of sums S,=>7., X,
(n=1,2,---) of independent random variables X,. We have the central
limit theorem in a refined form with an elaborate estimation of the
degree of the Gaussian approximation. Under the existence of moments
of X, up to a necessary order, the central-limit theorem and sometimes
the estimates of its error term can be used to deduce asymptotic pro- -
perties of S,. In many cases we can obtain the same result not appeal-
ing to the central limit theorem but directly from the distribution of X,.

The well known renewal theorem concerns non-negative variables X,
(c.f. Feller [11], [12], Doob [8], Técklind [16]). Blackwell [1], Erdos,
Feller and Pollard [8] proved the theorem under the sole condition
E(X)=m<ow. Chung and Wolfowitz [4] formulated the theorem for
X, with lattice distribution taking off its positivity, and proved it under
the condition m<<w. When m< o and the distribution of X, is not of
lattice type the theorem was proved by Chung and Pollard [5] under
the additional condition : :

@.1) lim |(t)1 <1.
t| >0

Afterward Blackwell [2] proved the theorem for the lattice and non-
lattice X, without the assumption (1.1). The method of proof adopted
by Chung and Pollard is different from others and interesting in the
sense that it is purely analytic and uses only a formula 1nvolv1ng the
characteristic function ¢(f) of X,.

In this paper we introduce a method by means of which we can
avoid difficulties caused by the unpleasant behaviour of ¢(f) near t==+co
when the equality holds instead of the inequality in (1.1). We can apply
the method also to determine the limiting distribution of the numbers
of S, taking values in a finite interval. This problem was studied by
Feller [11] for lattice variables, and by Chung and Kac [8], Kallianpur
and Robbins [14] for variables belonging to the attraction domains of
stable laws. When X, has the absolute moment of order 2+8, §>0,
we need Cramér’s approximation [7], [10, p. 44], to the characteristic
function of S,, instead of the Cramér-Esseen refinenment [10] of Lia-
pounov’s theorem. This situation is exemplified in the simplified proofs
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of Theorem 8 due to Chung and Kac.

In the last section we consider a Gaussian stationary time series
having the spectral density f(4). The limiting distribution depends on
values taken by f(2) near 1=0. This is in a close connection with the
growth of S,, as n—>. Indeed, as was shown in [15], the growth of
S, is much affected by the vanishing character of f(2) near {=0. A
thorough investigation in this direction has been done by Hunt [13].

Throughout this paper we consider only non-lattice variables. The
same method also applies to lattice variables with minor modifications
and it will be sufficient to notice the following points specific to this
case. The characteristic function @(¢) is periodie, say with period 70,
and we may conveniently divide arising integrals involving o(f) into
those over the intervals with length 7. At the final step of evaluation
we may make use of Poisson’s summation formula.

2. Proof of the renewal theorem. To avoid difficulties stated in
§ 1 caused by the behabiour near ¢== <, we use convolution transforms -
with Fejér’s kernel and the following simple lemma is required.

Lemma 1. Let W(x),b — oo << oo, be a non-negative bounded measur-
able function such that W(x)=0x%), as |x|—>. Then we can choose
a constant ¢, such that we have

(2.1) : Co fmﬁKk(y—x)dsz(y), —oo <Y< o,

for all suffictently large A, where we put

__.sin? Ax/2
K@= e

Proof. The integral of (2.1) is equal to
J-_Sw <Sw e"”e"”dt) sin® A(y —)/2 dx

2 J-w TAY—x)*/2
:i ﬁjw e—[z[det ro ez‘cy Sin2 1%‘/2 d.’B
—oo J_ 2222 ,
:}_ r é—lz[+iw<1_]t|4>dt: 1  (A—e?cosy)(1—y")—2ye*sinly
2 J-a A 1492 21+ y%)?
. ‘ .
— 1 ayouy.
L a+oay)

This proves the lemma.

Theorem 1. (Chung and Pollard) Let X, X,,... be identically dis-
tributed independent random variables of mon-lattice type, with mean
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value m=E (X)), 0<m<c, and let N(a, a+h), h>0, be the éwpected number
of Sy 1<n< eo, belongmg to the interval (a, a+h). Then N(a,a+h)<oo
Sor all a, h, cmol

(@ lim N(a, a,+k):% if 0<m< oo,

o>

(B) lim N(e,a+h)=0 if 0<m=<eco,

> —o0

(y) lim N(a, a+h)=0 if m=co.

.a»oo

Proof. We shall first prove (a). Define
(2.2) H@)=1 if |z|<h/2,
=0 if |z|>h/2,

Then we can write |
2.3) Na, a+ k):E{i H(Sv——a—h/Z)} :

From this we can expect that if we denote by Ma, a+h) the right-
hand member of (2.8) for a functlon H with sufficient regularities,
there will hold ~

2.4) lim Na(a, a+k)—-— ng(x)dx .
Considerv now the formal Fourier transformations

2.5) fwﬂ(x)e—mdx:ﬁ(t) ,

2.6) | | moeedt—H@.

We shall prove first that (2.4) is true if (i) H(z) is a real-valued even
function (ii) the integrals (2.5), (2.6) are absolutely convergent, and the
equalities hold for all ¢ and «, and (iii) A(f) vanishes outside a finite
interval (—e, ¢). (i) is not essential and assumed only to avoid trivial
difficulties. In the arguments of §8 and §4 it is not assumed.

Let F(x) and o(f) be the distribution function and characteristic
function of X, and let us write G&)=F(x+m). Then as in [5] if we
introduce a convergence factor 0<p<1, we can write

NH(CL h/2, a+h/2)—— lim ZPVF{21 jvw e"iath(t)ew‘”dt}

p>1-0 Vv

@7  =lim z_ng h(t)e i (t)dt

‘P'>10

=lim [* 22O pgro-wwa.
P—>1 Oj—cl P¢() ()3 v
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Now if we write .

()= 6™ o(2), o(t)= Slcos 2tdG(@) + S:sin 2t dG(@)

| =u(t)+w(),
we have the following relations
(2.8) ut)=1+0(t), vE)=o(t), w(t)=o(1), vE)=o(l),
Qp, ) =11—pp() I’=(1—p)*+2(1—p)p(1 —u(t)) + (L~ u(¥))’
(2.9) +4psin? ﬂzt«-i—Zp'v(t) sin mt -+ p(t)

=(1—p)2+4p sin’ —”;-t +({L—plo@®) +o(t?) ,

(2.10) Q)=Q@, t)y=m**+o(t?, Q)=2m*%+ o(t),
as |t]|—>0. _
Take €>0 sufficiently small and divide the integral in (2.7) into
1 - P¢(t) —tat Jp__
L= + I h()edt=1(a)+ J(a) .
2 [CZINZE 3—;\ 1—pp(t) ¥ @+
Then the Riemann-Lebesgue theorem gives

lim lim I(a)=0

a-rc0  p>1-0

for every ¢>0. Now, since p(—8)=¢@), A(—E)=h{E)=h()

J(a):EHE_S.cR{%h(t)e—W}dt

. £ l—P —iar
(2.11) = j_e o R P OMDe e

P 1 = ~tat ;
+£ [ 0o 5 R L-FOOhBe 1 dt.

Putting f()=R(p®)h(t)e~*), rewrite the first integral of (2.11) as

pfO) (* 1—p p (* 1—p POV —
@12) PO SEfdir L 2TE(FO~FO)=I@) +I@),

and recall (2.8) and (2.9), then

Pf(o) £ 1-——p
2 §—E (]_ — P)Z + m2(1 _ "7)t2 dt >J1(a)

pS(0)(* 1—p
o S‘E(1—P)2+m2(1+n)t2+nltI(l—P)dt’

where >0 is a constant which can be made as small as we please with
e.. Therefore, since f(0)=n/(0), on making p—1—0, we see that
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2.13) h“’) 1+ = Tm J(@) > lim J (@) = 20 MO) 1—

p—rl—o

where 5 is independent of @ and 7]—>O, as »—0. Next, it is easy to
show that

2.14) - ’ lim Jy(a)=90.

p>1-0

The second integral of (2. 11) can be divided into

o Se cos (m—a)t—cos at vy pygr 4 P Y (L—u(®) cos at , pnni

7 Jo Qp, ?) do Qp, )
2 (% v(t)sin (m—a)t pe (¢ V&)
WL o .k(t)d WgoQ—(P’—t—)cos at h(t)dt

=I(a, ) +Ia, p)— L@, p)— L@ p) -
From (2.9), (2.10), we get
1 1 1
< , — <
Qlp,t) QA,?) sin®*mt/2
for |t|<e, ¢ small, and we observe that

1— u(t) ~ 5 sin®¢
So sin® mt/2 hmzj lxldG(w)j t? dt<

The Riemann-Lebesgue theorem is then applicable to I, and I,, thus
having

lim lim (Z,+1,)=0.

a»o0 p>1-0

Next

2.15) lim Z,(a, p)= 717 goﬂ%%gﬂ dt+o(1)=Ia)+o(1),

- as a—>o, and

_1—cosac v() _ 1 (sinat/2\* v)QE)—Q@®)v() ;.
== 0 2 joa,( /2 ) Q) vdt.

But since from (2.10) we get
VR — QW) .

o —ol), 1£1-0,
we have

2.16) I(a)=0 (%) + j:(s—it‘%@foa)dt»o g,
Finally

@17)  lim I(a, p) :ﬂ 0 sin at Sgl) mi[2 WL+ o) =1 +o(0),
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as a—>co, and

I()= 2(1— cos a&) sin me/2h(0)

Ta ‘ Q)
_2 ¢ 2 sin’® at/2 m/2 cos mt/2—sinmt/2Q'(E) ,»
‘ s h(O)S 0 at® Q) tdi .
But from (2.10) we get
%z- cos @;'Q(t)—sin -”;—tQ’(t) . '
2 T ——
TG £ = 2m+0(1), |tl—0.
Therefore :
. _n, 20) 1 (1 (sinat/2\ '
2.1 I{a)= V) 2 S (B %a
2.18) (@)=0@+ 20 1 jo : ( e ) @+ oLyt
SO g g
2m

(2.18)- (2.18) give us Nu(a, a+h)< oo and

lim Nix(a, a+h):ﬁ@:lr Ha)ds .
a-> oo m m J—oo .

It remains to show that the above relation holds also for (2.2). First
we define an even non-negative continuous function Hyx), — oo <x< oo,
such that it vanishes outside a finite interval (—F%, k) and

0< Hy(x)— H(x) for |x|<h/2,
| (H@)— H@)dw <y,
with sufficiently small »>0, and the let us define

H (@)= glﬂo(w—y)&(y)dy .
Then |

(2.19) 0< sl(ﬂs"(x) — H@)do= Sl(Ho(x) — H@))dz,

and if 2 is sufficiently large
(2.20) | H@)<Hi@), —w<z<o.
Next fake X>h>0 sufficiently large and define H,(x), H,(x) such that
H(z)=0 Cif z=X,
—Hi—H@  if |o]<X,
Hi(@)— H@w)=H,(x)+ Hyx), —co<w<oo.
Then by the definition, for |z|>=X we have o '
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Hy(w)= H,*(x)

<a S:I{A(w—— y)dy= GOS

k-

K@)y

g@ljm W o
md J-z-s y* A1+

where ¢, ¢, are constants independent of = and A. Since H,(x) vanishes
interior to (—X, X) we have by Lemma 1 :

BE@<2[" K —ydy=E@

with a constant ¢, and sufficiently large 2'>O; Further we define a

continuous even function H,(x) such that it vanishes outside a finite
interval,

0<Hyx)—H,(x), lz|<X,
and
|” @@ - B@ds <y,
and let

H*(x)= rmﬂg(x — y)Kg(‘y)dy .

Then, if 2 is sufficiently large, (2.19) and (2.20) hold with H,*(z), H(2)
replaced by H.*(x) and H,(x).
Now by (2.20)

2.21) | 0< Ni(a, a+h)< Nyu(a,a+h),
0< NH'O*(a, a+ h) - Nﬁ(a, a -+ h) = NHO*—HO(a’ a+ h)
=Ng,(a, a+h)+ Nz, (a, a+h) <Nz (e, a+k) + Nux(a, a+h).

Hy(x), Hyx), Hy*(x) and their Fourier transforms h¥(), hyt), h*()
satisfy (i)- (iii). Therefore by the results just proved applied to (2.21)
Ny(a,a+h)< o, and we have '

(2.22)

lim (Nz,(a, a-+5)+ Ni(a, a+h)):”%(r Hyw)dz + S“’ Hy (x)dx>

<0G+ lr’ H@)ds+1 <0+ 14+ L Sm (H,*(@)— H))de
m J oo m m m o

<o@+2,
m

and

lim Ny (a, ar,-i—k):lgoo Ho*(x)dmsi—{— /.
m J-e m m

a-»roo
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Hence

0<Tim Na(a, a+h)—lim NH(a,a+h)£O(2‘1)+—“i-n’7—.
But since the left-hand side of the above ineguality is independent of
2 and 5, taking 2-'+, sufficiently small, we see that there exists

lim Ni(a, a+ k=" .

a>oo m
This proves («) of the theorem.

We shall next prove (8) and (y). The proof of (8) for 0<m< o is
contained in the above. We have only to note that in the evaluation
of (2.13) Jy(a)—>—h(0)/2m, as a—>co, when — oo <m<0. This proves that
N(a, a+h)—>0, as a—>c, when — o <m <0, a statement equivalent to (53).

I failed to prove the remaining part of the theorem by means of
an analytical method as in the above and was obliged to employ the
result obtained by Chung and Fuchs [6]. '

First we observe that

—;—[Nﬂ‘(a—h/z, a+h/2)+ N —a—h/2, —a+h/2)]

—lim L S PPE) 1ty cos at dt

p21-0 27 J-¢ 1— pop(E)

Ctim L[ (L

=lim | .gz( - Pqp(t))h(t) cos at dt
1

— o X;h(t) cos at dt .

Obviously from the strong law of large numbers, when m=c, S, has
no recurrent value. Therefore according to [6] the funetion

5‘&?2.?@;)”

is integrable over any finite interval (—¢, ¢), and
%_[Ng(a—h/z, @+ 12)+ Nu(—a—h/2, —a+h2)]

:2_1_ Sc_c Q(T:I?D@> h(?) cos at dt—2% Sc_ch(t) cos at dt

-0, as ¢ —> oo,
This means that as g¢—>co

| Nr(a—h/2, a+h/2) >0,
(2.28) _
Nag(—a—h[2, —a+h/2)—>0.
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Now we may take

__sin® 2x/2 ‘
H(x)= Tz (2>0).

Then since H(x)>0 for (—223, 2:) (2.23) means that (B) and (y) hold
for m=c. This completes the proof.

3. Fluctuation of S,. Also in this section, with an intention to
clarify the process of analysis, we shall treat only non-lattice variables.
We shall prove

Theorem 2. Let X, X,,... be tdentically distributed independent
non-lattice variables with mean 0, variance o°, and for some 8>0 satisfy

Bars=E (| X [**°)< o0 .
Let N, be the number of S,=3>1.,X;, 1<v<n, belonging to the finite
wnterval (—h/2, h/2), h>0. :
Then as n—>co
Pr{NWS@x}e'/z Sze‘“""gdu , x>0,
o T JO

(truncated normal distribution).

Proof. Let us write
N,= ZH(SV)_EI—QS h(t)ede

T V=1

and we shall first obtain, as in §1 for a special function H(zx) satisfying
(ii), (iii) there, the limiting distribution of N, by the method of moments.
In the following proof the condition that H(z) is a real- valued even
function is not used. We have

2= 1/,32# 5[ Howoa

TV 2o zw E _‘—*Sv:—h <a;7> g”“<o1/t?)dt '

N O S e L

=([7+ ] Go)e (o)

—evy €O NV ZE2ENY

Writing

3.1)

we apply the estimate [10]

s

,t |2+6 N o
= Y2+0 3 e for |t]1<cysV 7,
n*2
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where «,,s and c¢,,s are constants depending on ¢ and B..s but inde-
pendent of » and {. Take e<c¢,,s sufficiently small, and remember that
h(t) is uniformly continuous, —co<t<co, and indeed we can make
|h(@&)—h(0)|=0(]¢]). Then the first term of the right-hand side of
(8.1) is :

h(O)SE«/

2%

et +0 (=) | "Beidt+ 06) =1/ Fm WO)+o(D)+0(),

)

— || <
e ?() <r
for eV'y <t<csV/» with a constant p, 0<p<1, the second term of
(8.1) is

872

where o(1) tends to 0, as v—co. On the other hand since

OV v), v—>oo.
Therefore ‘

N V% 1 1 2 1
L k<0)1/nv1 Y Iyl CORRI

and hence

()= e

Next
@2 EB(Lh)-Ll s am@Es)HS.)+E 3 BES) -
n n ktisn n x=1

Now, since A(t) is uniformly continuous

E(H(S)H(S,, ) = (51;)13 { fwew/es I(s)ds S:e’s’fﬂ‘k(t)dt}

— <%€>2 ﬁ PH(s+ )P Eh(S)h(E)ds dt

~(zm >21/1ch{ 1 o (o)) a0 To)

g k/; >h(¢ﬂ/8? g]/l>ds+0(1/k ,ﬁ)}
N

[s]<e/
=< : )sz (R0 ( 1/z>dt|LWc_q’k(a1/ >ds(1+”)

=(a=) 71 +”') ’

where 5’ is small with e, Ic"l, I~'. Hence the first term of (3.2) is

o hO) 1
2(pls) .3, st
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On the other hand, since H*(z) also satisfies (ii), (iii), the second term
of (8.2) vanishes when n—>co. Therefore

lim E(ﬂ_> 21( %(0) )2 g V dt,dt,

nro  \1/ M vV 27 o o< Vbt —t) '
In the same way we have ' |
N\ B0y \™ dt.dt,- - -dt,,
I E( —m! (MO :
nlforo} '[/ n > n ('[/ 277' 73 > g g S '[/ tl(to——tl) (t —tm 1)

0ty Stg<ie

POV pim /2 [Furetan,

This means that
(8.8) Pr{anv - kO) x}_> /E re““‘”"du-
’ Y ) a Jo

If we use the idea introduced in the latter half of the proof of
Theorem 1, it is easy to complete the proof of the theorem. Write

N, DHAS)  SEMS)-HS))

vVn Vi Vn
CSEFES) SH(ES)  SH(S)
T vVe Ve Vn

and take >0, 27! small as in §2, then

E{ 12/”: }<E{ 2]/];}: o( wa53(¢>dx)+o(1>
< 0( fwﬂl(x)dx> +0() +0(1)

— O +o(l)<ecy, as nsoo,

with some ¢,>0. Also

stz

} =0+ o(1) < gy

Vin vVn
Therefore _
S1HHS) } ~ { p3P-AICH
P {1—_—3 < I <zpr<< 1 <
T v T Pr{l/n x} Pr T <x+86{+8,

where §>0 is small with . We can now apply (3.3) to both extreme
terms in the above inequality, having
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o2/h¥(0> : o [00@+8)/hp¥ 0)
’/,g_j ’ e " dy < Tlim Pr{ N!‘_Sx}sﬂ/_z.j i Oe‘“mdu+8;
vVn rJo

T Jo n>oo
Making »—>0 we obtain the required relation.
We shall next prove Chung’s theorem on changes of sign of S,.

Theorem 3. Let N, be the number of S,, 1<v<m, such that S,=>0, '
S,.1=<0. Then under the condition of theorem 1

lim Pr{Nn <B 1/7@—:17} B / Zj e~*dy , , )
20 0 .

>0 i

where B3, is the first absolute moment B,=FE(|x,]).

Proof. To simplify notations we consider the case o=1. If we put
Ux)=1 if x>0 Vie)=1 if 2<0
(8.4) ;o ;
=0 if <0 =0 if >0

we can write

N,=32 US) V(S

Introducing the auxiliary funcfions U x) and V (x):
Ux)=1 if 0<zr<a, =0 otherwise ;

Vai(x)=1 if —a<<x<<0, =0 oterwise, a>0,

we write
(3 5) N" = él Ua(‘sv) Va(sv+ 1) + Rn ‘: | !
where

-

By=31US) (V(Ss)— VilSpu)} + 2 VelSud (TS~ U S}

We can see that if a is large R, is small. coxhpared with the first term
of (8.5). Indeed if we put Fi(x)=Pr{S,<z}(F (x)=F\(x))

E{USHV(S) —~ V(See)} = | Pria+ Xp<—a} dFi(a)

© e * dFy ()
SSWIZJ? dF(y)So (@+ay’

and if a>1, in view of the proof of Theorem 2

JEes(g)-o ()

Therefore
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(L )=o),

where o(1) means a term tending to 0, as a—>co, uniformly in %
Consider again formal Fourier transformations

19

ua(t):S” U (x)e *“dx, a(@—kﬁjw uo(t)eeds ,
and similarly for V.(x) and its transform, v,(f). As in the proof of

Theorem 1 and Theorem 2, we approximate U,(x) by functions with
regularities required there. Thus we consider the limiting distribution
of ST US)V(S,.1), with U, V satisfying (ii), (iii) of §2.

First as in the proof of Theorem 1

(3.6) USV(Seed)} = (ziw)gjju@wws +8)p(t)ds dt

=(5) |_20pae]” ot ( ) e (= 1)as

| ~(50) | 2®e® v 2r + oyu~ 1)t

o 1
(277)1/2 1/155 v(t)u(—t)¢(t)dt+o<ﬁ>, B |
where we should note that the integrals are to be performed over a
finite domain, since (), v(f) vanish outside some finite intervals

Next
(3.7). E{US)V (Sis)U(S14+1) V(Spirs)}

— <§1;>‘ jﬁjqﬁ(sl ot st et st 8)

—00

P 18+ L) p(E)u(s)v(E)u(s)v(t,)ds,dt ds.dt,

(L s )l
5:9" 1)”. Vz)dtlg qok(Vk)u %‘stl

"’7%7{( )S pv)u(—1t)dt- 1/271-}“ k l—>oo.

In view of (3.4), we may confine ourseives to those U(x),'V(x) which

satisfy V(—2)=U(z). Then o@)v({)u(—t) is the Fourier transform of
W(x)= (U= U*F)(x) (*=convolution)
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P(EWE)u(—t) = Ewe“wW(x)dx ,

and
(3.8) g " ptwdu(—tydt=2m W (0).
Therefore, from (3.6) and (3.8) we get first
N, W(0) t
lim B(. )= Vo | = 7 O

Second

N, V_ 1 ,

B( D% )=1 51 2B UV US) ViSuure)

% z (TSI VS,

of which the second term is o(l/Vn_), and the first term is from (8.7)

W)Yoy, 1 _ 1 _
<1/27-> 'Z1g<,g255n1/a(/3~—3+0(1), n—>co.

Therefore

lim B2 = (W0

In the same way, in general it is easy to show that

i B( )= (W) e

‘Thus we have
lim Pr (N, <17 W(0)x) = / 2 j :e~u“-'/2du .
N>oc0 ar

Now from the argument in the proof of Theorem 2, reduction to
the case (3.4) is obvious if we use (3.5) and note that

w@=|" dF@)( Ue-y-2U00,

lim 77,(0)= rwdF(x)rU<—x—y>U(y)dy:—§° 2dF (x)

rxdF (@)+ g xdF(x)=0,

0 -0

S xdF(x)-—jo xdF(x):—2j0 wdF(x),

—c0 —_

and hence

lim W,(0) =P 31 :

CZ-)DO

We have thus proved the theorem.
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3. Gaussian stationary time series. We shall now apply the method
of moments to study fluctuation of S,=>7X,, in which {X,} is a Gaus-
sian stationary time series. The same method will also apply to the
class of other stationary sequences, when the behaviour of the charac-
teristic funection of S, is known.

Theorem 4. Suppose that X, X,, ... 18 a Gaussian (real) stafz'onaxry
time sertes with mean 0, autocorrelation coefficient p,, and spectral density
SO@m)™, —7<2<w, continuous n a neighbourhood of 2=0, o >f(0)=0,

(4.1) p=EX,uX)=@m | P r@di.

Let N, be the numbm* of S,=>0X,, 1<<v<m, belonging to a finite interval
(—h/2, h/2), h>0.
Then

lﬂlglc Pr{Nn~ 7 (O)‘/ } (i—)l/z S:e‘“z/‘zdu .

Proof. To prove the statement, appealing to the dev1ce used in
Theorem 2, it is sufficient to show that

IR Y

for H(x) of the class of functions in §2, with
r H@)edu— h(D), (zw)—lr (e dt— H(z).

Now :
sl s a)= L Siem | aenra,
where from (4.1) |
quVar{ésv}:<2w>-1§f (Sm ’;;;2) R

~EF0), koo .
Therefore we have

h(O)
}ggE{]/—zw o}= 5

To calculate the second moment of N, first we observe that

o

E{UBSHU(Sk:)} =@2m)~" HE{ewww Yu(s)u(t)dsdt

—o0
[ee)

= || exp(— @, ty2)utut)dsdt

—0oC

:S"_" u(t)dtf exp{—Q(s—t, £)/2}u(s—t)ds ,
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where from (4.1)

Qs, £)=(s+ £)(2m)- j“ (M) Fda

sin 4/2
20, -1( " (SiniA/2 Y
232 L,( s )f(z)dz
+2(s+t)t(27r)"rﬂ?;§_jll—e; e“'”::@"**) £
and '
O o )=r s L)
st (7 s1nlc2/2s1nl2/2
+ wl/lTlS sin? 2/2 LA —f Ot o),
as koo, [>o,
But '
1 (* sinkA/2sinli/2 l' .
) SRS cos EXLa(r@—r 0|
* sin® k2/2 172 sin?12/2 _ vz
S{S—«%_sin2 /2 7@ fm)[dz} {S_m 1sin® 2/2 7@ f(o)[d&}

—0, as k—>ow, [->co,

Recalling that A(f) vanishes outside a finite interval we get
BUHE)HS)) ~ (1555 M0) T
This gives

sl L Smsl=1 5 o BHSIHS.) + L SEmEs)

n k=1

:2721 (Vf(%))z 1o )>M4n 1/lcl+0(1)_><1/h§”0) )>"~

In the same way we have

E{V% i H<S")} " (Vh 59()0)>
as was to be proved.

When f(0)=0 or f(0)=oco, the normalization factor “n» must be
altered. For instance when f()=|2[*, —1<a<1, it can be shown that
N, /n*+® hag a limiting distribution, when n—>c. It seems not easy
to give a closed expression for this limiting distribution. If we form
an appropriate average sequence from the original time series:
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Yn = ﬁ} chn—v
V=0

we can let Y, have the spectral density g(1) satisfying the condition of
Theorem 4. Consider X,,, n=1, 2,..., then the autocorrelation coefficient
becomes

P/a/ = E{X2(n+k)X.2n} = Pex

R -1 = 27i A . 1 -1 %ikk
— (@) Le F@di=— (2m) j_g F/2)da

% @m)~ (Kﬂ + f + j:; )e"““f Wiz
Lem ([T enr@art [ oo sz ma
+ S: ¢ f (22— w)dz>

—@m| ePgaz,

where

g(l):%{f(l)ﬂ-f(vr—lz 12}

When f(A)=[2]*, a>0 we get}g(O):%f‘(w):%w“, that is the subsequence

{X.,} satisfies the condition of Theorem 4 and the number of return of
S/=>1X,, to a finite interval has the turncated normal distribution in
the limit. On the other hand when f(2)=[2]°, —1<a<0, the time series

X,..—X,, v=1,2,... has the spectral density |e*—1[*|2]*=2gin® % 2]%,
and hence X,,,,—X,, v=1,2,... has the continuous spectral density g(2),
for which g(O):sinZ%-vr“:w“. Therefore the number of return to a

interval of S,/=>1(—1)*X, has the truncated normal distribution in the
limit. Thus the number of return to a finite interval of a particle with
stationary Gaussian velocity obey, in the limit, the trucated normal
distribution, if its spectral density f(2) satisfies f(0)==0.
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