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Let K be a field, which is complete with respect to a discrete
valuation, and & be its residue class field. In the case, & is perfect,
Witt considered central division algebras over K and obtained a theorem
on the structure of Brauer group of K. This result was generalized by
Nakayama to the case, where & is not necessarily perfect. If we con-
gider from the viewpoint of cohomology theory, Witt’s theorem can be
replaced by a theorem on two-dimensional cohomology group in a Galois
extension of K, but Nakayama’s condition on division algebras can hardly
be interpreted by cohomology theory. In the present paper we aim to .
investigate the structure of higher dimensional cohomology groups, under
the assumption that £ is perfect. For this purpose it seems more
natural to consider cohomology groups in a maximal separable algebraic
extension of K than to consider those in a finite Galois extension of K.
We find that the structure of cohomology groups depends solely on pro-
perties of the residue class field. As a typical example we treat the
case, where generalized local class field theory holds. The author is
much indebted to Mr. Kawada for his collaboration in preparing
Theorem 2.

I. Let G be the Galois group of a maximal separable algebraic
extension L of K, and assign to G the usual topology. We denote by
L* the multiplicative group of all non-zero elements in L, and assign to
L* the discrete topology. Then, according to Artin, a continuous co-
chain in L* is no other than the lifting to L of a cochain, which is
defined on the Galois group of some finite Galois extension of K. In
the following by cochains we understand always continuous cochains and
by a coboundary a coboundary of a continuous cochain. We consider the
unique prolongation in L of the valuation in K. A subfield £ of L over
K is called unramified over K, when the value group of £ coincides
with the value group of K. Obviously there exists the maximal un-
ramified subfield 3 of L over K. Since & is perfect, every algebraic
extension of & is separable over &. The residue class field of ¥ is then
algebraically closed over & and is identified with the residue class field
f of L. By a theorem of Hasse there exists no proper central division
algebra over any finite extension of 3. It follows that in every subfield
W of L, which is finite normal over X with Galois group Gy, the n-
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dimensional cohomology group H™(Gy, W¥*) is trivial for every positive
dimension % (See for instance (4)). If we denote by T the subgroup of
G, which corresponds to X, we have H*T, L*)=1. Now, by Hochschild-
Serre’s theorem, we have the following exact sequence

1> HY(G/T, %)~ H%G, L*)—>HYT, L)=1.

Therefore H™(G, L*) is isomorphic to H*(G/T, =*) by lifting, where the
topology of G induces naturally the topology of G/T. Since every
automorphism of X over K induces an automorphism of € over &, we
can verify that G/T is isomorphic to the Galois group & of & over &.
Then we can write H*($, *) in place of H"(G/T, 2*). Now every
element of 3* can be put in the form ='FE, where = is a fixed prime
element in K and £ is an unit in 3, v being a rational integer. Con-
sequently H™(®, >*) is a direct product of H™(®, (w)) and H™(G, E),
where we denote by (=) the cyclic group with the generator = and by
E the group of all units in 3. Let Z be the additive group of all ra-
tional integers, on which & operates trivially. Then the first factor
HYS, (m)) is clearly isomorphic to the additive cohomology group H*(S, Z).

Next we shall show that the second factor H%(S, E) is naturally
isomorphic to H*(®, 2*). For this purpose we consider the multiplica-
tive group S of all units @ in 3 for which a=1 mod. P holds, P being
the prime ideal of the valuation in 3. First we prove that H"(8, S) is
trivial. Let £ be any subfield of 3, which is finite normal over K. It
suffices to prove that every #n-dimensional cocycle ¢ with ce S~2 is a
coboundary of an n-1-dimensional cochain & with be S~2. Since 2 is
complete, we have only to show the existence of an infinite sequence
of n-1-dimensional cochains b,, ¢=1, 2, ---, in £, such that

c=8b, mod. P, b,=1 mod. P,
b,=b,_; mod. P!,

where § signifies the coboundary operator. If =1, we have only to put
b,=1. By induction hypothesis we put,

c8b; =1+ d,,

where d, belongs to the valuation ring I of £. Since ¢8b;' is an n-
dimensional (multiplicative) cocycle, d; is an n-dimensional additive co-
cycle mod P. Now the n-dimensional additive cohomology group in the
residue class field &, of £ is trivial. In fact, there exists an element
6 € 8, such that the trace Tr(0) of 6 with respect to & is not zero. We
put for the additive cocycle f(x;, - -+, ,) in &

G(@y, + vy Tpog)= (T (10)) Zf(xl’ e By Y) Xy e Ty Y (O)
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Then f is an additive coboundary of g. Therefore we can find an n-1-
dimensional additive cochain 4, in I, such that d; is the additive co-
boundary of %; mod. P, and we have

8(1+hm)y=1+d;n* mod. Pi*!
-Putting bm:bi A+ k'), we get '
b;..=b;, mod. P, c=08b,,, mod. P+,

We have further b,,,=1 mod. P from the induction hypothesis b,=1
mod. P, which was to be proved. Since H%®, S) is trivial for every
dimension 7, we have the following exact sequence

1=HYG, S)~>HYG, E)—~>HYG, E|S)~H"(®, S)=1,

and therefore H*(®, E) is naturally isomorphic to H*($, E/S). Since the
quotient group F£/S is naturally isomorphic to £*, H"(®, E) is isomorphic
to H*(, L*).

Theorem I. Let K be a field, which s complete with respect to a
discrete valuation, and its residue class field & be perfect. Further let G be
the Galois group of o maximal separable algebraic extension L of K, and
& be the Galois group of the residue class field L of L over &. For n=>1
the n-dimensional cohomology group H"(G, L*) is canonically isomorphic
to the direct product of H"(G,Z) and H' (S, %), where Z is the additive
group of rational tntegers, on which & operates trivially.

. We can observe that the two-dimensional case of Theorem I is the
interpretation of Witt’s theorem by cohomology theory.

2. As an example of complete fields, for which the structure of
our cohomology groups can be determined precisely, we shall consider
the case, where generalized local class field theory, which is due to
Moriya, holds. In this case, & is perfect and there exists no proper
central division algebra over any finite extension of &. Then H*(®, £*)
is trivial for every dimension », and we have

HG, L*)=H"S, 2).

Further the following conditions are satisfied:

- I. Every finite extension of & is cyclic.

II. For every positive integer m there exists one and only one cy-

clic extension of & with degree m.

By these conditions we can determine HY(®, Z) as follows. For each
prime number p let U, be the subgroup of &, which corresponds to the
extension of & with degree p. For each p we choose a coset x,U,, which
is different from U,. The family of all cosets w,l, has the finite inter-
section property. Since & is compact, the intersection of all z,1, is
non-empty. We choose an element z of &, which is common to all z,U,,
and denote by & the cyclic group generated by . One sees easily that
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& is everywhere dense in 8. Then H™(®, Z) is isomorphically mapped
onto H*F, Z) by the restriction mapping: &—->F. When n=1, H' S, 2)
is obviously trivial. When n=2, let R be the additive group of all
rational numbers. Since R is uniquely divisible, we have the following
exact sequence

. 0=H'(, R)~H'®, RIZ)~H@, Z)~H®, R)=0,

and H¥®, Z) is isomorphic to H'(F, RB/Z). Since one-dimensional cocyele
@ on F in R/Z is a character of &, we see that H'(§, R/Z) is isomorphic
onto R/Z by the mapping @—>@(x). Therefore we have the well-known
fact that H*G, L*) is isomorphic to the additive group of all rational
- numbers mod. Z. We shall show further that, for n=8, H™(G, L*) is
trivial. For this, it suffices to show that every coecycle in C™(%/3, Z)
becomes a coboundary by lifting, where 3 is a subgroup of ¥ with any
finite index m. Let ¢ be the normalized cocycle in C*(%/3, 3), which is
determined by the group extension

38

> 8/8’
where for 0<1, j<m |

c=a™",
a(@'3, 2'3)=1, if <t+j=m
_ =0, if i+5<m.

Then a is a cocycle in C*(3/3, Z). A homomorphism g of 3 into Z is
determined uniquely by the value g(x™) and therefore H"-*(%/3, Hom
(3, Z)) is canonically isomorphic to H"%*(%/3,%). Further we have
glc)=ag(@™). Then the cup product reduction theorem asserts that
H"¥%/3, Z) is isomorphically mapped onto H"(F/3, Z) by the mapping
S—a—f=af. Further we consider the subgroup & of F with index m?.
Let b be a coeycle in CXF/W, Z) such that for 07, j<m?

bW, ' W)=1, if ¢+ji=m?,
=0, if i+5<m’
Since mb is cohomologous to the lifting of a to F/W, the lifting of a—f
to F/W is cohomologous to mb—f=b—mf. Now, mf being a coboundary,
the lifting of a— f to &F/W is a coboundary in C*"(F/BW, Z). Thus we
have the following :

Theorem 2. Suppose that generalized local class field theory holds
over K. Let G be the Galois group of a maximal separable algebraic
extension L of K. The n-dimensional cohomology group H"(G, L*) vs tri-
vial, except when n=2. If n=2, H*(G, L*) is isomorphic to the additive
group of all rational numbers mod. Z.

This theorem is partly well known, and Kawada remarked the author
that this follows immediately from Tate’s theorem.
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