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Introduction

In 1951 Schwinger® has given the coupled integral equations for
the nucleon and meson fields in interaction, in the form of funectional
differential equations in terms of an arbitrary external field. On the
other hand, Edwards and Pelerls® have recently developed it in the form
that, using a functional iFourier transform, the Green function of a
single nucleon moving in an external field with radiative corrections can
be related to that of a nucleon moving in an arbitrary external field
without radiative corrections. They have also shown that in the case
of neutral pseudoscalar meson theory in which the recoil of the nucleon
is neglected, the Green function for one nucleon can be solved in a clos-
ed form, and mass and Green function renormalizations are easily and
completely done.

Green® has also shown, independently of and in another way from
Edwards and Peierls, that the above transformation can be obtained by
the use of the functional differential operator for the components of
Fourier analysis of an external field. Recently, Anderson® and Kino-
shita-Nambu® have described that some functional operators as shown
below (1), can be applied significantly to connect Dyson’s T-Product
and Wick’s N-Product.

The treatment of Edwards-Peierls which used the functional Fourier
transform of the Green funection, is too roundabout to see through the

formalism. Green’s treatment in which functional operators are used -

for the components of Fourier analysis of the external fields, has also
“the same defects. Considering these facts we have proposed, in this
paper, another method by which the external field is treated directly by
the same functional differential operators, as introduced above by Ander-
son and Kisoshita-Nambu. Our method will be simpler and by which
better country views will be obtained than by the method of Edwards-
Peierls and Green, while our method has retained many characters above
mentioned.

Already, in his non-linear theory of elementary particles Heisen-
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berg™® has utilized the transformation from the r-function to the ¢-
function which are proposed and discussed by Freese®, and tried to
reduce the order of singularity in order to make them clear. It seems
that his treatment is fundamentally identical with our treatment, but
we shall postpone it to the future to apply the method of functional
operators to the functional non-linear equation proposed by Heisenberg.

In this paper we deseribe first the definition of the Green function
and the commutation relation of functional differential operators (1).
Then, we discuss the methods of Edwards-Peierls and Green (2). Lastly,
we obtain the explicit solutions of Greens functions for one and two
particles (3), comparing their results with the Bethe-Salpeter equation.,

1. Preliminary notes

(A) Definition of Green functions |

A generalized Green function governing processes involving » nu-
cleons and m external meson lines may be defined as follows

G(@1e Ly T v v; i o Epy) ‘
=" (P(@) - - - PP )« - - P(@))
X Q&)=+~ @(&1) + - P(Em)) se(@re - - 2,]) (1)

For any Heisenberg operator F'(x), the symbol <F#(x)>> is defined such
as

< |F(x)]| Q>
<O Q>

9

<F(x)>

where Q, and Q, are true vacuum states at two space like surfaces at
t= + oo respectively : [m/2] is the integral part of m/2. e(x;---2,") is
+1 for an even permutation of the order of the times xy---x;, and —1
for an odd permutation. The suffix + means the chronological ordering.
The spinor and isotropic indices have been supressed. Kspecially, for
one nucleon and one meson system the Green funection can be written
G, &) =i<(P(x)P(@)¢(8)) . >e(@—a') . (2)
For two nucleons and no meson system the Green funetion G, ean be
expressed by
Gra= — <(P(@) () (@ V(@) s >e (3)
where
e=e(@; — Xy)e(wy — 2, (@, — 2, Ye (@) — @,)e(@y” — &) e, — ). (4)
When an external meson field ¢(x) exists, the Green function is deserib-
ed as follows including the expression of its influences.

G(@ye ey -2,); @) (5)
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(B) Operator calculus of functional differential operator
We shall introduce the following funetional differential operator
with respect to a function ¢(x), as introduced by Anderson and Kino-
shita-Nambu

0
b‘q)(é) 09(€")

- _J.A(és 5 90) Sdé,

R¢ (6)

Then we obtain a commutation relation between the operator E, and
the function ¢(x)

(R, ¢l=— SA(s,s 0 ey Fo - (1)

From Eq. (7) we obtain

Roo={y—ilac ¢ 92 (7)

so0 1

We can define the following funectional operator with respeet to another
funection ¢(x)

6 ’
S e 4 (9)

The commutation relation between the operator R, and the function

P(x) is

R,dg’ . (10)

By, g1=—i[S./€, & 9). ¢( ;

2. Remarks about Methods of Edwards-Peierls and Green

As delivered in the introduction Edwards-Peierls has thrown light
for obtaining the explicit solution of one nucleon’s Green function per-
turbed by meson fields. On the other hand Green had discussed that
solution through the Fourier transform of meson field by applying Feyn-
man’s conception about two fields’ interaction. For the fact that Ed-
wards-Peierls had successfully obtained the above solution it seems to
be the following two reasons,

(a) The introduction of Schwinger’s external field

By the introduction of an external field to the nucleon by Schwin-
ger a relation is obtained between a certain Green function for several
nucleons, meson field and another Green function of the field for the
same nucleon, but with one less mesons. As its example we shall take
up one nucleon system, for which functional derivative by external cur-
rent is expressed as follows

la%<(¢g7)+>= <(PP9)r>e— o> (PP).>e
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Considering the following relation

6 _ 80p__ A6

oJ opd oo

we obtain

(GFp)>e= <> (PP), > M-S dsAﬁ(¢s7)+>e

—{<p>—ifaeal }<(¢¢)+>e (1)

(b) The introduction of an operator R, by Green, Anderson and Ki-
noshita-Nambu
Because of not adopting this functional derivative operator R, the
calculation of Edwards-Peierls is too roundabout, though they used
funetional Fourier transform. Green made use of the same operator
with ours- R, for the Fourier transform of an external field. In our
paper we shall adopt the operator R, used by Anderson and Kinoshita-
Nambu and apply it to the same calculation with Edwards-Peierls. For
adopting this operator we shall specially consider the following proper-
ties obtained from the commutation relation of these operators.

R¢<¢>R¢-1=<¢>—¢§A(e, & 90)(%016- (2)

From (1) and (2) we have
Gz, @', y; ¢9)=R,<¢>R,"'G(z, 2'; ¢),
or

(P> ,e=R,<o>R, < (¢¢). >e.

3. Explicit Solutions of Green Functions for one and two Particles

(A) Green function for one particle and its explicit solution
For a nucleon moving in an external neutral pseudoscalar field ¢(x)
the functional equation to be satisfied by Schwinger’s Green function
is given as follows, neglecting the reaction of the nucleon field to the
meson field.

{=ptm—ongion | dea@, & 0 2 f6tw, =5 p=sw—a),
(1)

where
0
ox,

132@7,4

As shown below we can simplify the treatment of Edwards-Peierls
by applying the operational calculation prepared in the preceding sect-
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tion to a function G;, which is defined by the following transformation
G=R¢G1R¢—1 ( 2 )

Then we have

-1__ —n I 76— -1
R,¢G.R, 1_{¢ zSA(5,5,¢)8(p(E)d§}R¢G1R¢ . (8)

Further considering that the p and m are commutable with the opera-
tor B, we obtain

{—D+m—grss&+’igrs S dEA(, & ¢) —L}G=R¢{~—p+m——gr5gﬂ}GlR¢'1.
T oe(8)
(4)
We have from Eq. (1)
| {—p+m—gr:¢}G =R, 0R,=0, (5)

which is nothing but the Schrodinger differential equation with respect
to G; in an external field ¢(x).

The solution of Eq. (5) is expressed usually by the following integral
equations

G, 73 9)=S@, o) =[S@, PG, o5 de,  (6)

where v
{—p+m}S(z, ')=0@&—2").
But in a special case of an external field ¢(x) the explicit solution of
Eq. (5) can be expressed formally as follows.
Gila, @5 §)=S(w, at)e™ TN (7)
Then the explicit solution for G can be expressed as follows
Gz, «'; ¢)=R,Gi(x, «'; ¢)R,™

=S(£U .’D/)R 6—; 195\ (&) dé
’ ®

2 .. 5 @
=S(=, ') Z“A & &5 O 50@) Bele)

dede’ — igYsSfp(é)dE
(4]

tg? . ;s
—S(z, x,)875§YsA($, &5 ensdéds o ?«9Y55¢(5)d5. (8)

Especially when ¢=0 we obtain

e 1, &MNysdelder!
G¢=0=S(w, wl)e zsz5A(€, E )Yﬁ E 5 . (9)

Edwards-Peierls did not express the general solution such as their Eq.

(21) in the form of our result. But our result coincides exactly with
their Eq. (35) which is obtained for the case when ¢(z), G and G, con-
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tain only time variable, as the solution can be expressed in the form
of Eq. (6) for this case. If we express Eq. (9) in terms of the integral
equation, we have

G, #)=S(@, &) {1-Z (|5, e, €78, 2o 3 eergnasiasr
xdsdg'}=S(o, o)1= {|S-@amae, emGe, »)dede} .
| (10)
(B) Green funection for two particles and its explicit solution

As an example of our treatment for many nucleon system we shall
take up the case of two nucleon system. The functional equation to be
satisfied by the Green function for two particles such as Eq. (1.8) are,
as shown by Schwinger, expressed as follows

—Dutmu—grs'e + g7t \d&' A, &5 ¢)——
) (5)

<\ =t m—grig+igre [ae a@, &5 9, 0 Gu—1a, D)

(E”)}
where suffixes 1 and 2 stand for two particles respectively, and G, and
1., are defined as

G12=G(951, To; Xy X2 ),

1o=(x, x|z 2))=0(x;—2,/)d(@s—x,") — (@ — 2" ) o (X — 1) 12)
Applying the operator R, ' to the G, we transform from G, to K,

Rq, —lGlgR@ = Klg or GIZ = qu KlZRga -1 . (13)

Then, considering that the relation

RopKu={p—i| G, &5 9)30Sdef RK. (14

can be applied both particles 1 and 2, we obtain
{=Ditmi—grieH{ —p:+ma— 9750} Kin=1,,. (15)
Operational solution of the above equation is

—igyst \e(&)dE —igrs2\e(&d e’
Koy =K(@@,2)'0,; @) =S(a,,")S(,,")e e igre (e

Transforming from K, to G.» we obtain

. (16)

G1.=G(x:25, x/'2); ¢)

-1

| | ~igys' o) ~igys?)elt) A
=8(z,, x/)S(x,, z,/)R,e 97 5‘/’() 1975 S(ﬂ ) R

, &5 ldd'7~ 2 - sdEde!
——S(xh &y )S(xz, wz/) 2 5575 A(E : ¢)75 tds 5575 A(t ¢ 99)75 £d¢
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P st ayet +ys2ast —igya{o(e)dt —igr{oterds
xe? 55(75 Ays?+ysPayst)dédE Pl 5‘”( ) g7s Sco( )

J Y 4 Y 2 Y 1 Ed%’ 7: Y 1 @ £ dE 7: Y 2 [
SE 1A 2+ 2 A d —_ ‘ —1g ; (E)dé
—‘——S,,-.’(wu xl’)SF,(w2, x.z,)e 2 ( ] s s s ) gre ( ) s s

(17)
where
i 15 g)dEde!
Sy' (@, ©/)=8(x:, x/)e? §575A(5’ & p)dedd as)
When ¢=0 we obtain
: i
e , Ny 2 5.‘Z , & ldéd&’
Gml‘/’=°=SF’(xl’wl’)SF’(mzyﬁz,)e 2 SS(%lA(S EN)ys® +va*A(E, E)ys!) . 19)
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