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Introduction. Let U(n) be the number of integral solutions of
w+v*==n, where n is a given positive integer.® Hardy [1] (see the list
of references at the end) proved that, for « >0, '

S/ U= —141/% ‘z U(")J(zm/m »

n=x

Subsequently Hardy-Landau [2] discovered the identity

V' 5, T @ry )= S U0 —ra+1- 2/ )

72’2/

+ / ?;__P W@/ ) + = 2RI )

—2 21 LflS;VgQJ2 (z ]/ %)Js(Z)dz ,9

where §c>0, y>0 and
PU)= S U0 —m+1, Q@)=| P ;

and they deduced Hardy’s identity from this, letting y—co.

In the present paper we shall investigate the extension of these two
formulae to a general divisor problem generated by a finite product Z(s)
of Dedekind zeta-functions of algebraic number fields.® (The above
circle-problem of Gauss itself belongs properly to the Gaus51an number
field, as is well known.)

We preassume on the part of the reader the knowledge of Landau’s
book [9] (chiefly of Chapter 5: Die Anzahl der Ideale mit Norm <zx).

1) This research was made by means of the Grant in Aid for Mzscellaneous
Scientific Research (1952).

) The letters m, » denote positive integers, and %, ! non-negative integers,
throughout this paper.

3) The dash attached to >, means that, if = is an integer, the last term Ulx) is to
be halved; and J, represents the Bessel function usually so denoted, v being a positive
integer. :

4) This divisor problem was first considered by Hasse-Suetuna [4]. It should be
noted, however, that the generating function for their Allgemeines Teilerproblem was
not Z(s) itself, but Z(s) multiplied by a certain factor; they considered Z(s) as auxiliary
means.
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§ 1. Preliminaries

Let %; be for each j=1, 2, ..., (r a positive integer) an algebraic
number field of (absolute) degree n,;, where we assume once for all that®

N=n+n,+ e+ +n,>2.

Denoting by ¢;(s) the Dedekind zeta-function of %; we find, by Hecke’s
functional equation (Satz 156 of Landau [9]),

9:(8)=¢;(8)/{;(1—s5)
=(@”_)s)m d j% ‘S(Sin 7}2_3)4~1(J>+7~2<j> (eos 7%3 Tzwl“nj 1l-s),
T

where d; denotes the absolute value of the discriminant of k;, and r{”
and 2r{® denote the numbers of the real and imaginary conjugate fields
of k; respectively (so that n;=r{’+2r{”). By Satz 166 of Landau [9] the
asymptotic behaviour of g,(s) is expressed for large ¢ by

(1—0) — ti(n; logt—E;
Y (RN

uniformly in the strip e.<0<0, (6,<s;), where o=Ns and t=Js. The
number =, is real and depends on %, alone; and 4;2<0 is complex and
depends on k; and & only, but bounded for s, <c<a,, so that we have
uniformly in this strip

(3~ o)

g9:(s)=0( ) -
Hence, writing
Z(s)=Cu(8)- - -L.(s)
d=d,---d, ,
r=>FL+rf)+ e+ (@O +rP)—1,:

we find that
Z(s)=g(8)Z(1—s) ,
where |
=Yt (sin =) " (cos ) 1
1) 9(s) ( - )d (sm 5 cos 5 1-s),
and this is, uniformly for o <o<o,,
1—0) —ti(Nlogt—5 .
) =/1tN(2 o)e te(NV logt )<1+0(_£>)
t
NG —
®) ~o(s"*77),

9 As for the case N=2 of our problem, see Walfisz [10].
6 O(W) means a quantity which is absolutely less than a constant multiple of
W(>0) under the stated circumstance (namely for large ¢ in the above case).
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where A=4;-+-4><0 and 5=5,+---4+5,. Also, by Satz 171 of Landau
[91, '

) Z(s)=0(¢
uniformly for s>¢, when ¢<0.

It should be marked that each of Z(s) and g¢(s) takes conjugate
values for conjugate values of s.

N(%——O))

Lemma 1. Wnriting
Z(5)= S F@m (>1),

we have, when x>2, ,
H(@)= 3, F(n)=0(xlog"') .

Remark. In the following proof we exceptionally suppose that N
may be any positive integer, for the sake of convenience.

Proof (induction on 7). 1) If z=1, the result coincides with Satz
202 of Landau [9].

2) Suppose that the lemma holds for r and consider, in place of
Z(s),

Zs) =G Z(E)= X Filon™"  (o>1),

where {(s) is the Dedekind zeta-function of an algebraic number field.
Writing

&)= 3 fom* (>1)

we find (a, b denote positive integers)

n=1 B’ n=1 p°®  d=1p° ab=n

Z()= 50 5 S0 S L 5 payre),
so that ~
Fy(n)= agnF (@)f©) .
We therefore have for x#>>2, by the case 1),

S Fm= 3 F@)f0)= 3 F@ % £0)

@x
s

=o( S 2 rm) .
n=x N
But, by hypothesis (H(0)=0), ‘
ZF(n)zz‘H(n)-—H(n—l) — S Hn) 1 1 + H(x)
n n=w n nt+l [x] +1

nix N n=x

5) —o( = log;”lm ) +0(og™z)—=0(logx) ,

nse
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as g—oo. This proves the lemma.
Lemma 2. We have, for given 9 >0 and all x>2,

(6) n% Fm)n?=0(x"""log" ) @>1),
) 2 Fnyn?=0(x"?log™ ) (0<9<1),
(8) 3 F(n)n~?=0(log™x) (@=1).

nsm

Proof. (8) follows from (5) ; and (6), (7) follow from Lemma 1 in
almost the same way as for Satz 203 of Landau [9].
Lemma 3. Let w>0 and consider the following N +3 integrals :

S+
\ w

1
21 S(;I) 9(s) s(s+1)---(s+NN) d

1
%:S(%) 9(s) s(s+1)- --(S—I-N—l)d

s= Ly(w)=L(w) ,

ws+N—1

S=L1(’LU) ’

| oo as=Lyw),
@ s

S g(8)w’ds=Ly.(w) ,

27 ()

1

. S Q’(S)(S—1)’ws—2d8=LN+z(’LD);,
2m J(3)” »

where each integral is obtained from the preceding one by formal
differentiation with respect to w.

Then these integrals converge absolutely and uniformly for w,<w=w;
O<<w,<w.,), so that the L. (w) (0<k<N+2) are continuous in w and

L. (w)=L®w) .
Proof is similar to that of Satz 205, Landau [9].
Lemma 4. We have ’
L(w)=R(w) + K(w) ,

where
S+ AN

1 w
9 K(w =——S §)— ——ds
©) ( 2me (_%N)g( ) s-++(s+N)
converges absolutely and
Rw)y=w""(4,log"w+---+A4,)
denotes the residue of the integrand at the pole s=1 of order r+1, the
A’s being certain constants.”

7) Similarly for the B’s, C’s, D’s, E’s in the sequel.

1e

A
v
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Proof is the same as for Satz 206, Landau [9].
Lemma 5. We have, for 0<kE<N-+2 and all w>1,

K(k)(w) — O(W(N+% "‘k)(l ""%V)) .
Proof is similar to that of Satz 207, Landau [9].

Lemma 6. Suppose that w>1, 0<v<w and denote by 4,K(w) the
difference of K(w) for the increase of w by v:

4,K(w)=K(w+v)— Kw) ;

so that we have, repeating this operation k times (K>0),
LK ()= z( 1)k~ Z(Z>K(w+lv)

We put further LK(w)=K(w) .
Then, for 0<k<N,

O(vkw(N+ =k - —11‘—')) )

O(wN“ ‘_"7"> .

Proof is the same as for Satz 208, Landau [9].
Lemma 7. Write for y™>0

S(y)= Res (Z (s)

ALK (w)= {

o)
=y (Bylog" '+« +B,.y) ,
Hy(y)=H(y)= é F(n) (see Lemma 1),

B @)~ Bw)dy— S Few—m ,

W)= v Bady— 5 70 €7

ooooooooooooooooooooooooooo

I IR - (R I RSO

Qu(y)=Hy(y) — S ~O(y) — y — 720 (OSAsN)

Then

10) Hy() =~

1 Yo
S(y) Z(s) s---(s_+2\7)ds G>1),

) Qut)= 3, ) Ky .

.N+1
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Proof is the same as for Satz 210, Landau [9].
Remark. We easily find that (0<E<N)

(12) S@-n(y)=Res (2(3) ”_TJJ)
(13) —y O (CP log y -+ 4O
SED(y)=Res (Z(s)y*™)
(14) =D,log™ Y+ ++++D,_; .
Also we get immediately, in virtue of (13),
(15) lim §P)=0 (0=l=N),
and hence
a6 Q= d| Ty asi=).

§ 2. Extension of Hardy.-Landau’s identity
Lemma 8. We have, for y >2,

17 Qi) =0y +PA-») (52;1<ng) :

(18) Qu(v) =O<yl+1*“'_*f‘2’ log"y) ( Oélég—;—l ) -

Proof (cf. the proof of Satz 210, Landau [9]).
1) We differentiate (11) N—I times formally with respect to y and
obtain, in virtue of (16),

(19) Q)= 3, T gr-o0) .

l+1

The formal process is justified as follows. We have by Lemma 5, for
y>1 and all n,

K0 (ny) =0 (ag) P 7)

and so
I+HA -+
(20) F E’fl) K- Z>(ny)=0(y( X NL%%%T) )
” 2N N

: & Fn) Y/ )

But > 5ot
n=1 77,%-'-217 ¥ 2 2N N
is convergent, since o 4
1_+L > + L_;_ N-—-1 =

2 2N N 2N 2N
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Hence the series on the right of (19) converges absolutely and uniformly
for »<y<y, A<y:<y.), so that (19) is true.

The result now follows from (19) and (20).

2) (18) is equivalent to

(21) Q) =0@" ""logy) N; 1<k<N)
2
wh =1—— = that 0<<0<1) .
ore 2k—N+1 (s0 tha <D

We write, for y >2,
w=ny, v=n&, E=y°, 1=y*,

3N —2k—1
h ) Skl 0),
WAsTe Y= okb—ni1 0
and obtain, by (11) and Lemma 6,

£Qx@)= 3T LK @)

= . 3-ReX1—2 —3-
~0 5 L) Min( (ney ) ™R, ™)

b -1
=O(y<N+2 el N)—H’ceZ 3F(zz)k)

nsn n-§+2—z—‘v’—ﬁ
roy iy B0
7?/>'In'2 aN
Marking that
3 1 k 1 N+1) _
22 —_— =11,
(22) 27N N N( 2 )=

we apply Lemma 2 and get
N+3-A~-1)4+k6
4:Qu () =0 AP

-1 31
+0@" g i ogr-1y)

77N 1’ 2N 10g‘777)

—0(N T RO TG T Tam) [ogry)
+OEN T ) ogry)
g

$+1_ 2 =1—6, hence 1—l——0=—,
N 2k—~N+1 N N

and so the exponents of y in the last two O-terms coincide ; therefore

N-— 1
£iQy () =0 ~ VT o0
N—1-0)Z +

But

(23) =0(y Dogy) .
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On the other hand
(24) ALQu(y) = A Hy () — ATS(y) — AF T2 2(0) -
Now, by (15),
Y Yy V-1 qery
sw = | av.- [ sowaay.
hence .

Y Y1 Ye-1
2e8w =1 au "y, - s Pwadn,

y+§ 1/1+§ yk_l+§‘ -
=§ | dyg S©GIdy, -

v vy Yg-1

Here we find for y<u<y+k¢, by (13) and (14),

(25) S®(25) — 8 @) (y) = Sus(k*-l)(t)dt:O(EyN—k log ™) .
Y :
Hence AES(y) = S® () + O™y log™y) .
Further N = N(N—1)« - «(N—F+ 1)y 5 4« -« .

It thus follows from (24) and (23) that
AH () =S @ (y) + Oy +1-®+D-D Jog™1y) .

N-Q-0)&

+0(y Dlogry).

2

Here both exponents of v coineid tof 1—0—=— 2
exponents of y coincide on accoun 2];}—-N+]_

2

we finally obtain
(26) AEH(y) =£"S P (y) + O™y " logmy) .
Now (see Lemma 7)

N H () =AY dy\ s -+ -\ TH d
tHx(y) £), Y1 . Yo . e Yy,

Y+E Uy +E Vo1t E
:S d@/lS d’éfz .- S HN—k(?]Ic)dyk ’

v vy V-1
where Hy_,(u) is clearly a non-decreasing function of u. Hence
§Hy () <A H () <E"H,y _(y +K8) .
Comparing this with (26) we deduce that
(27) Hy () =<S8®(y) + O(y" ***log7y) ,
Hy 1y +18)=8®(y) + Oy " log™y) -
Here we write z=y+k&. Then
y=z—ky’l=z+0(° ,
Hy ((2)=8S®(y) + 0" "*+°log™2) .
Hence, by (25), Hy_(2)=8%(2) + O(z"**1log"z) .
On combining this with (27), it follows directly that

and

e
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Hy 2(y)=8S®(y) +O(y"***logmy) ,
whence we ultimately get

Qr-+(W)=Hy _+(y) —SP(y)— (N k),Z( )=0(y" "**log" y) ,

which proves (21).

Remark. If we take k=N in 2), we have in place of (22)

3 1 E 1
Stan Nz et

so that the case (8) of Lemma 2 does not occur, and we find that,
instead of (23),

N—-Q-o)(¥+1
ARQy(y)=0(y . A-0)(z+3) log™y) .
Hence our final result becomes

N-1
Q) =0(y"log™y) ,
which coincides with the result of Hasse-Suetuna [4].

Lemma 9. We have, for x>0, y>0 and ogk__<=2E+ 1,

(28) S S D(z) 2ALZ) K(‘Uz) dz= S S D(2) K (xz) de
ox”

N+1 k

Proof. We find, by (9),

SW+1(z) Kl(ﬁzl) g(_ . )SCN“)(Z)Q(S)——(T)CZS (z>0) .

Integrating this with respect to z from y to &>y, we get

& s—1
S+ () d S @R
2m’gy ()dz (»ﬁ)g(s)s. . .(S+N)d8

S+ N

S S@+D(z) K(ﬁcz) dz

21 8e++(s+N)
the reversion of the repeated integral being legitimate, since by (3)
96 —o(1g VG TN~ o1 .
se<+(s+N)

Now noting (14) we easily get, by partial integration, the indefinite
integral

=LS g(s)—xwl_dsrsaﬂv(z)zs—ldz ,-
(_i) . y

[ser@e-de= 5200

where
(29) - p(»)=E™log""z+ - +E®,.
Thus _
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aren(y) K@2) 4 x " Ebu(6) —y'Puly)
[ sorng £z S(_l)o e e 4

Differentiating this with respect to « formally % times, we get
( ) gty -k ) Z és¢n(5) y‘ﬁn(?/) ds .

S S(N+1)( i )(mz) ) dz
(80) {
=2_7f’55(—&v-)g S N—R) i

N+1 k
To justify the formal process we have only to ascertain that. the last
integral converges uniformly for 9cl<ao<acv 0<a,<<w,), y and & being
fixed.
For this purpose we consider (1<n<r)

(z§)*
(31) L(x E)——S (1 9(s) s (s 1)e -+ (s+ N—k) @

which transforms formally into (s= ——4% + ti)
1 - S“’ (x8)"”
32 =_ v dt .

Here the integrand is by (3), for large |¢],
1 _ N3 -
O NG i) V=) _ ot =E A —og

uniformly in >0 and £>0. Hence the integral of (31) converges, when
n=>2 and £ is fixed, absolutely and uniformly for o,<z<z, (0<x,<x.);
and we have by (82), for all >0 and all £>0,

(33) L) =0((ze) ™) (2<n=<s) .
Next let n=1. Then formally (s=--—41ﬁ+t@')

(34) I,(z¢) ——(wé) 4NS g(s) (@) dt .
s(s+1)e--(s+N—Fk)
Now we have by (2), when a=—4—11\,— and ¢ is large,
. N(Elf'k%v) —ti(Nlogt— &) l .
o(5) =45 (1+0(t)) ;
1 1 1
furth = 1+0(=)).
et s(s+1)e--(s+N—k) (it)¥"** ( ( t ))
Hence
9(s) =A*t"°'§“5‘fe’“'(Nk’gt'*?)(l+0(i))
s(s+1)s+-(s+N—k) t

_N_1 _ti(Nlogt—5
ZA*tlc 31, iV log )—{—q(t),

where ¢(t), which is independent of « and &, is continuous for £>0 and

preey
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ot 4) for large ¢, on account of

- (35) | k————_(N+1) Z %;

so that ’ Sl (x&)%g(t)dt
converges absolutely and uniformly for >0 and £>0, and
\S”(xs)”q(t) dt‘_grlq(t)\dt=const :
1 1
Now, as is shown on p. 133 of Landau [9],
_ ; —ti(Nlogt—&
[ £ 3@ V< B >0y
: VN
Hence, for U >T>1,
v o_1 t 52
t 2(x dt —,
\S LT Vi
and so noting (35) we get, by the second mean-value theorem,

Svk l 1( S)m —~ti(Nlog t— )dt <104N—%T—%.
T

Therefore S”th%T —'%(xé)tie
1

—#(Nlog t—&)

—ti(Nlogt— E)dt

converges uniformly for >0 and £>0, and is absolutely :§104N—%.
Consequently it follows that

" 0(s) @ g <____L+t-)
Sog(s, s(s+1)---(s+N—k) ST !

converges absolutely for x>0 and £€>0, and that its value is uniformly

bounded in z and & And the same is true of

0 (:L.E)t'i
)
S 9(s) s(s+1)e+-(s+ N—Fk)
by symmetry. Thus the integral of (34), and hence of (31) for n=1,

converges uniformly for z,<x<x, when ¢ is fixed ; and we find by (34),
for all >0 and all £>0,

(36) L(g)=0((z8) ) .

Thus the second integral of (380) converges uniformly for z<ls<w,
when & and y is fixed.  Hence the equality (30) is true, and we get

[[sero@ K2 gomrrSs (1,080~ Lan)ops )

Noting (33), (86) and (29) we find moreover that, if xlgngz (0<x1<x2)
and y is large,

’

N+1 k

[ s E2E 4,075y ,
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uniformly in x. This shows that the integral on the right of (28) con-

verges uniformly for a,<x<z, and thus the proof of Lemma 8 is
complete.

Theorem 1 (extension of Hardy-Landau’s identity).

Let D=EZ_V_]+1 , A =[M]=N+1——u .
2 : 2
Then, for x>0 and y >0,

3 0 KOna) = Quusta) - | 500 K2 g

n=yY 'n

+ ;‘)("—I)ZQL(?J)—%—IQT;ELZI)—_;_(_:L)AS (\ oA+l K(v)(xz)d

a A+l

Proof. Noting that H(z)=0 for 0<z<1, we have

S HEZ K@) gy (=I), say)

N4
2 1

- ZF.(%)—,;— B g, — ZF(n)Sy 0 K(z) g

n=y ZN+1

n=y YN+t p+l N+1 N+1

Here we find for fixed x, by Lemma 5,

37) I;E;’iﬂ;) —0( =00 (o).

Hence noting Lemma 1 we get, by Lemma 7,

I(eo)=— 3\ F(m)E2) K(”‘”) —Qu(®) ,

and so
S ECD 1) K -,
(38)

—I(c0)—I(y)= SH(z) 0 K@) 4,

] zN+1

On the other hand we have for &>y, by partial integration,

SH(z) 0_ K@) j(Qo(z)+s<N>(z)+Z(0)> 0 K@) g,

N N
2 +1 +1

—!(S(N)(Z)+Z(O)) K(.’JGZ) } » g S+ () L% K(xz) dZ-l—S Q, (z) 0 K(mz) dz ,

N +1
%

where by (13) and (14), as z— o,
S™(z)=0(zlog™ %), S¥+(2)=0(log""*2) .
Consequently, noting (37) and making &—occ, we obtain
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—

SH(z) g I;{ff) de—= — (S () + Z(0)) Kfﬁf‘{) S S<N+D(z)£z[§‘f—f)dz
+ a2 K ay;

and this combined with (38) y1e1ds

N+1

S o Kfff)

Now by (18), Qo(2)=0(z1"17), and so (1<ISN), by (16),

-1 ] yl Yy _ 1
Qz(z)z".o dyl SO dyz oo .Sol 1Qg(yz)dyl=0(zl+ 1 N) .

Furthermore by Lemma 5, for 1<I[<21 and fixed z,
o' K(xz) _ o’ KV (wz) —(N+1) A 13(902)

azl zN-i—l ZN+1 ZN+Z

<N+»_s;—l>(1-%v)—<N+1>>:O<z—i—i~l(1 1))

=O(z
so that (note that zgﬁ”_l)

8 K (xz)

N+
2N+l

Q O(zli"—%"%\fu%v’)= O(z—l%’) .

Therefore, by partlal 1ntegration,

g Q(z) 2 K(xz)d, Q(y) 2 K(xy) S Q(z) R K(xz)d

ZN+1 N+1 ZN+1
== 2R K(”y)+( | e 2 K(m)dz,
yN+1 aA+1 ZN+1

which combined with (39) gives us

S ") K (1) =Qu(a) ~ | 500 K g

n=y N+1

o K(xy)_l_(_l)xg (z\a +1 K(wz) dz
oy’

,yN—{-l a A+1 zN+1

We now differentiate the last result v (< N) times with respect to
x and obtain, by Lemma 9,

)y F_(?lffm(m):QA_l(a,) _ S“’Swﬂ,(z) _K_cg(i@ o

n=y

+2( D'QUw)-, Al K’“@M( = z S Q)2 K@) g,
Zl

a A+l zN+1

On comparing this with the statement of our theorem, it is found that
what remains to be proved is only the uniform convergence of
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SwQA(@ o™ K@) g0 (1<h<y)

azk+1 zN+1—k

for o, <ex<x, (0<x;<z,). Noting that 1+1+p=N+2 we find by Lemma
5 and (17), uniformly for such z,

Q) 2 K®(@2) _ o A+D-7)+ W +1-A-1-B)1-3) - (N +1-k)
azk+1 zN+1—k ‘

b o(AFD)_ o0
=0 )=0\z" =0(z %) (z—>o0).
This concludes the proof of Theorem 1.

§ 3. Extension of Hardy’s identity

The object of this section is to establish the following extension of
Hardy’s identity :

- Theorem 2. We have, for x>0,
Qs = 5 LW g oma),

=1

or, written out wn full,

ngzx F(?’l)(x— n)M:E\,flS(Z (3)5%) 4 Z(O)my

&S Fn) M Z(s) (nx)s**
+ W§=—1‘1 n+t 2 S(%)Z(l——s) se++(s+M) o

where M =[—N;é—"—1:! .

Remarks., 1) The equivalence of the two forms may be seen as

1
follows. We apply Cauchy’s theorem to replace _ZJ_\?) in

. 1 ) ,ws+N
Koy=21.| O s @0

by (3). This is possible since by (3), uniformly in the strip —%‘g:a_g_%,

for fixed w and large |¢],

ws+N _ N(l +4iN)_N__1 _ . .
e )=0(tI~)
’ . _—1_ ‘ws+N
Thus « K(w)= 277@'5(% )g(s)S-—A' - (s+N)ds .

On differentiating this formally & times (1<k<y) with respect to w it
is found that

K(">(w)=is ) DL l—; >
' 2rid(zy  seer(s+N—k)
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To justify the process we show that the last integral converges uniformly
for 0<<w<w, (w,_>0). This is clear since we have by (3), on the line
o=1%, uniformly for such w,
96— oty =0(t H=0xt ) .
Seeo(s+N—Fk)

From the above result and (12) the equivalence follows at once.

2) The interest of this theorem consists chiefly in the fact that the
convergence of the series ean not be established easily. In fact Lemma
5 gives merely, for fixed w,

(€)] 1 N Y v_.8s__ 1
K ngmc) =O<n(N+‘2 v(1-1) l)=0<nN E ZN) :
y 3 =1 1N+1 3 1

and since == =
N 2 2N N 2 2 2N

we deduce no conclusion as to the convergence.
3) We prove Theorem 2 first for the case 8CN<11, using Lemma

8 (which was established by Landau’s method). It will not be until we
have developed some further lemmas that we shall be able to prove it
in the general case, using a method similar to that for Theorem F of
Hardy-Littlewood [8]. It thus appears that Hardy-Littlewood’s method
is more powerful than Landau’s (as far as we are concerned with the
present problem).

" Proof for 3XN<11. In view of Theorem 1 we have only to show
that, when 014,

b

(40) Q) 2 K@) o (4o
oy Y
This expression is by (17) and Lemma 5, for /=2,
13(1 -1 1 2—y)(1=1)— _A
(41) Oy D0 =R+ W +i=2=0(-3)=4)_o(,7)

and by (18) and Lemma 5, for 0=/<1—1 (gN;l)

o TV +3-1-v)(1-3)~2

O(yl'*'l N+1 N+1-20 log'ry)

l+y 2 N+1 21

———-O(yN Nel-2t é “2n Jog” y) O(y;‘\r'(z\z—lefzz 2N )log y)
2  N+l-2 _1
N+1-2¢ 2N N’

Now suppose that N4+1—2&>0. Then, since

the function

42 G =2 — N+1"25
(42) =% (NH_% )
attains its maximum when
2 N+1--2¢ 1 —1(~ /N 2
Ee =} — O = N_']. £
Nt 1—2¢ oN VN (r §=3v ))
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1(N ., 1\- 2 _ O/ N-2\—
Hence. G(Z)SN(E-{—l) 2 -

and the last expression is negative if
VN<2+12, or N<6+4,2=11.6--
This proves the stated result.
Example. Let us take N=3 (so that M=1) and let k; be for each

7=1, 2,8 the rational number field. Then
2(5) =)= S dsmn™ (>1)

where £(s) is the Riemann zeta-function. Further
(0)y=—-%, ZO0)=-5%,
and by (1)
Z(s)
Z{1-9)
We thus obtain (2>>0)

|| s amay— 3 dmwe@—mn
Res( 2706 )_ 1
—E.SS:LS( s(s+1) ) g7

<ﬂ smEF(l s)) S(S+1)ds

=9(S)=<(2Z) :

. T8 8
8 P (1— )
sin 5 (1—s)

< d3(n)i
+ﬁ§1 n? 2m’g(;2L)

Lemma 10. Let v, T, y be positive, y=<1, and k a natural number.
1 yY

Then
1 (Sy+i2’ Swim Y
— — SR S——f .
2miN\Jy-ir v—iw)s- e (s+k) 8| < T+ |log ¥|
(The convergence of the‘ infinite integral is obvious.)

Proof. The left-hand side equals

43) i(g+§)4y——ds‘ .
2mi\Jyriz  Jy-ie/ 5o (s+ k)

Now, by partial integration,

Sy+im ys { ys 1 }ymm

Y17 S« o (84 k) logy s---(s+k))vy+riz
g’f”“ y® 1 (1
v+izlogy s--+(s+ k) \ s
y' (1 Sk—l—ldt_2 y”

. = logy[\T* " )r ghee 7 Togy| ’

and, by symmetry,

S‘Y—H’ y® ds|< 2 yY .
y-ios S« + (S+ J2) 7" [log y|
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Hence (43) does not exceed
1 4 oy 1 g
2z T*** |logy| ~T"** (logy|
Lemma 11, We have, for any fized >0,
| F(n)=0(°) .
Proof. Let ¢,(s) be the Dedekind zeta-function of an algebraic
number field of degree m and write

Gl =3, fln™ (>1).

Then we know, by Hilfssatz 1 of Landau [7], that
fm)=d,(n),

where d,(n) is defined by
(8= S dalm™ (>1),
¢(s) being agein the Riemann zeta-function. Hence, writing (o>>1)

C¥(e)= X dulwn ™" =Cm(s)- - -Lne(s)

and comparing this with

Z2(s)= 3, ™" =Ci(s)++Clo) »

we at once see that

Fn)<dy(n) .
But it is known (Hilfssatz 12 of Landau [6]) that

dx(n)=0@n°) .
Hence the result. ‘ _

Lemma 12. Let y>1, T>0, y=m+%, m a positive integer, 1<k

<N. Then, for all T and y, ' '

H( 1 Sy-;-i’l’Z( ‘ ys+k d O yk+y
ky)'_‘z'—m e 8)8'-'(8-{-[6) 8+ Tk+1)'

Proof. Differentiating (10) with respect to y formally N—k times,
we get

1 S+k
W= ? O i ™

and the formal process is legitimate, since the last integral\cleérly con-
verges uniformly for bounded y. Hence

1 S'Y'HT ys+k 7
55\, Zls)————-ds—H,
2mg)y-ir ‘S)S'--(s‘+k) s ()

7 +ico S+
1 SW _Sy )Z(s) Y k_ds.

27[’?: ¥ —4T y—tco See .(S+k)

(44)
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Now we easily see that

45) i ( Svmv . Swm) 20) —S—i’s(—:ﬁ; s

2w \Jy-i7  Jy-tw

(@>T)

_ iF(n) (S’YHZT va») (’%)s .
=1 y—ir y=iw/ G .(3+k) \ ’
and this is, by Lemma 10,

yYy 1
=y P2 L) o

oyt i F(n) 2

=R e (r=1+2¢),
n

log ¥ ‘
n

which is independent of w.
Here F(n)n~¢ is bounded by Lemma 11, and we may prove without
difficulty that, for all y=m+3%,

St =0 ;
"=t e log Y
n

the proof being similar to that for Hilfssatz 3 on p. 841 of Landau [5].
Hence (45) is Oy**T-*"") uniformly in w.
On making w— oo, it follows that

Y+ET Y +ioo k+y

2m<g iz Sy zw) Sy +k) —O(T’fﬂ)’

and comparing this with (44) we get the desired result.
Lemma 13. For any given >0 we have, uniformly for 0<o<1 +e,

Z(s)=0(t V)
Proof. Let 5>>0. Then, by (4),
Z(5)=0(j ")

uniformly for ¢>-—¢. But clearly Z(1+¢+1%)=0(1). Hence by the
Phragmén-Lindelof theorem (Satz 405 of Landau [8]) we have, uniformly
for —0<o<1+¢,

l4+g -0
2(5)=0( N Vexs)
The lemma now follows if we take ¢ sufficiently small.

Lemma 14, Let 6>0 be fized, 1<I<N, y=m+%, m o variable
positive integer. Then
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3 | l
(46) Q=00 (>%).
(47) Q=0 T (1=,

Proof. Let ¢>0 and write
. S+1
Z(8)=Z(s)—Y .
(s) (s) s -(5+1)
Noting (12) we find for 7>1, by Cauchy’s theorem,
1 14e+iT
—S Z,(s)ds=8"-D(y)+ L+ L+, ,
271"1, 14+e—iT
where we write for brevity

I1=_1_§1+8HTZZ(3)(Z3 , Iz_—:%gé—w ZZ(S)dS 3 Igzi,S%HT z(S)ds ’

d 1
270 FHiT Y emir

so that, by symmetry,
(48) \L=|L] .
Hence, by Lemma 12,

Qz(y)—%Z(0)=Hz(y)~sw'”(y)

l+1+¢
(49) ~L+L+L+0(L0)

As for the order of Z,(s) we have by Lemma 18, uniformly for
0<o<1 4+,

(50) Z(s)=0(yr VO 1)y

1) Let ©>~. We take T=y and obtain, by (50),

= Olgreep 91

further, by symmetry, _
T 143 NG+e)—1-1
13=OS y—l—}t (E+¢e)

1

=O(yll(N++)s ) ;

l l
dt+o@ H=ou' ",

if €<%—_41l—' Hence, noting (48) we get, by (49),

Q=0 =)+ 06 ) +0w)+ Y 2(0) ,

and this is O(yH%) if ¢ is small enough.
2

2) Let I<]. We take T=y™%, so that y=T¢ a=1>+2. Then by

(50), uniformly for i<s=<1+¢,

ZZ(S)zo(Trx(o‘-l—l) +N(1;‘T+a)—-l~—1> ¢=T) .
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)—1—1

attains its maximum for 3<os<1+e at one of the end-points of the
interval, where
(61) f@)= a(l+-l)+N(z+e) —l~1=a(l+1)—1—2+ Ne,
fA+e=al+1+e)+iNe—l—1=a(l+1)—I—1+(N+2)e,
so that we get, in view of (48),
(52) |L| == | L] = O(T - P+ |
Further, by (50) and (51), i
T l+3 NGE+e)—I—1 l
IS=OSIy+ N g oG
I+3 N ~1 a(l NG +e)—1
_o@ NI _ oD NGOl

o—1)Y(I+1)+Ne
_ o@D ENe

From (49), (52) and this it follows that
Q (y) O(T(w 1)(l+1)+(N+2)8)+0(T(a’« 1)(l+l)+ws)+O(le) ,
where (a—1D)(+1)—la=a—(l+1)=F+2)—F+1)>0.
_ 14+1 -1y 26
ThUS Ql(y)=0(T(w 1)(!3+1)+(N+2)8)=0<y A @ >
whence the result follows if ¢ is sufficiently small.
Proof of Theorem 2 (in the general case). It suffices to show the
validity of (40), where y=m+4. It holds for [=2 by (41); and we
have for [=0 and /=1, in (42),

Now the linear function of o

’

2 N+1 N N+1 2
G(0 _ 0,
0= N "N+l 2N — N( 2 ) N+1<
2 N-1_1(N N-1
1) = < = 41— 0,
GO =~"N_1 2N “N( * ) N— 1<

so that (40) holds. (It should be noted that z—_—[ﬁ;—l]_z__z, where the

equality holds if and only if N=3 or 4.)
Thus we may restrict ourselves to the case N >4, 2<I<21—1 in the
following. We distinguish two cases according to Lemma 14.

‘1) >, Then, by (46) and Lemma 5,

o' KOwzy) A I+i+ N +3-l—v)(1-%) -2
x "”‘O(y : ) )

Q. () "

—-O( -l _2LN>:O(Q~2LN>_>O
as y—oo, since [+y<A—1+p=N.
2) Z=Z' Then by (47) and Lemma 5, for fixed 6>0,
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Q) o K(>(my) (yl+1 2“:;’+5+(N+%—~l—v)(l-—l—§)—a>
14 1 °

Here the exponent is

w11 1 20+D

N 2 2N N N+4
1 N 1 ! 214+ 2
NV 22 ) N TN O
< 21+1 264—2 o= (2l+1)(4-—N)—2N
= 2N N+4 2N(N +4)
and the last expression is negative if ¢ is small enough. Hence (40)
holds.
Thus Theorem 2 is completely proved for N=>3.

+4;
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