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It is. well known that in the elementary treatise of differential
and integral calculus, the Mean Value Theorem plays the most fund-
amental part. Indeed, every global property of a function with respect
to its derivative is based upon this theorem, the proof for which is
usually reduced to the global property of a continuous function defined
on a compact set, though the theorem seems to represent the property
of a function defined on a connected set rather than a compact set.

The purpose of the present note is to give a new formulation of
the mean value theorem whose proof depends directly on the connectivity
of a linear interval, which enables us to generalize the theorem to the
case of interval‘ functions defined in spaces of more than one dimension.

1. Preliminaries. Though throughout this note we shall use the
terminology in 2-spaces, R?, the results which will be obtained hold true
in spaces of any finite number of dimensions. Given an interval function
¢ defined on a closed or an open domain J(CR?), we shall say ¢ is
additive, if, for any closed interval I<J and its decomposition into
two intervals 7, and I, not containing common inner points,

o) = o(L) + p(15).

We shall also say that ¢ is continuous in J if () -> 0 as the area
of I(J), m(l), tends to zero. A sequence of intervals {I,} will be
termed regular, according to the standard of S. Saks’s ‘The Theory of
Integral (1917)’ if the ratio of the length of non parallel two edges of
each interval I, remains between two fixed positive numbers indepen-
dent of n. We shall say that a sequence {I,} of intervals tends to 2
if I,az(n=1,2,...) and the diameter of I, tends to zero. Then, the
upper derivate, Dg(x), of ¢(I) at x is the upper bound of the numbers
[ such that there exists a regular sequence of intervals {I,} tending
to z, for which lim(¢(Z,)/m(I,)) =1. The lower derivate of ¢ at =,

>0

Do(x), is similarly defined. If the upper and the lower derivates of ¢

at x are equal, their common value is called the derivative of ¢ at «

and is denoted by ¢/(x). , '
In one-dimensional case, it is well known that ¢'(x) is identical

with the limit of @(I)/m(I) when the length of I, having « as one of
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its extremities, converges to zero.

2. Statement of theorems. The theorem we are now going to
establish is as follows: '

Theorem 1. Let + be an additive, continuous function of an interval
on a closed interval I, satisfying the condition y(I)) = 0, then, there exists
o point x, and a descending sequence of imtervals {I;} with the following
properties 1°—4°: '

1° IL,>OLDLD...3%,
2°  x, is the inner pownt of each I;,

. 38° every I; may be chosen so as to be similar to I,.

4° YyI) =0 (=12,...).

Once established this theorem, the proof for which will be given in

the following section, we may state as its corollary the following more
general theorem :

Theorem 2. Let @ and o be additive, continuous functions of an
wnterval on a closed interval 1,, then there exist o point x, and a descend-
ing sequence of intervals {I;} satisfying the conditions 1°-4° of the preced-
ing theorem and the condition

5° o(l)o(l) = p(l)a(l;) (G=1,2,...).
The proof of this theorem is almost immediate, since putting

‘1’(1) = ¢(I)0'(Io)_‘$0(10)0'([);
we find (I) is additive and continuous and satisfies the condition
‘n{’(Io) = 0. v » ]

In theorem 1, if we replace o(I) by m(I), we find at once the fol-
lowing theorem:

Theorem 3. Let @ be an additive, continuous function of an interval
on a closed interval I,, then there exists a point x, and a descending
sequence of intervals {I;} satisfying the conditions 1°-3° and

6° o) /ML) = pl)[ml) (1=1,2,...).

Let us remark here that this theorem contains the usual mean
value theorem or more generally the following :

Theorom 4. If ¢ is an additive, continuous function of an interval
on a closed interval I,, then there exists a point x, in the interior of
I, such that

Do () < 2% < Bop(o).
m (1)

The proof is also almost immediate, since by the above theorem we
observe that {L;} is a regular sequence tending to x, for which

Dol < lim (L) | m(ly) = @(L) | m(L,)
and similarly De(x) = o(ls) | m(1,)
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If we assume the existence of the derivative of ¢ at all inner
points of I,, then by D@(x,) = Dp(x) = ¢'(x)) we find

@) p(l) = m(L)p' (%),
which is the mean value theorem in 2-space.

3. Proof of Theorem 1. Denoting by [a, b] a closed interval in
R' defined by an inequality ¢ < o < b, we may write

| [a, ] x [¢, d]
for the closed interval in R? defined by inequalities a <o <b and

c<Ly<d. ;
Let I, = [a, b] x[¢, d] and I(«, B) = [a, B8] x[c, d]. Then the function

g(ay B) = "l’(I(ay 6))7

considered as the function of an interval [a, 8] Tla, d] in R', is evidently
additive and continuous, so that g(a, 8) tends to 0 as a > B8 or B8 —> a:
Writing | |
f&) =g, 6+h)
where % = (b—a)/3 and £¢[a, a+2h], we observe first by the additivity
of g that ‘

(2) f(a)+fla+h)+f(a+2h)
= g(a, a+h)+gla+h, a+2h)+gla+2h, a+ 3h)
= g(a, b) = ‘I’(IO) = 0.

We also see that by the additivity and continuity of ¢ that f is a
continuous funection of &, since for £ =&, & (&> &)

—Q(Eu 52)—9(52, 51+h)
= g(&+h, &+h)—g(&, &) >0

as §—>& or & —&.
Let us distinguish here two cases:
1) fla) =fla+h) =fla+2h) =0
and
2) among the three values f(a), fla+k) and fla+2h) there is at
least one == 0. '
If 1) occurs, then let us put

3) @ = a+h, b =a+h=at+2h

If 2) occurs, then by (2), we can find two values, f(¢&) and f(&),
among those three, with different signs. Since f(§) is continuous on
&, &] or [&, &], there exists a point & = a, such that

(4) f(all)=0 and 81<a/1<€2 or 52<41<81u
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In any case, we have by (3) or (4)
0 =f(a:) = Y([a, blx[e, d])

where o < a, < a;+h =b,< b and b—a, = (b—a)/3.

Replace now I, by [ai, b]x[ec, d], divide [c,d], instead of [a, b:],
into three equal subintervals, apply the above process, and we shall
find [¢;, d,] such that

‘P([al s bl] X [01 ,di]) =0

where ¢ < ¢ < d,<d and d;—¢, = (d—¢)/3. Denoting [a;, b]x[ec, di]
by I,, we find that I, is contained in the interior of I, and also that
I, is similar to I,. If we repeat indefinitely this process of finding out
I, from I,, we shall obtain a sequence of intervals {I;} satisfying all
the conditions required in our theorem, since the diameter of I; tends
to zero. Thus the proof is completed.

4. Some applications. Among many theorems derived easily from
our generalization (1) of the mean value theorem, let us make a special
mention about three theorems of which the following first one is the
immediate consequence of (1):

B Theorem 5. Suppose ¢ be an additive, continuous function of an

wnterval dofined in an open set G. If @ has a finite derivative at all
points of G and the derived function @'(x) is mtegfrable over an interval
I, C G i the sense of Riemann, then

ol1) = | @/ (@) dm(z).

Theorem 6. Suppose ¢ be an additive, continuous function of an
wnterval defined in o domain where a finite derivative exists at every
point. Then the derived function ¢'(x) takes every value A between any
two different values of ¢'. '

Proof. We have only to show that if ¢/(x,) >0 and ¢'(2) <0,
then there exists a point x,€ G for which ¢f(x,) = 0 since, otherwise,
we may replace @(I) by @()—im(I). Let Qs(z) be a square, of centre
x, whose edges are of length & and parallel to the coordinate axis.
Take, in G, a continuous curve C which joins # and z,. The distance
between C and the boundary of G is evidently positive, and con-

sequently holds
' Qs(x) T G

for all zeC and for a sufficiently small 6§ > 0. Since @'(z) >0 and
@' (2,) <0, we may obviously assume that @(Qs(x)) >0 and ¢(Qs(x:)) < 0.
But, as is easily seen, @(Qs(x)) is a continuous function of x defined
along C, whence there is a point £¢ C for which P(Qs(€)) = 0. Then
by our generalization (1), we can find a point x, in the interior of
Qs(8) < G such that ¢'(x,) = 0 which is the required result.
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Theorem 7. Let @ be an additive, continuous function of an interval
m & neighborhood V of x,. If @ has a finite derivative at every point of
V except perhaps ot x,, then it has a derivative also at x,, provided that
lim ¢'(x) ewists. ’

i’roof. Let I3z, be an interval in V. If =z, does not coincide with
a vertex of I, we can subdivide I into two intervals I, and L by a
straight line, passing through x,, parallel to one of the axis. Since
@ | m(D) = (@) + (1) | (m(L) + m(L)), we have max (L) m(L)
><p(1) [ m(I) = >m1n o)/ m(l;). But as @ has a derivative at every

inner point of. each ;, there exists a point a; in the interior of I;
such that ¢/(z;) = (L) | m(;) (j =1,2). Thus r.n]in P'(x) o) | m()
cF=1,2 ’

< max ¢'(x;). If, on the other hand, =z, coincides with a vertex of I,

J=1,2

then there exists an inner point & of I for which o(I) | m(I) = ¢/ (§)-
From the two considerations made above and the assumption that
lim ¢'(x) should exist, we can conclude that if the diameter of I tends

t0 Ozero, then maX¢(xJ), mm @'(x2;) and ¢/(§) tend to the same limit
lim ¢/ (), Whlch shows hm gD(I) | m(l) = lim gp’(x) This completes the

z-)ro

proof.

Remark. As the above proof shows, hm @' (x) = q)'(xo) 1s the derlva-

tive even in the strong sense. (See S. Saks The theory of the integral
1937 p. 106).




