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In this paper we shall discuss the properties of a ‘separation’
function of hypotheses, which measures the degree of separating
hypotheses by test, and then by using it a formulation of the classical
problem of estimation is tried from the standpoint where a one-para-
meter group of transformations can be defined in a universe.

1. Notations. Let 2 be a space, whose elements will be denoted
by w, wo, @1, ..., B a Borel field of subsets of 2, and P(E), P(F), P,(E),
ete. probability measures on it. The direct product of n such measure-
spaces (2, B, P) will be called an n-dimentional (measure-) space, and
denoted by (£, B P™), Thus the notations with a superseript (n)
mean the corresponding ones on an n-dimensional space (20, B Py,
In this paper let £ and B be fixed, and on each measure P on 1t the
following assumption will be assumed.

Assumption (1.1). For any set Ae€B and any positive number p(p
< P(A)), there exists a subset B(e®B) of A with P-measure p.

2. The separation function of simple hypotheses. For any two
measures P,, and P, there exist, by Radon-Nikodym’s theorem, a measur-
able function f(o) and a measurable set S of P,-measure zero, such
that for each set E(e B)

P(E) = P(E~S)+ j Flw)dPyw) .

Making use of the assumption (1.1) we can now define the family R of
measurable sets R, so that (1) to each « (0 < «a<1) there corresponds
one and only one R, with Pr-measure a, (2) R contains, for each a,
just one set R, of the form {w|f(w) =k} S among those (if such sets
exist) having equal P,-measure «, (3) R contains R, = 2 and the empty
set Ry, (4) RaD Ru if aa> . This family will be called a system of
the best critical regions of P, against P;.

Congider the function v(a; Py, Po) = Pi(R.)* of a0 < a < 1), which
will be called a separation function of P, against P,.° Then we have

Theorem (2.1). 7(0; P,, Pg) =0,v(1; Pj, P) =1, and v(a; Py, P)

" 1 Contributions from Department of Mathematics, Faculty of Science, Ochanomizu

. University, No. 8.

! 1—7(x; Py, P,) is the probability of an error of the second kind of the most
powerful test of P, against P; whose error of the first kind is of probability «.
3 Though % is not unique, 7(a; Pi, P,) is unique for a pair P, P;.
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is & convex, non-decreasing and continuous function of a in the interval
0 <a<l). If, moreover, P, is absolutely continuous with respect t> P,,
then v 4s also continuous at a = 0. The graph of y = v(x; P,, P,) s
always symmetrical with the graph of y = v(x; P, Py) with respect to the
line x+y = 1. ' ' _

Further if the separation function v™(a; P;, P,) of P,™ against P,
on the n-dimentional space is defined as above, then we have

Theorem. (2.2). If P(E) == P(E), then

YN a; Py, P) S9N as Py Py for all a (0<<aXl),
and '
lim v®™Na; Pi; P) =1 for all a (0 <<a<1).*

nPp0

Remark. Let us write
8NP, Py) = max {y"Na; P, P)—a},
o<Lo<1

then 8™)(P,, P,) satisfies the. three conditions of distance, and enables
- us to introduce a metric, as a measure of separating hypotheses by
test, into the set of hypotheses. But this distance is equivalent to the
distance by the absolute variation of P,(E)—Pi(E).

3. Dissipative group of transformations. Let o’ be a measurable
one-one transformation on £ whose inverse transformation is also measur-
able, & a one-parameter group of o° (s being a parameter), and P a
fixed probability measure on (2, B). The transformation o — ¢'w = (¢c’w;,
c’ws, ..., c’w,) On an n-dimensional space £2¢ will be denoted by the
same letter ¢, where w = (w;, @, ..., @,).

In this and the next sections, let us consider a set § of probability
meagures ¢’ P(#) satisfying

o’P(F) = P(c°E) for every FEe€3,
or
‘ o’ PONE) = P®o—E)" for every KEeB"

in. the case of thé n-dimensional space, and assume that the measures
of $ are absolutely continuous each other. Then, from this assumption,
follows )

oP(E) = | f(o]9) dPw) = | L8 40 pE)

where f(w|s) is a non-negative measurable function of o with a para-
meter s. By this function we can define the system R(s, s’) of the
best eritical regions of ¢”P against o°P for each pair s, s’ (s> s).

* S. Kakutani 1) has proved, in our notation, that r®(a; Py, P,(>d)=1, but this
equation is slightly different. from ours.
5 It is clear that ¢sP™ = (s*P)m.
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Definition. If R(s,s’) is an invariant family for each choice of s
and s/, then the group & is called dissipative with respect to P.

In this case ¥i(s,s’) will be denoted simply by R and the element
of R with P-measure a by R.*.

Furthermore, consider the function v(«l|s) = o'P(R.*) of « (O<a£ 1)
with a real parameter s. Then we have

Theorem (3.1).° If © is dissipative with respect to P, then v(als)
has the following properties: (1) if s >0, then v(al|s) = v(a; ¢’P, P), f
s <0, then v(a|s) is the inverse function of v(ea; P, s°P), and v(a|0) =«
(2 y0ls9)=0, v(|s)=1, and it is a continuous, monotone increasing
Junction of a« 0 a<1), and @t s convex if s >0, and concave if s < 0;
3) v(al|s)|s) =va|s+s), therefcre Y(a| —s) is the inverse function of
Yials); (4) for each a (0<a<1), it is continuous and monotone increas-
wng with respect to s, Ii+m Yals) =1, and limy(a|s) = 0; (5) it s differ-

>0 s 3o

entiable with respect to a for each s, and its derivative will be denoted by
k(a|s); (6) it has the derivative, denoted as @.(—s), with respect to s, and
we have @.(s) = k{a| —)p.(0); (7) for each a (0<a < 1), ®.(0) is a con-
vex, positive function of «; (8) there exists a monotone function @(x) such
Cthat Y{als) = (@ (a)+s). (9) let us put v“Nals) = o*PUR*™), then

v a|s) s non-decreasing with n for s >0, and non-increasing with n
for s <0, and moreover hm W(”’(a [s) =1(s>0), limy™{als)=0(s<0),
provided that 0 < a < 1. T

4. «-estimate. In this paragraph, let us suppose that 65 is dissipa-
tive with respect to P, and consider the random variable $.(w), called.
an a-estimate of s, defined by

Su{®) = sup {s|o’R.* 3 0}

where R,* is an element of the system R defined in the preceding
paragraph. Then we have '

Theorem (4.1). The a-estimate S.{w) has the following properties:
(D) Su(c’w) = Su(w)+s; (2) let the distribution function of 3S.{w) be Du(s| s)
=0"P(w|3.(0) <s') then D.(s'|s)=1—(a|s—s'), therefore D.(s'|s)=D.(s'—s|0);
(8) the derivative of D.(s|0) with respect to s exists and s equal to @.(s);
) ¥ ® s dissipative with respect to P™ for every n, $."Nw) s & con-
sistent and sufficient estimate of s whalever a may be; (5) let one of the
values of a maximizing @.(0) be av,’ then 8, (w) 18 & maximum likelihood
estimate; (6) if x{w) is o random variable with the distribution F(x|s) -
= o’P(x(w) < ) which satisfies the equation F(x|s) = F(x—s|0), and let

8§ The properties (4)~(8) follow from (2) and (3), and an elementary proof of this fact
is given by Mr. Turane Iwamura.

7 In this case we were to assume that @5 is dissipative with respect to P® for
all integers n.

¢ The existence of this «, has been assumed by the property (7) of Theorem (3.1).
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us put e8| x) = o*Pls—8 < zlw) < s+38) = P(—8 < 2(w) <.8), then e(8]|x)
< e (w). From the property (6) 3. (w) is, in a sense, an efficient
estimate of s. If, in particular, x(e) and §,(w) are unbiased estimates
and their second moments exist, the commonly used efficiency is deduced
from this property. _

5. Distribution with a dissipative group of transformations. In
this paragraph we shall discuss what types of distributions will be allow-
ed for a dissipative group of transformations.

Theorem (5.1). If there exists a one-parameter group & of transfor-
mations in (2, B, P), then ® is dissipative with respect to P if and only

. ] ; . flw]s) . flols) -
if flw|s) satisfies the equation F Flals) 815 82, 83, s4> Flals) Jor all

w € 2, where F(k; 3., s:, 8;, 8} 18 @ positive function of a positive variable
k with four parameters si, S, Ss, Ss, Such that (1) if 8, > 8., 83 _>s8, or if
81 < S, 8, <84, them F is monotone increasing with k. (2) if s, > 8., 8;< 8,
or if $,< 8., 8, > 8y, then F is monotone decreasing with k. (3) if s; = s,
then F'=1 whatever s, and s. may be, (4) if 8 =S8,, 8,=8s., then F is
“not defined, (5) if 8, =8;,8 =s,, then F(k; s, sz, Ss, 8:) = ks (6) F(F(k; |
Siy 825 Sz, 34) S35 S4y S’i’ Sr) = F(k 815 82y Ssy 86)

Theorem (5.2). If O s defined in (2,9, P), then (Sj xS d@sszpatwe
with respect to P™ on each n-dimensional space (¢, B™, P™) 4f and
only if f (cols) has the form: logf(w|s) = p(w)q(s)+r(s),” where plw) is a
real-valued function on 2, q(s), r(s) also real valued functions of & real
variable s, and moreover q(s) is monotone.

Theorem (5.3). If there exists a group & dissipative with respcct to
P®™ on (2™, B, PO™) for every n, and if no element of & makes P in-
variont, then there exists o function u{w) satisfying u(c’w) = w(w)—s, for
which f(w|s) can be written in one of the following forms:

(I) logf(e|s) = —2Asu(w)—As*+Bs, (A>0)

II) logf(w|s) = —B(e*“—1)e* )+ Cs, (B> 0, AC> 0),
where A, B, and C are constants.

Theorem (5.4). Let {P{(E)} be a set of probabzlzty measures P (E)
absolutely continuous each other (s being a parameter), and represented as
P, = \f(|9)dP,, where f(w|s) is one of the two types (I) and (II) of
Theorem (5.8), and u(w) s a measurable function which is a one-one
mapping of the whole space 2 onto the set of all the real numbers, then
Jor all integers n a dzsszpatwe group of transformaiwn& with respect to
P can be defined such that o’Py(E) = P(E) for any set EeB.

Corollary. If (2, B, P,) is a direct product of two measure spaces
(2*, B*, P*) and (U, U, @), where P,* satisfies the conditions of Theorem
(5.4), then the same result as the above theorem (5.4) holds.

¢ cf. Koopman 2).
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6. The general form of a-estimates and examples. In this para-

graph we shall give a-estimates in the general form and some examples.
The next table shows the general forms of a-estimates.”

T
hygc?t%gsfis Type (I) Type (II)
log f(w] s) —2Asu(w)y—As’>+Bs, (A>0) —B(e¢4s—1)¢Autw) -Cs, (B, AC> 0)
4 : 1; ~ 1 B 3} edu(wp
-3 —_ o-1 — = log 2 <&
4o (0) N{E (@) +- 0= (@)} ) 0 0-1(x)
7@l O(0-Y(%)+ Ns) D(e40())
c
~NA |A] (@-1(@)*7 -1
a (8) NA —ya(s-24v @-mmyny | exp {—e~452 (%) _NCs}
. A
» 1 B —1 AB
Say(®) —NZ u(wi)—{-ﬂ _ = log WZ eAquf)
Pay(s) / N4 -wast ) w exp{ —NCS—N %e—m}
r(N =)
VR - 1
D(r) % 2 : 2\ el -1 g g U
( v “a FWGTA g

0-Ya) is 'the inverse function of O(»).

Examples of this estimation may be found in the problem of estima-
tion of (@) the mean and (b) the variance of the normal distribution, (c)
the mean of the exponential distribution, (d) m of the Pearson’s distri-

}\
bution of the type III: F(/l) e (x>0, m >0, 1 >0), (¢) of the type

V: %x‘x“ e (x>0, m >0,2>0), (f) of the type VIII: (1—m) (1
+x) (=1 <a<0,1>m), (9 of the type IX: (1+m)(1l—z)"(0 <z <1,
—1>m), and () of the type XI: (m—1Dx 1A <z, 1< m).
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1 The size of the sample o is agssumed to be N, that is, o = (wl, .,0y), and 3}
indicates the summation over 1=1,2,..., N.

I These limits of the 1ntegrat10n are ones for a positive A, otherwise the integral
is to be taken from » to oo.



