Chapter 5.

A note on the property of linear cellular automata

1 Introduction

Cellular automata are discrete dynamical systems with simple construction. We define a cellular automaton as follows.

Put $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ for $n \in \mathbb{N}$. Let p be a prime number, r a natural number and \mathcal{P} the set of all configurations $w : \mathbb{Z} \to \mathbb{Z}_{p^r}$ with compact support. Let a linear transition rule $L : \mathcal{P} \to \mathbb{Z}_{p^r}$ be defined as follows:

$$Lw(x) \equiv \sum_{k \in G} c_k w(x+k) \pmod{p^r} \quad \text{for } w \in \mathcal{P}, \tag{1.1}$$

where the set G is a finite subset of \mathbb{Z} with $\sharp G \geq 2$ and $c_k \in \mathbb{N}$.

Patterns of linear cellular automata were studied by some people. Existence of the limit of a series of space-time patterns is proved [1, 3, 5, 6]. E. Jen showed that a series $\{L^t w(x) | t \in \mathbb{N}\}$ is aperiodic for some L with p=2 in [2]. In [5], S. Takahashi considered the case where L is p^r -state linear cellular automata with the initial state δ_0 which is 1 at the origin and 0 at others. He examined the limit set with respect to each non-zero state, by using the fact that every state appears in the set $\{L^t \delta_0(-(t-1)r_1-r_2) | t=1,\ldots,p^{r+1}\}$. However, when we consider the limit set as a multi-valued function, the set $\{L^t \delta_0(-(t-1)r_1-r_2) | t=1,\ldots,p^{r+1}\}$ does not work well. Hence we need another set which includes every state and plays a useful role in examing the limit set. So we give a systematic set which has one-to-one, onto correspondence with the set $\{0,1,2,\ldots,p^r-1\}$. This set may play an important role in examing the limit set of space-time patterns as a \mathbb{Z}_{p^r} -valued upper semi continuous function [4].

2 The result

We deal with the specified transition rule L, which satisfies some condition. We say that L satisfies the condition (A) if there exist $r_1, r_2 \in G$ satisfying

- (I) $c_{r_1}/p, c_{r_2}/p \notin \mathbb{N},$
- (II) r_1 is an either maximum or minimum element of the set G,
- (III) r_2 is extreme or $r_2 = \sum_{k \in G, r_2 \neq k} \beta_k k$ with $0 \leq \beta_k < 1$ such that $\sum_{k \in G, r_2 \neq k} \beta_k = 1$ and $p^{r-1}\beta_k \notin \mathbb{N}$,
- (IV) if r_1 is maximum [resp. minimum], then for $s \in \{1, 2, ..., p-1\}$, $l \in \{1, 2, ..., |r_1 r_2| 1\}$ there does not exist a path from $-r_1s(p^r p^{r-1}) + l$ [resp. $-r_1s(p^r p^{r-1}) l$] to the origin, that is, we have

$$-\sum_{k\in G} \alpha_k k \notin \{-r_1 s(p^r - p^{r-1}) + l \mid l \in \{1, 2, \dots, |r_1 - r_2| - 1\}\}$$

[resp.
$$-\sum_{k \in G} \alpha_k k \notin \{-r_1 s(p^r - p^{r-1}) - l \mid l \in \{1, 2, \dots, |r_1 - r_2| - 1\}\}$$
]

for the set $\{\alpha_k\}_{k\in G}\subset \mathbb{N}\cup\{0\}$ such that $\sum_{k\in G}\alpha_k=s(p^r-p^{r-1})$ with $s\in\{1,2,\ldots,p-1\}.$

Here, an element $k \in G$ is extreme if an element k is not expressed as a convex linear combination of other elements of G. We note that a maximum or minimum element of the set G is extreme.

By using $r_1, r_2 \in G$ which satisfy (I),(II),(III) and (IV), put

$$t(r,j) = j(p^r - p^{r-1})$$
 (2.1)

and

$$i(r,j) = -(t(r,j) - p^{r-1})r_1 - p^{r-1}r_2$$
(2.2)

for $j \in \mathbb{N}$. We define $\delta_0 \in \mathcal{P}$ as

$$\delta_0(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0. \end{cases}$$

```
0000000000000005070206010300000000000000
   00000000000503040406020404050300000000000
   0000000001060500020402000506010000000000
   0000000005010307020206060105070300000000
   0000000104020407000400070402040100000000
   00000005070602070504040301060201030000000
   00000010203040106030003060104030201000000
   0000050505050101010107070707030303030300000
t = \begin{bmatrix} 0005030000040404000060200000404040000503000 \\ 00106010004000400060406000400040001060100 \\ 05010703040404040606020204040404050107030 \\ 1040604050000000200040002000000504060401 \end{bmatrix}
```

Figure 1: Space-time pattern of $L_3\delta_0(x) \equiv 3\delta_0(x-1) + 5\delta_0(x+1) \pmod{2^3}$

We shall prove that the set $\{L^{t(r,j)}\delta_0(i(r,j))|1 \leq j \leq p^r\}$ has one-to-one, onto correspondence with the set $\{0,1,2,\ldots,p^r-1\}$. We shall call the set $\{a_n \mid n=1,\ldots,k\}$ a k-set, if the set has one-to-one, onto correspondence with the set $\{0,1,\ldots,k-1\}$.

We need the following lemmas later.

Lemma 2.1. [5] Suppose L is defined as (1.1). For $j, l \in \mathbb{N}$, we have

$$L^{p^{l+r-1}j}\delta_0(x) = \begin{cases} L^{jp^{r-1}}\delta_0(y) & \text{if there exists } y \text{ such that } p^l y = x, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.2. Suppose $q \in \mathbb{N}$ with $q/p \notin \mathbb{N}$, $t = jp^{r-1}$ with $j \in \mathbb{N}$ $v = p^lq$ with $l \in \{0, 1, \dots, r-2\}$ and v < t.

Then there exists $q' \in \mathbb{N}$ with $q'/p \notin \mathbb{N}$ such that $t - v = p^l q'$.

Proof. We have
$$t-v=p^l(jp^{r-l-1}-q)$$
. Put $q'=jp^{r-l-1}-q$. So we obtain $q'/p\notin\mathbb{N}$ by $q/p\notin\mathbb{N}$.

Lemma 2.3. Let L be defined as (1.1) and satisfy the condition (A). Suppose $r \in \mathbb{N}$, $r \geq 2$ and $j \in \{1, 2, ..., p^r\}$. Let $r_1, r_2 \in G$ satisfy (I), (II), (III) and (IV) of the condition (A). Then the following assertions hold:

- (1) $L^{t(r,1)}\delta_0(i(r,1))/p \notin \mathbb{N}$.
- (2) The set $\{nL^{t(1,1)}\delta_0(i(1,1)) \mod p \mid 1 \le n \le p\}$ is a p-set.
- (3) Suppose $|r_1 r_2| \ge 2$. If $r_1 > r_2[resp. \ r_1 < r_2]$, then

$$L^{t(r,j)}\delta_0(-t(r,j)r_1 + l) = 0$$
[resp. $L^{t(r,j)}\delta_0(-t(r,j)r_1 - l) = 0$] (2.3)

holds for $l \in \{1, 2, \dots, |r_1 - r_2| - 1\}$ and

$$L^{t(r,sp^{r-1})}\delta_0(-t(r,sp^{r-1})r_1+l) = 0$$
[resp. $L^{t(r,sp^{r-1})}\delta_0(-t(r,sp^{r-1})r_1-l) = 0$]

holds for $l \in \{1, 2, \dots, p^{r-1} | r_1 - r_2 | -1 \}$ and $s \in \{1, 2, \dots, p-1\}$.

Proof. (1) For $a, b \in \mathbb{N}$ put $a+bC_b = (a+b)!/(a!b!)$. We have

$$L^{t(r,1)}\delta_0(i(r,1)) \equiv {}_{p^r-p^{r-1}}C_{p^{r-1}}C_{p^{r-1}}c_{r_1}^{p^r-p^{r-1}-p^{r-1}}c_{r_2}^{p^{r-1}} \pmod{p^r}$$

by (II) and (III) of the condition (A). Since

$$p^{r-p^{r-1}}C_{p^{r-1}} = \frac{(p^r - p^{r-1})(p^r - p^{r-1} - 1)\cdots(p^r - p^{r-1} - p^{r-1} + 1)}{p^{r-1}!},$$

p does not divide $p^{r}-p^{r-1}C_{p^{r-1}}$ by Lemma 2.2. Then p does not divide $L^{t(r,1)}\delta_0(i(r,1))$ by (I) of the condition (A).

- (2) We shall show that $nL^{t(1,1)}\delta_0(i(1,1))\not\equiv 0\pmod p$ holds for all $n\in\{1,2,\ldots,p-1\}$. The proof is by contradiction. Assume that there exists $n_0\in\{1,2,\ldots,p-1\}$ such that $n_0L^{t(1,1)}\delta_0(i(1,1))=s_0p$ holds with some $s_0\in\mathbb{N}$. Then we have $L^{t(1,1)}\delta_0(i(1,1))=s_0p/n_0$. Since $n_0\leq p-1$, $s_0/n_0\in\mathbb{N}$ holds. Therefore p divide $L^{t(1,1)}\delta_0(i(1,1))$, which contradicts assumption.
- (3) Suppose $r_1 > r_2$. Since $1 \le l \le r_1 r_2 1$, there does not exist any path from the origin to the point $-t(r,j)r_1 + l$ by (IV) of the condition (A). So we have $L^{t(r,j)}\delta_0(-t(r,j)r_1 + l) = 0$.

Since $t(r, sp^{r-1}) = p^{r-1}t(r, s)$, we have

$$L^{t(r,sp^{r-1})}\delta_0(-t(r,sp^{r-1})r_1) = L^{t(r,s)}\delta_0(-t(r,s)r_1)$$

$$L^{t(r,sp^{r-1})}\delta_0(-t(r,sp^{r-1})r_1 + p^{r-1}(r_1 - r_2))) = L^{t(r,s)}\delta_0(-t(r,s)r_1 + (r_1 - r_2))$$

$$L^{t(r,sp^{r-1})}\delta_0(-t(r,sp^{r-1})r_1 + l) = 0$$

for $l \in \{1, 2, ..., p^{r-1}(r_1 - r_2) - 1\}$ and $s \in \{1, 2, ..., p - 1\}$ by Lemma 2.1 and the equation (2.3).

In case $r_1 < r_2$, we can prove it in the same way as above.

Lemma 2.4. Suppose $r \geq 2$ and L satisfies the condition (A). Then

$$L^{t(r,j)}\delta_0(i(r,j)) \equiv L^{t(r,m)}\delta_0(i(r,m)) + sL^{t(r,p^{r-1})}\delta_0(i(r,p^{r-1})) \pmod{p^r}$$

holds for $j = sp^{r-1} + m$ with $s \in \{0, 1, \dots, p-1\}$ and $m \in \{1, 2, \dots, p^{r-1}\}$.

Proof. Let $r_1, r_2 \in G$ satisfy (I),(II),(III) and (IV) of the condition (A). We first consider the case where $r_1 > r_2$. We compute $L^{t(r,j)}\delta_0(i(r,j))$ from the values at time t(r, j - 1). We have

$$L^{t(r,j)}\delta_0(i(r,j)) \equiv p^{r-p^{r-1}}C_{p^{r-1}}c_{r_1}^{p^r-2p^{r-1}}c_{r_2}^{p^{r-1}} + \sum_{k=1}^{p^{r-1}(r_1-r_2)-1} B(r,k)b(r,j-1,k) + c_{r_1}^{p^r-p^{r-1}}L^{t(r,j-1)}\delta_0(i(r,j-1)) \pmod{p^r},$$

where $b(r, j, k) = L^{t(r,j)} \delta_0(-t(r,j)r_1 + k)$ and $B(r,k) \in \mathbb{N}$ for $k \in \{1, 2, \dots, p^{r-1}(r_1 - r_2) - 1\}$ and B(r,k) does not depend on j.

Put

$$d(j) = \sum_{k=1}^{p^{r-1}(r_1-r_2)-1} B(r,k)b(r,j,k)$$

and we rewrite the equation above as follows:

$$L^{t(r,j)}\delta_0(i(r,j)) \equiv L^{t(r,1)}\delta_0(i(r,1)) + d(j-1) + L^{t(r,j-1)}\delta_0(i(r,j-1))$$

$$\equiv jL^{t(r,1)}\delta_0(i(r,1)) + \sum_{l=1}^{j-1}d(l) \pmod{p^r}$$

from Euler's theorem $(n^{p^r-p^{r-1}} \equiv 1 \pmod{p^r}).$

We have $b(r, sp^{r-1}, k) = 0$ for all $k \in \{1, 2, ..., p^{r-1}(r_1 - r_2) - 1\}$ and all $s \in \{1, 2, ..., p-1\}$ by Lemma 2.3(3) and $L^{t(r, sp^{r-1})}\delta_0(-t(r, sp^{r-1})r_1) \equiv 1 \pmod{p^r}$. Since B(r, k) does not depend on j, we have

$$d(m + sp^{r-1}) \equiv d(m) \pmod{p^r} \tag{2.4}$$

for $m \in \{1, 2, ..., p^{r-1}\}$ and $s \in \{1, 2, ..., p-1\}$ by (II) of the condition (A). For $j = sp^{r-1} + m$ with $m \in \{1, 2, ..., p^{r-1}\}$ and $s \in \{0, 1, ..., p-1\}$

$$L^{t(r,j)}\delta_0(i(r,j)) \equiv jL^{t(r,1)}\delta_0(i(r,1)) + \sum_{l=1}^{j-1} d(l)$$

$$\equiv sp^{r-1}L^{t(r,1)}\delta_0(i(r,1)) + s\sum_{l=1}^{p^{r-1}-1} d(l) + mL^{t(r,1)}\delta_0(i(r,1)) + \sum_{l=1}^{m-1} d(l)$$

$$\equiv L^{t(r,m)}\delta_0(i(r,m)) + sL^{t(r,p^{r-1})}\delta_0(i(r,p^{r-1})) \pmod{p^r}$$

by (2.4). In case $r_1 < r_2$, putting $b(r, j, k) = L^{t(r,j)} \delta_0(-t(r,j)r_1 - k)$, we can prove in the same way.

Put

$$a(r,j) = L^{t(r,j)} \delta_0(i(r,j))$$
 (2.5)

Figure 2: The relation among t(r, j), i(r, j) and a(r, j).

for convenience. We will prove the set $\{a(r,j) \mid 1 \leq j \leq p^r\}$ is a p^r -set. In order to prove the following lemma, we define a map $\mathcal{L}: \mathcal{P} \to \mathbb{N}$ as follows:

$$\mathcal{L}w(x) = \sum_{k \in G} c_k w(x+k), \tag{2.6}$$

where the set G and c_k are as in the definition of L. We note that there exists $k(r,j) \in \mathbb{N}$ such that

$$\mathcal{L}^{t(r,j)}\delta_0(i(r,j)) = k(r,j)p^r + a(r,j). \tag{2.7}$$

Lemma 2.5. Suppose a(r, j) is defined as (2.5) and the set $\{a(r, j) | 1 \le j \le p^r\}$ is a p^r -set. Then the following assertions hold:

- (1) $a(r+1,j) \neq a(r+1,l)$ holds for $j,l \in \{1,2,\ldots,p^r\}$ with $j \neq l$.
- (2) There exists $k_0 \in \mathbb{N}(0 \le k_0 \le p-1)$ such that $a(r, p^{r-1}) = p^{r-1}k_0$.
- (3) $a(r+1,j) \not\equiv a(r+1,l) + ka(r+1,p^r) \pmod{p^{r+1}} \ holds \ for \ any \ k \in \{1,2,\ldots,p-1\} \ and \ j,l \in \{1,2,\ldots,p^r\} \ with \ j \neq l.$
- (4) $a(r+1,j) + k_1 a(r+1,p^r) \not\equiv a(r+1,j) + k_2 a(r+1,p^r) \pmod{p^{r+1}}$ holds for any $k_1, k_2 \in \{1, 2, \dots, p-1\}$ with $k_1 \neq k_2$ and $j \in \{1, 2, \dots, p^r\}$.

Proof. We have

$$a(r,j) \equiv \mathcal{L}^{t(r,j)} \delta_0(i(r,j)) \equiv \mathcal{L}^{t(r+1,j)} \delta_0(i(r+1,j)) \pmod{p^r}$$
 (2.8)

for $j \in \{1, 2, ..., p^r\}$ by Lemma 2.4, since

$$\mathcal{L}^{pt(r,j)}\delta_0(pi(r,j)) = \mathcal{L}^{t(r+1,j)}\delta_0(i(r+1,j))$$

by Lemma 2.1 and

$$\mathcal{L}^{t(r,j)}\delta_0(i(r,j)) \equiv \mathcal{L}^{pt(r,j)}\delta_0(pi(r,j)) \pmod{p^r}.$$

Therefore by (2.8) there exists $k'(r,j) \in \mathbb{N}$ for $j \in \{1, 2, \ldots, p^r\}$ such that

$$\mathcal{L}^{t(r+1,j)}\delta_0(i(r+1,j)) = k'(r,j)p^r + a(r,j). \tag{2.9}$$

So we obtain by (2.7) and (2.9)

$$k(r+1,j)p^{r+1} + a(r+1,j) = k'(r,j)p^r + a(r,j)$$
 (2.10)

$$k(r+1,l)p^{r+1} + a(r+1,l) = k'(r,l)p^r + a(r,l).$$
 (2.11)

for $j, l \in \{1, 2, \dots, p^r\}$.

- (1) Assume a(r+1,j) = a(r+1,l) holds for $j, l \in \{1, 2, ..., p^r\}$ with $j \neq l$. By (2.10) and (2.11) $a(r,j) a(r,l) = (k(r+1,j) k(r+1,l))p^{r+1} (k'(r,j) k'(r,l))p^r$, which contradicts the assumption.
- (2) We will prove it by induction on r.
 - (a) In case r=1, it is clear by definition.
 - (b) In case r > 1, assume that it is true for r = r'. Then we have $a(r', p^{r'}) \equiv pa(r', p^{r'-1}) \equiv pp^{r'-1}k_0 \equiv p^{r'}k_0 \pmod{p^{r'}}$ by Lemma 2.4 and the assumption of induction. So there exists $k'_0 \in \mathbb{N}(0 \leq k'_0 \leq p-1)$ such that $a(r'+1, p^{r'}) = p^{r'}k'_0$ by (2.10).
- (3) The proof is by contradiction. Assume that there exists $k_1 \in \mathbb{N}$ such that $a(r+1,j) \equiv a(r+1,l) + k_1 a(r+1,p^r) \pmod{p^{r+1}}$. Then there exists $s_0 \in \mathbb{N}$ such that $a(r+1,j) a(r+1,l) k_1 a(r+1,p^r) = s_0 p^{r+1}$. There exists $k_0 \in \{0,1,\ldots,p-1\}$ such that $a(r+1,p^r) = p^r k_0$ by the assertion (2). By the equations (2.10) and (2.11), we have

$$a(r,j) - a(r,l) = (k(r+1,j) - k(r+1,l))p^{r+1} - (k'(r,j) - k'(r,l))p^{r}$$

$$+ a(r+1,j) - a(r+1,l)$$

$$= (k(r+1,j) - k(r+1,l))p^{r+1} - (k'(r,j) - k'(r,l))p^{r}$$

$$+ s_{0}p^{r+1} + k_{0}k_{1}p^{r}$$

$$= p^{r}\{(k(r+1,j) - k(r+1,l))p - (k'(r,j) - k'(r,l)) + s_{0}p + k_{0}k_{1}\},$$

which contradicts $a(r, j) \neq a(r, l)$ by $0 \leq a(r, j) - a(r, l) \leq p^r - 1$.

(4) It is clear by the property of modulus.

Proposition 2.6. Suppose $r \in \mathbb{N}$. If the set $\{a(r,j) | 1 \leq j \leq p^r\}$ is a p^r -set, then the set $\{a(r+1,j) | 1 \leq j \leq p^{r+1}\}$ is a p^{r+1} -set.

Proof. We obtain the conclusion by Lemma 2.4 and the assertion (1), (3) and (4) of Lemma 2.5.

Theorem 2.7. For a prime number p and $r \in \mathbb{N}$, let L be defined as (1.1) and satisfy the condition (A). Put $t(r,j) = j(p^r - p^{r-1})$ and $i(r,j) = -(t(r,j) - p^{r-1})r_1 - p^{r-1}r_2$, where $r_1, r_2 \in G$ satisfy (I),(II),(III) and (IV) of the condition (A).

Then the set $\{L^{t(r,j)}\delta_0(i(r,j)) | 1 \le j \le p^r\}$ is a p^r -set.

Proof. The proof is by induction on r.

(1) In case r = 1, from Lemma 2.3(3),

$$L^{t(1,j)}\delta_0(i(1,j)) \equiv _{t(1,1)}C_p c_{r_1}^{t(1,1)-1} c_{r_2} + c_{r_1}^{t(1,1)} L^{t(1,j-1)} \delta_0(i(1,j-1))$$

$$\equiv L^{t(1,1)}\delta_0(i(1,1)) + L^{t(1,j-1)}\delta_0(i(1,j-1))$$

$$\equiv jL^{t(1,1)}\delta_0(i(1,1)) \pmod{p}$$

for $1 \leq j \leq p$ by Euler's theorem $(n^{p^r-p^{r-1}} \equiv 1 \pmod{p^r})$ for any $r \in \mathbb{N}$) and $L^{t(1,1)}\delta_0(i(1,1)) \equiv {}_{t(1,1)}C_p c_{r_1}^{t(1,1)-1} c_{r_2} \pmod{p}$. So the assertion holds for r = 1 from Lemma 2.3(2).

(2) In case $r \geq 2$, we get the conclusion by the proposition above and the assumption of induction.

References

[1] F. v. Haeseler, H.-O. Peitgen and G. Skordev, *Linear cellular automata, substitutions, hierarchical iterated function systems and attractors.* Fractal Geometry and Computer Graphics, J. L. Encarnação, H.-O. Peitgen, G. Sakas, and G. Englert, Eds. Springer-Verlag, 1992.

- [2] E. Jen, Aperiodicity in one-dimensional cellular automata. Physica D 45 (1990), 3–18.
- [3] M. Matsuto and F. Takeo, The limit set of cellular automata. Natur. Sci. Rep. Ochanomizu Univ. 48 (1997), 9–22.
- [4] M. Matsuto, Convergence to the limit set of linear cellular automata, II. in preparation.
- [5] S. Takahashi, Self-similarity of linear cellular automata. J. Comput. System
 Sci. 44 (1992), 114–140.
- [6] S. Willson, Cellular automata can generate fractals. Discrete Appl. Math. 8 (1984), 91–99.