Chapter 5.

A note on the property of
linear cellular automata

1 Introduction

Cellular automata are discrete dvnamical systems with simple construction. We
define a cellular automaton as follows.
Put Z, = {0.1.... .n — 1} for n € N. Let p be a prime number, r a natural

number and P the set of all configurations w : Z — Z,» with compact support.

[Let a linear transition rule L : P — Zp-,- be defined as follows:

Lu(r) = z cruw(r+ k) (modp") forw € P. (1.1)

kEG
where the set (G is a finite subset of Z with :G > 2 and ¢, € N.

Patterns of linear cellular automata were studied by some people. Existence
of the limit of a series of space-time patterns is proved [1. 3. 5. 6]. E. Jen showed
that a series {L'w(z) |t € N} is aperiodic for some L with p =2 in [2]. In [5]. S.
Takahashi considered the case where L is p"-state linear cellular automata with
the initial state &, which is 1 at the origin and 0 at others. He examined the limit
set with respect to each non-zero state, by using the fact that every state appears
in the set {L13¢(—(t—1)ri—ry) |t =1.... ,p""'}. However. when we consider the
limit set as a multi-valued function, the set {L!do(—(t=1)ri—ry) [t =1,... ,p""'}
does not work well. Hence we need another set which includes every state and
plays a useful role in examing the limit set. So we give a systematic set which
has one-to-one, onto correspondence with the set {0.1.2.... ,p" — 1}. This set
may play an important role in examing the limit set of space-time patterns as a

Z.

~-valued upper semi continuous function [4].
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2 The result

We deal with the specified transition rule L. which satisfies some condition. We

say that L satisfies the condition (A) it there exist r,ry € GG satistying
1) ¢ /pscrp € N.
(IT1) »r, is an either maximum or minimum element of the set G.

(IIT) ryisextremeorry = ) e, 25 Okk with 0 < 0 < 1 such that D heGrath Ok =
1 and p" '3, & N,

(IV) if ry is maximum [resp. minimum]|, then for s € {1.2.... ,p — 1}. [ €
{1.2.....|ry = ry| =1} there does not exist a path from —rys(p" —p"~') +
[ [resp. — rys(p” —p"~ ") — 1] to the origin, that is, we have

_Zak}; ¢ {—ris(p’ —-—-p""]) + [l e{l.2,... .|r — ro| — 1}}

kel

resp. — Z ak & {—=ris(pt —p" ) =1l e{1,2,... .|ry — 12| — 1}}]

kEG
for the set {aglreq C N U {0} such that >, _.ap = s(p” —p"~') with
sed{l.2.....p—1}.

Here, an element k € G is extreme if an element k 1s not expressed as a convex
linear combination of other elements of G. We note that a maximum or minimuin

element of the set (G 1s extreme.

By using ry.ry € GG which satisty (I).(II).(I11) and (IV). put
tr.j) =" =p") (2.1)

and

IO
IND
S

i(r.J) = = (t(r.J) =" =M 2

for y € N. We define 95 € P as
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300(z — 1) + 58p(x + 1) (mod 2°)

Figure 1: Space-time pattern of L3dg(x)

We shall prove that the set {L!™§y(i(r,5))|1 < j < p"} has one-to-one, onto

mm—— =
—— —

.p" — 1}. We shall call the set {a, |n

k} a k-set, if the set has one-to-one, onto correspondence with the set
ke — 1},

correspondence with the set {0,1,2,...

1,...
(0.1,..

We need the following lemmas later.

if there exists y such that p'y = x,
otherunse.

Lemma 2.1. [5] Suppose L is defined as (1.1). For 7,1 € N, we have
s ] 2 'pT—l
| iSo(x) = { é/j 0o ()

Lemma 2.2. Suppose ¢ € N with q/p ¢ N, t = jp"~! with j € N v = p'q with

[ €{0,1,...

r—2} and v < t.

Then there ezists ¢ € N with ¢ /p ¢ N such that t —v = p'q’.

Put ¢ = jp" "' — q. So we obtain

p'(jp" " — q).

Proof. We have t — v

[ ]

q/p ¢ Nbyq/p¢N.

Lemma 2.3. Let L be defined as (1.1) and satisfy the condition (A). Suppose

p"}. Let v,y € G satisfy (1),(11),(III) and (IV)

of the condition (A). Then the following assertions hold:

7€{1,2, ...

re N, r>2 and

8O



(1) L™V (i(r,1))/p € N.
(2) The set {nL!PV§(i(1,1)) mod p|1 < n < p} is a p-set.

(3) Suppose |ry —ra| 2> 2. If 1y > rolresp. vy < 13, then

L) go(=t(r, j)r1 +1) = 0 (2.3)
resp. Lt(r‘j)c?o(——t(’f‘, j)ri—1) = 0
r holds for 1 € {1,2,... ,|r1 — 7| — 1} and
L¥msP" 060 (—=t(r, sp" Dy + 1) = 0
resp. LY )50 (=t(r,sp" N = 1) = 0]
holds for 1 € {1,2,... ,p" ! ry —ry| — 1} and s € {1,2,... ,p— 1}.
Proof. (1) For a,b € N put ,4,Cp = (a + b)!/(alb!). We have
L{mV64(i(r, 1)) = pr_pr—1Cpra cf:“prﬂl“’pr_lcf:l (mod p")
by (II) and (III) of the condition (A). Since
ST (it LV e Ul YRR Vil Ut i )
pr_pr—l pr‘—l —_ p?"—l! ’

p does not divide ,r_,r-1Cr-1 by Lemma 2.2. Then p does not divide

L*™Y64(i(r, 1)) by (I) of the condition (A).

(2) We shall show that nL*11§,(3(1,1))#0 (mod p) holds foralln € {1,2,... ,p—

1}. The proof is by contradiction. Assume that there exists ng € {1,2,... ,p—
1} such that ng L"), (i(1,1)) = sgp holds with some sy € N. Then we have
L*D66(3(1,1)) = sgp/no. Since ng < p — 1, sg/no € N holds. Therefore p

divide LYHV§,(4(1, 1)), which contradicts assumption.

(3) Suppose 11 > 79. Since 1 <[ < r; —ry — 1, there does not exist any path

from the origin to the point —t(7,j)r; +{ by (IV) of the condition (A). So

we have L' §y(—t(r,)ry +1) = 0.
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Since t(r. sp""") — p"_lz.‘(r. s), we have

Ll(‘r Hpr_l)(i(]('—f(l S])?_] )7 ] ) == L!(Iﬁ)()ﬁ(](—f(f S)I 1 )
L.!('r,.qﬁr_l)(j'ﬂ(——l‘(I S])I_] )I] -+ })?—] (7] = 12))) — L[(? 3)(50('—1‘(7', S)T'] -+ (‘7’] o 7"-2))
LUt 8 (—t(r.sp” N+ 1) = 0
forle{1.2.....p" "(ry—ry) — 1} and s € {1.2,... .p — 1} by Lemma 2.1

and the equation (2.3).

In case r; < ry. we can prove it 1n the same way as above.

Lemma 2.4. Suppose r > 2 and L satisfies the condition (A). Then
LD (i(r. ) = L'O™ 8o (i(rom)) 4+ sLTP I8, (i(r,p™™ ")) (mod p")
holds for j = sp™ '+ m with s € {0,1.... .p—1} and m € {1.2,... .p""'}.

Proof. Let ry.ry € G satisfy (I).(II).(I1I) and (IV) of the condition (A). We first
consider the case where r; > ry. We compute L") §,(i(r. 7)) from the values at

time £(r.j — 1). We have

S - ) ) . Jr_t,‘—l r—1
L' 8(i(r,5)) = g1 Cprrdl 7 b
p" T (ry—r2)—1
+ Y B(rk)b(r.j— 1K)
o=

n (.1;;*-—7)?‘“1Lf(rri—])go(j(-r,j — 1)) (mod p").

where b(r. j. k) = LU §o(—=t(r, j)ri+k) and B(r.k) € Nfor k € {1,2,... .p" '(r1—
ro) — 1} and B(r.k) does not depend on j.

Put

pr=" (r1—ra)—1

A(j)= " »  B(r.k)b(r.j.k)

k=]

and we rewrite the equation above as follows:

1i

LD 8o (i(r, §)) LUV Gi(r, 1)) +d(j = 1) + L7 Y6 (i(r, 5 — 1))

7—1
th(r,l)é‘O(l'(r.‘ 1)) - Z (](]) (1110(1 pr)
(=]
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1

from Euler’s theorem (n? 7 =1 (mod p")).
We have b(r,sp" ', k) =0 forall k € {1,2,... ,p" ' (ry —ry) — 1} and all s €
{1,2,... ,p—1} by Lemma 2.3(3) and L*™*P" )§o(—t(r,sp" ' )ry) = 1 (mod p").

Since B(r, k) does not depend on j, we have
dim+sp" ') =d(m) (mod p") (2.4)

forme {1,2,...,p" '} and s € {1,2,... ,p— 1} by (II) of the condition (A).
For j =sp™ ' +m withm e {1,2,... ,p" '} and s € {0,1,... ,p— 1}

]

F1
L6y (i(r,5)) = FLOV8(i(r, 1) + Y d(l)
=1

p" -1 m—1
= sp" 'LV (i(r, 1) + s Y d(l) + mL T Ye(i(r, 1)) + > d(l)
=1 =1

Lm0 (i(r,m)) + sLOP 5 (i(r,pr 1)) (mod p7)

by (2.4). In case r; < 7y, putting b(r, j, k) = L'™)§y(—t(r, 7)r1 — k), we can

prove in the same way:. []

Put

(2.5)

Figure 2 : The relation among ¢(r, 7),i(r, ) and a(r, 7).
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for convenience. We will prove the set {a(r,7)|1 <7 < p"} is a p"-set. In order

to prove the following lemma, we define a map £ : P — N as follows:

Lw(z) = Z crw(x + k), (2.6)

keG
where the set G and c¢x are as in the definition of L. We note that there exists

k(r,7) € N such that
LD 80(i(r, 5)) = k(r, j)p" + a(r, 7). (2.7)

Lemma 2.5. Suppose a(r,j) is defined as (2.5) and the set {a(r,j)|1 < j <p"}

18 a p"-set. Then the following assertions hold:
(1) a(r+1,7) # a(r +1,1) holds for 5,1 € {1,2,... ,p"} with j # .
(2) There exists kg € N(0 < kg < p— 1) such that a(r,p"™1) = p"Lks.

(3) a(r+1,7)Fa(r+1,1)+ka(r+1,p") (mod p"*') holds for any k € {1,2,... ,p—
1} and j,l € {1,2,... ,p"} with j # L.

(4) a(r+1,7) + ka(r+ 1,p")Fa(r+1,7) + kea(r + 1,p") (mod p™*!) holds for
any ki, ke € {1,2,... ,p— 1} with ky # kg and j € {1,2,... ,p"}.

Proof. We have
a(r,j) = LD 8(i(r, 5)) = LD 80 (i(r + 1,7)) (mod p") (2.8)
for j € {1,2,... ,p"} by Lemma 2.4, since
LD 4 (pi(r, 1)) = LD i(r +1,.)

by Lemma 2.1 and

Ct(r’j)éo(i(r,j)) = [PHrI) 0o(pi(r, 7)) (mod p").
Therefore by (2.8) there exists k'(r,7) € N for j € {1,2,... ,p"} such that
Et(r+1’j)50(i(r +1,7)) =K (r,5)p" + a(r, j). (2.9)

39



So we obtain by (2.7) and (2.9)

|

k' (r, j)p" + a(r, j) (2.10)

K'(r,)p" + a(r, ). (2.11)

k(r + 1,]’)10"'~+l +a(r+1,7)

k(r + 1, Z)p""‘H +a(r+1,1)

for j,0 € {1,2,...,p"}.

(1) Assume a(r +1,7) = a(r + 1,1) holds for 5,1 € {1,2,... ,p"} with j # [. By
- (2.10) and (2.11) a(r, 7)) —a(r,l) = (k(r+1,7) = k(r+ 1,0)p"" — (K'(r,j) —

k'(r,1))p", which contradicts the assumption.

(2) We will prove it by induction on 7.

(a) In case r = 1, it is clear by definition.

(b) In case r > 1, assume that it is true for r = r’. Then we have

a(r',p™) = pa(r',p" ) = pp” Yk = p" ko (mod p”) by Lemma 2.4
and the assumption of induction. So there exists k, € N(0 < k) < p—1)
such that a(r’ + 1,p" ) = p" k), by (2.10).

(3) The proof is by contradiction. Assume that there exists k&1 € N such that
a(r+1,7) =a(lr+1,0)+kia(r+1,p") (mod p"**'). Then there exists sg € N
such that a(r + 1,7) — a(r + 1,1) — kia(r + 1,p") = sep" ™. There exists
ko € {0,1,... ,p— 1} such that a(r + 1,p") = p"ky by the assertion (2). By
the equations (2.10) and (2.11), we have

= p {(k(r+1,7) = k(r + 1,0))p — (K'(r,5) — K'(r, 1)) + sop + kok1},

which contradicts a(r,j) # a(r,l) by 0 < a(r,j) —a(r, ) <p" — 1.
(4) It is clear by the property of modulus.
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Proposition 2.6. Suppose r € N. [f the set {a(r,j)|1 < j < p"} is a p"-set.
then the set {a(r+1.7)|1 < j<p"™'} us a p'*'-set.

Proof. We obtain the conclusion by Lemma 2.4 and the assertion (1). (3) and

(4) of Lemma 2.5. B

Theorem 2.7. For a prime number p and r € N. let L be defined as (1.1) and
—(t(r, ) -

p" "Ny — p" "y, where riory € G osatisfy (1)(11).(II1) and (IV) of the condition

.? L]

satisfy the condition (A). Put t(r.j) = j(p" — p"~") and i(r.7)

(A).
Then the set {L""5(i(r, 7)) |1 < j <p"} is a p"-set.

Proof. The proof is by induction on r.

(1) In case r = 1, from Lemma 2.3(3).

LODGy(i(1,5)) = sanCpe™D er, 4 0D L0561, — 1)
= L'OUg(i(1,1)) + L9V 5(i(1.5 — 1))
= L'V (i(1.1)) (mod p)
for 1 < j < p by Euler’s theorem (n” 7?7 =1 (mod p") for any r € N)
and L1V, (i(1.1)) = ,(1‘,)Cpcﬁ.(1]‘”_l(',.3 (mod p). So the assertion holds for

r = 1 from Lemma 2.3(2).

(2) In case r > 2. we get the conclusion by the proposition above and the

assumption of imduction.
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