Chapter 3

A Relaxation Model for the
Dissipative Jaynes-Cummings
Model toward Thermal

Equilibrium

With use of the Jaynes-Cummings model with relaxation mechanisms, quan-
tum dynamics of a strongly coupled dissipative system toward thermal equi-
librium is investigated. Our relaxation model ensures the coupled system
evolving in time to the correct canonical distribution in thermal equilib-
rium. The quantal master equation is expanded 1n terms of the eigenstates
of the whole coupled system. Time evolution of elements of the reduced
density matrix are described by the vector tri-diagonal differential equation.
The relaxation process reveals itself through the dynamics of these elements
resulting in the canonical distribution. QQuantum characteristics are found
both in the short time regime and the long time regime. 'The short time
regime is characterized by decoherence process, which represents the phase
relaxation, whereas the long time relaxation process is dominated by the

diagonal process of the energy relaxation.
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3.1 Introduction

The Jaynes-Cummings model [1] is one of the exactly solvable quantum coupled sys-
tems. This 1s a model of a two-level atom (or a molecule) interacting with a single
mode boson field near the resonance. There are a lot of works on this model |2 in the
past decades and recently it has been received a renewed attention in connection with
micromaser [3] and cavity QED [4].

Real systems are usually surrounded by their respective environments. Then the
dissipative Jaynes-Cummings model was studied by the generalized master equation
approach [5, 6]. To take into account the effect of dissipation, usual treatment [2]
couples with the two independent constituent dissipative systems, namely, a dissipative
two level atom and a boson field. However that kind of treatment can not give the
correct canonical distribution of the whole coupled system but the thermal equilibrium
of each subsystem only. Especially for the strong coupling between the two subsystems
and for the long time behavior, this approximation is insufficient. This point was also
noted by Cresser [8] and he proposed a modified master equation which ensures the
thermal equilibrium of the coupled system. e investigated the properties of the master
equation in the long time limit and for the case of 7' = 0 (7" the temperature).

We have made a theoretical framework of the dissipative Jaynes-Cummings model,
which ensures the canonical distribution of the coupled system at finite temperature
T irrespective of the interaction strength between the atom and the boson field [9].
We have obtained the quantal master equation for the reduced density operator of
the coupled system and solved the equation rigorously. It is possible to treat the
modulation effect of the coupling between the subsystems due to the reservoir as has
been shown in the previous chapter. This effect can not be taken into account by the
existing theories.

With this formulation, we investigate quantum dynamics toward the thermal equi-
librium by observing time-evolution of matrix elements ol the reduced density matrix,
which is represented by the vector tridiagonal differential equation. It should be em-

phasized that the transient dynamics both in the short time regime and the long
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time regime can be obtained systematically by our method. We study this dissipa-
tive Jaynes-Cummings model as a prototype of solvable quantum coupled relaxation
system.

Further, this formulation 1s valid even 1f the coupling constant between the subsys-
tems 1s very strong. In this regime, the coupling is too strong to regard the model as
the one derived from the ordinally atom-field interaction model under the rotating wave
approximation. Instead, we propose the model in a broad sense, namely, a model for a
spin 1/2 particle interacting with a boson system. We also investigate the relaxation
process of the strong coupling case where reversal of the energy level occurs.

In this chapter, our system Hamiltonian 1s given in section 2. In section 3, we
introduce a unified representation of the master equations for the several types of
interactions with a reservoir. We derive and rewrite the basic equation from the unified
master equation view point in section 4. All the coefficient matrices in the basic
equation are given in Appendix. In section 5, a consideration on the physical picture
of the basic equation is given. In section 6 we impose 1nitial conditions and we show
the dynamics of the elements of the diagonal part in the boson quantum number of

the reduced density matrix.



3.2 System

Our relevant system is composed of a slightly extended version of the Jaynes-Cummings

model 1n the rotating wave approximation represented by the Hamiltonian [9]

H=Hs+ H,+ H, (3.2.1)
where
Hs = hwpyS,, (3.2.2)
Hy = hwyb'b (3.2.3)
and
iy = hg”bTsz -+ hgj_ (bg_i. + bTS__) (324)

S = (Sz, Sy, S:) being the spin 1/2 operator with Sy = S, + ¢S,, the Larmor
(angular) frequency wg, and the annihilation (creation) operator b (bT) having the
(angular) frequency wy for the bosons. The first term on the right hand side of (3.2.4)
which does not appear in the ordinal Jaynes-Cummings model represents the adiabatic
interaction. We impose a condition g < 2w, for the adiabatic coupling constant. This
condition 1s required for the convergence of the density matrix at equilibrium state.
This system is exactly solvable irrespective of the strength of the coupling constant

g, . The system Hamiltonian has eigenstates |6, 9]

|<19 (7’2., 1)> = cos 0, |‘TZ + 1, “"1> + sin 0, |n1 +1> , (325)
o (n,2)) = —sinb, |n+1,—1) + cos b, |n, +1), (3.2.6)

and
0,—1). (3.2.7)

In these expressions |n,+1) represents the state with n bosons and spin-up whereas
In, —1) spin-down. The states (3.2.5) and (3.2.6) are sometimes called "dressed states”
(10, 11] where the eigenstates are labeled by a set of quantum numbers, (n, ). We see

that n is a quantum number of the boson subsystem origin and a = 1,2 1s a quantum
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number of the spin subsystem origin. We call in this paper n ”a boson quantum
number” and a "a spin quantum number”.

The eigenvalues of H, that is, solution of the following equations

H o (n, 1)) = EY |¢(n,1)), (3.2.8)
H ¢ (n,2)) = EX |p(n,2)), (3.2.9)
H |0,-1) = Ey [0, 1), (3.2.10)
1Is given by
Eno— g L\ _ 9 :
y = hqwp | n+ 5 ~ 3 A(n) e, (3.2.11)
and
h
Ep= ——2 (3.2.12)
2
with
1 on 4+ 1)\
A(n)_\jz(aw—g“(-f;r )) +g2 (n+1) (3.2.13)

where the detuning Aw being defined by Aw = w, — wy. The effect of the adiabatic

interaction 1s to give an additional shitt on Aw. The angle 0,, 1s determined to give the

following relation:

tantl,  —o— (3.2.14)

for g, # 0.

We see from (3.2.11), even it the near resonance condition is satisfied, that 1s, for
Aw << 0, the energy levels of two eigenstates belonging to the same boson quantum

number split due to the coupling represented by ¢ and ¢g,. Ior certain values of g

and ¢, reversal of the energy levels occurs, namely, we find E"*" < E% for larger n.

For instance, when ¢, > \/wo (wb 9,2”), the state |0, —1) is no longer a ground state

although wg > 0. The new ground state i1s |¢ (0,2)), which 1s a superposition of the

states |0, 4+1) and |1, —1).
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3.3 Quantal master equation

We consider our system (3.2.1) is surrounded by the environment that causes fluctu-
ation and dissipation to the system. We regard our whole system 1s coupling with
a reservoir. The reservoir consists of harmonic oscillators in thermal equilibrium at

temperature 7' and has the canonical distribution. The Hamiltonian of the reservoir 1s

given by
Hg =1y wB B (3.3.1)
[

with w; > 0 where B} and B, represent the reservoir variables.

The interaction Hamiltonian between the system and the reservoir is given by 9]
Hsg = h(S5_ + S4)gsB Z (B,T + B;) (3.3.2)
1

and

Hyg = h (b -+ bT) JvB Z (BZT + BZ) (333)
[

which describe energy dissipation from the spin 1/2 system and the boson system,
respectively. In the third case, the non-adiabatic coupling constant g, in (3.2.4) is
considered to be modified due to an interaction with a reservoir, that 1s, the system is

perturbed by the reservoir through the Hamiltonian of the form
Hip =h(bSy +b'S_) gisd_ (Bl + Bi). (3.3.4)
The reduced density matrix of the relevant system 1s given by
p(t) =trgW (1) (3.3.5)

where W (t) is the density matrix of the whole system including the reservoir. ‘l'he
symbol trg stands for the trace operation over the reservoir variables. With the use

of the time convolutionless (T'CL) formalism [12], the quantal master equation of the

relevant system is given by

J

= (1) = ;—% H L, p(t) ]+ s p(t)+ 1y p(t) + 15 p(t) (3.3.6)
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where

< (S0 PO (=] 1S5, (S (-ODf (33

b, p ()b ()] + [b, p (1) b (—1)] )} (3.3.8)
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< ([bSy (=t p(t), bIS_ | + |
+ ((BJ (=1") Bi)p + (Bi(—t') BDB)
< ([bSy, p(t) BS_(—t)] + [BS_, p(t) bSy (—t)] )} (3.3.9)

[n the damping terms (3.3.7)-(3.3.9), time evolution of reservoir variable 1s determined
by (3.3.1) and time evolution of the system operators Sy (¢), S_ (t), b(t), b' (¢), bS4(¢)
and b'S_(t) is determined by the total Hamiltonian H of the relevant system, (3.2.1).

This is a necessary factor ensuring the system relaxation to the thermal equilibrium
to construct the canonical distribution even when the coupling constant g, becomes

large. But this is not an enough factor as we will see in the next sections.



3.4 Basic equation

We expand the quantal master equation (3.3.6) in terms of the eigenstates (3.2.5)-

(3.2.7). We denote elements of the reduced density matrix p(t) as

Pap (1) = (@ (n,a)|p(t) |p(m,[F)), (3.4.1)

pos (1) = (0,=1]p (1) | (m, 3)) , (3.4.2)

o (1) = (@ (n, )] p (1) [0, 1) (3.4.3)

poo (1) = (0,=1] p (£)]0, —1) (3.4.4)

with o, # = 1,2. And for later convenience, we also define the following vectors

specified by a set of boson quantum numbers (n,m):

pit (1)
?'IIT??. t
p"" (1) = ’)jjn( ) | (3.4.5)
P21 (f)
Pz (1)
for n,m > 0, and
Tri t
p~l (1) = ( ’003”( ) ) ,, (3.4.6)
P02 (1)
i
p" T (t) = ( p::)( ) ) (3.4.7)
P:zo(t)
and
p~ T (t) = poo (1) (3.4.8)

By introducing these vectors, we have thus decomposed the Liouville space of the re-
duced density matrix into subspaces specified only by a set of boson quantum numbers.
Next, we expand the following system operators in term of the eigenbras and kets:

Sp(t) = DS e fp(n)le(n+1,a)) (0 (n,B)

n=0a,

+ Y et o (0,a)) (0, 1], (3.4.9)
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bH(t) = D> e s dus(n) o (n+1,0a)) (¢ (n,B)

n=0aq, f3
+ Y et d g0 (0,)) (0, 1], (3.4.10)
and
TS B by e ma) (p () (BALD
n=0 a, 3
where
fiir(n) = cosf,sinb, ., (3.4.12)
fia(n) = —sinf,sinb, , (3.4.13)
for(n) = cosb,cosb, 1, (3.4.14)
foa(n) = —sinb,cosl, , (3.4.15)
fio = sinby, (3.4.16)
fao = costh, (3.4.17)

diy (n) = Vn + 2 cos 8, cos 0,41 + vVn + 1sind,sin0,.,, (3.4.18)
dis(n) = —vn+2sinf,cosb, +vVn+1cos,sinb,,, (3.4.19)
dyy (n) = —vV/n+2cosb,sinb, ., + vVn + 1siné, cos8,,,, (3.4.20)
dyo (n) = V/n+2sinb,sinb, + vn+ 1cosb, cosl,, (3.4.21)
dip = cosby, (3.4.22)
dyy = —sindby, (3.4.23)

Vn + 1siné,, cosb,. (3.4.24)
—v/n + 1sin® 0, (3.4.25)
)
)

vn + 1cos™ 0, (3.4.26
—]2-]1 (n) : (3427

—
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—
o
P — — —
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These are written in terms of the quantities represented by the energy difference be-

tween the neighboring boson quantum number states:
6?1 - En+1 - Fn (3 4 28)
1T - -+ <49 e
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ey, = B —E7 (3.4.30)
o= Ert g (3.4.31)
eo = EY — Ky, (3.4.32)
ey = E° — E,, (3.4.33)

and the quantities represented by the energy difference between the two states with

the same boson quantum number:

07 = 0, (3.4.34)
019 = 2A(n), (3.4.35)
09y = —2A(n), (3.4.36)
1= 0 (3.4.37)
We also have S_ (1) = {5, )= {bt (1)} and 6'S_ (1) = {bS, ()} Tt must be

pointed out that the opelatms S+( ) and b'(t) increase the boson quantum numbers
of eigenstates by one when they operate on the eigenstates, whereas the operators

S_(t) and b(t) decrease by one and the operators bS5, (t) and b'S_(t) do not change

the boson quantum numbers. We can expand all the terms consisting of the system
operators (3.3.7)-(3.3.9) in terms of the eigenstates employing the above character of
the operators.

We further assume that the correlation time of the reservoir 1s much shorter than
the relaxation time of the system confining ourselves to the narrowing limit. Moreover,
we take into account only the real part of the correlation function of the reservoir in
the damping terms (3.3.7)-(3.3.9), while the imaginary part causing frequency shift
may be neglected generally [6]. In the narrowing limit, time integrals in (3.3.7)-(3.3.9)
give the delta functions. Due to the condition w; > 0, the correlation functions of the

reservoir variables in (3.3.7)-(3.3.9) with the delta functions are calculated to give the
functions n_ (X) and ny (X) defined by

(X)) = (exp[X/kpgT]—1)""'=n(X), (3.4.38)
—(exp[-X/kgT] —1)"" =7 (X)+ 1, (3.4.39)

ny (X)
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for X > 0, and

o (X)) = —(exp[X/kgT]=1)""'=na(=X)+1, (3.4.40)
ny (X) = (exp[—X/kgT) = 1) =n(=X), (3.4.41)
for X < 0,
no(X) = 0, (3.4.42)
e (X) = 0 (3.4.43)
for X = 0.

The function (3.4.38) 1s considered to be a generalization of the thermal photon

number

7l == (exp [hwb/kBT] s 1)_1 (3444)

which appears in the generalized master equation for a damped harmonic oscillator. For
the damped harmonic oscillator, the relaxation process is characterized by the damping
rate k and n, the latter of which 1s expressed in terms of w, (See (3.4.44)). This 1s
because of the above mentioned delta function originating from the time integration.
[n other words, the relaxation process i1s essentially determined by the reservoir mode
which 1s in resonant with the harmonic oscillator energy hw,. On the other hand, we
have to put the energy difference (3.4.28)-(3.4.37) into X of the functions (3.4.38)-
(3.4.43). Energy difference (level spacing) ¢, ; can take various values depending on
the quantum numbers n, a and 3 in contrast with the harmonic oscillator whose level
spacings are constant. Thus the system is coupled with many modes of reservoir. This 1s
the most different point from the conventional treatment, where the two independently
dissipative systems are coupled, so to speak, mechanically.

After certain manipulations, we have a set of vector tri-diagonal differential equa-

tions of the form:

a nm [ nm ,n—1 m-—
5P () = & pt et ()
o (& an 1+ K qmn) pnm (Z)
_+_ h:! rnmp'rl-l—l m+-1 (f) (3445)

50



where we have defined

Jo_nm i nm _ nm VA AR
K p = KsPgq KPPy, (3.4.46)
. TLrmt — . e . i - LTI ¢ A A7
' "™ = Kergd™ 4 Kpr," " (3.4.48)

for n,m > —1 with damping constants kg, k;, and «; and the coeflicient matrices L™,

TLIn Tin nin

TLTTL TLTI TnrTri nin
Ps Py »49s 9% 94, ,Tg , I

call (3.4.45) the basic equation. We also obtain an analytic solution of (3.4.45) in the

which are explicitly given in Appendix. We

form of continued fraction by the method of Laplace transform [9, 13]:

pnm [b] i un-—l m—1 [5] pn—l m— 1 [b] + N ™ [b] (3449)
where

un-—l m— 1 [5] — N [b] p"”?’l? (3450)
M™™ [s] = N [s] (pnm 0] + pAm A1 mt] [b]) (3.4.51)

with 1

‘ I *an - nmm N
— (3 LT A KAy [5]) (3.4.52)

19

and conditions u™ “%[s] =0, u™* ™ [s] =0 and u=* ~*[s] = 0. In these equations, the
Laplace transform of A (t) is represented by A [s].

Further, it 1s easy to extend our formulation to the system whose interaction Hamil-

tonian with the reservoir is given by
_ 2 |
Hype = 1 (b+ 1) g 3 {(B,T) 4 (B,)?‘}. (3.4.53)
[

[n this case, we get the basic equation in the same form replacing the functions (3.4.38)-

(3.4.43) in the coefficients matrices by the following tunctions

m_(X) = exp[—X/2kgT] (exp[-X/2kgT] —1)"7, (3.4.54)
(exp [-X/2kpT| — 1)~ (3.4.55)

=>
+
<
il

o1



for X > 0, and

for X <0,

for X = 0.

m_ (X)
my (X)

(exp [X/2kgT] —1)77,
exp [X/2kgT] (exp [X/2kgT] —1)72%,

m_ (X)
7ﬁ+(XJ

il

(3.4.56)
(3.4.57)

(3.4.58)
(3.4.59)



3.5 Physical picture of the basic equation

The basic equation (3.4.45) describes the dynamics of the elements of the reduced
density matrix by the form of the tri-diagonal differential equation. The relaxation
process of the strongly coupled system is represented by the dynamics of these elements
of the reduced density matrix. We consider the physical picture of the dynamics of the
elements.

Since we have used the eigenstates of the system Hamiltonian (3.2.1) as the bases,
the reduce density matrix evolves in time to become a diagonalized form at ¢t = oo.
That 1s, the off-diagonal elements decay in time and the diagonal elements relax to

construct the canonical distribution of the relevant coupled system given by

1 o s |
peg = 7 2. (e #3076 (n, 1)) (@ (n, 1)] + e F240T |6 (0, 2)) (2 (n, 2)])
eﬁwg/QkBT .
+ ——— +1e(0,=1)) (¢ (0,~1)] (3.5.1)

where Z 1s the partition function given by
Z _ Z (e—Ei/kBT + e—Ef/kB’]") + eﬁ.wo/'lk‘BT (352)

at the thermal equilibrium of temperature 7'. Thus, the decay of the off-diagonal el-
ements (decoherence process) represents the phase relaxation and transitions among
the diagonal elements to construct the canonical distribution (diagonal process) rep-
resenting the energy relaxation. Quantum mechanical motion arising from the first
term of the right hand side of (3.3.6) 1s non-vanishing for the off-diagonal part. 1here-
fore, the decoherence process is intimately related with disappearance of the quantum

mechanical motion.

[t is the very characteristic point of (3.4.45) that the time evolution of the vector

TLTn

p"™ is entirely determined by p"~!' ™7' p™ and p"*! ™T' namely, the transition
dynamics of p™™ is confined within the subspaces specified by (n —1,m — 1), (n,m)
and (n+1,m+1).

We should note that the elements of the reduced density matrix are characterized

by two kinds of quantum numbers, the boson quantum numbers n,m for n,m > —1
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(n = —1 and m = —1 are defined by (3.4.6)-(3.4.8)) and the spin quantum numbers «, 3
(a, # = 1,2). The diagonal elements p"" are diagonal in the both quantum numbers.
We see from (3.4.45) that the off-diagonal part and the diagonal part in the boson
quantum number 1s not related. But the decoherence process and the diagonal process

LT

are dependent each other since the vector p™” contains the off-diagonal elements in the
spin quantum number. In other words, the phase relaxation and the energy relaxation
1s correlated only through the elements of the diagonal part in the boson quantum
number.

In some cases, we find that the system does not relax to construct the canonical
distribution. If the system interacts with the reservoir only by the form (3.3.4), the
transition to the different subspaces are forbidden and the system can not relax to
form the canonical distribution. This kind of interaction constructs the canonical
distribution only in a subspace. This suppression ol {ransition also occurs when energy
levels are degenerate preventing construction of the canonical distribution [9].

Expectation values are also given with the use of the elements of the reduced density

matrix. The following expectation values are related with elements of the diagonal part

in the boson quantum numbers:

(S — _Z {—cos20, (piy (1) — py (1))

+  sin 29 (P13 (1) + P2y (1) = poo (1) }, (3.5.3)

(b1by, = S {(n+cos?0,) piy (1)
— cosb,sin b, (pyy (1) + p3y (1))
+ (n + sin” 0 ) D3 ()} , (3.5.4)

(bbbl b),

> {(n? + (2n + 1) cos® 0,) pi7 (1)

— (2n+ 1)cosO,sin b, (pi5 (t) + p5 (1))
+ (n + (2n + 1) sin 0&) Do (1 )} (3.5.5)

and

Z {hll (n) pit (t) + har (n) piy (t)
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+ hag(n) pay (1) + haa (n) pay (1)} (3.5.6)

With the elements of the off-diagonal part in the boson quantum number, the following

expectation values are given:

(S4)1 ) {fll (n) P12 () + far (n) pTy" T (1)

+ fiz(n) p ™7 (1) + faa (n) "™ (t)}
+ fi0 por (8) + fa0 pos (1), (3.5.7)

dyo poy (1) + dao pgy (1) (3.5.8)

Above expressions of the expectation values are direct reflection of the operator char-

acteristics on the eigenstates as mentioned in the previous section.
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3.6 Calculation of dynamics

3.6.1 Initial conditions

We assume that the spin subsystem, the boson subsystem and the reservoir are prepared
independently at ¢ = 0. lispecially, the reservoir 1s considered to be in an equilibrium
with temperature 7' (the canonical distribution) and the spin subsystem is in the up

state. For the boson subsystem, we impose the following initial conditions:

Fock state

The boson subsystem 1s in a Fock state, that 1s, n boson state. The reduced density

matrix at the iitial time ¢t = 0 1s represented by

p(0) = sin®0, o (n, 1)) (p(n,1)] + cos® 0, | (n,2)) (@ (n,2)
+ sinf, cos b, (|e(n, 1)) (¢ (n,2)]+ |p(n,2)) (¢(n,1)]). (3.6.1)

Thermal state

T'he boson subsystem i1s 1n the thermal equilibrium state of temperature 7, with canon-

ical distribution. The 1nitial reduced density matrix p(0) 1s written in the form

1 ,_ | _
p(0) = — D e el (sin® 0, | (n,1)) (o (n, 1)
b n
+ sinf, cos b, (g (1, 1)) {9 (,2)] + | (0,2)) (@ (n, 1))
+ cos? O, ¢ (n,2)) (¢ (n,2)]) (3.6.2)
where
7y = Z ek L (3.6.3)
n=>0
Coherent state
The boson subsystem is in a coherent state |z) defined by b |z) = z |z). Then the

initial reduced density matrix p(0) i1s written by
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,},?1 ,7*3'?1

> el l" 22 (sinf, sind,, |o(n,1)) (@(m,1)]

o n!m!

-4 308 (9,” COS 9?71 IL,Q (Tl., 1)) (LTQ (_?')2,.:1 2)|

+ cosl,sinb,, |p(n,2)) (¢ (m,1)]
+ cosl, cosl,, |p(n,2)) (¢(m,?2)]). (3.6.4)

As 1s seen from (3.6.1) and (3.6.2), elements of the off-diagonal part in the boson
quantum number do not appear in p(0) if we impose the Fock state and the thermal
state mitial condition for the boson subsystem. That is, we have p%7 () = 0 for n # m
for these 1nitial conditions. On the other hand, the coherent state initial condition
for the boson subsystem requires calculations of the off-diagonal part as well as the
diagonal part in the boson quantum numbers. However, as we have shown in the

previous sections, time evolution of each part 1s not correlated. Thus we can calculate

each part independently.

3.6.2 Numerical calculations

In this section, we show dynamical time evolution of the diagonal part in the boson

quantum number from the coherent initial condition (3.6.4). We have solved the ba-
sic equation (3.4.45) numerically by the Runge Kutta method and determined time
evolution of the matrix elements. 'lo observe decay of the off-diagonal elements and
transition among diagonal elements, we calculate absolute values of each element of

the reduced density matrix. We display histogram of sequence of the absolute values

of the matrix elements at time 7:

00 00 00 00 11 11 _11 11 .
{p007pll’p127p21?p227p11>p1‘23p213p‘2‘2‘! s 3 *}T* (3.6.5)

The (4n + 3)th and (4n + 4)th components for n > 0 of the sequence represent the

off-diagonal elements and other components represent the diagonal elements. We also

show the quantities (S,), and (b'b), as functions of the scaled time variable 7 = «t.
In Fig.3.1-a and 1n Fig.3.1-b, we show time evolution of the expectation values (5.,),

and (b'h), in the short time regime and the long time regime, respectively, from the
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initial condition of z = 2.0 in (3.6.4). The temperature parameters 7' = kgT'/hx are
set. equal to 1.0 and 100.0. We show histograms of the sequence of the absolute values
for several 7 in Fig.3.1-c for temperature parameter 7' = 1.0 and in Fig.3.1-d for tem-
perature parameter 7' = 200.0. The calculations are done for the damping constants,
ks = 0, kK, = 1.0 and k; = 0 , that 1s, the dissipation from the the boson subsys-
tem 1s taken into account and the other dissipation mechanisms are totally 1gnored.
For the system parameters g, = g, /& = 100.0, gy = ¢;/x = 0, @9 = wo/k = 200.0,
wp = wy/k = 200.0, the energy level inversion discussed in section 2 does not occur in
the ground state.

Oscillation appearing in the short time regime (lig.3.1-a) reflects the quantum
mechanical motion and superposition property. T'hese are the typical characteristics of
the Jaynes-Cummings model [2]. Earlier suppression of oscillation occurs for 7' = 200.0
compared with the one for T = 1.0. We see slow monotonous relaxation of (S.), and
(b'h), to the correct equilibrium values which depend on temperature in the long time
regime (7 > 1). In Fig.3.1-c and Fig.3.1-d we clearly see the decoherence process (decay
of (4n + 3)th and (4n + 4)th components) in the short time regime (0 < 7 < 1) and
transitions among the diagonal elements in the longer time scale approaching finally
to the canonical distribution in the thermal equilibrium.

In Fig.3.2-a and Fig.3.2-b, we show time evolution of the expectation values from the
initial condition with z = 3.0 in (3.6.4) for 7' = 1.0 and 7' = 200.0. The corresponding
200.0,

histograms are found 1n l11g.3.2-c for and 7' = 1.0 and in Fig.3.2-d for T
respectively. The system parameters and the damping constants are the same as in
[ig.3.1. Decay of matrix elements of large boson quantum number is faster than those
of small quantum number. As a result, we see that the decoherence precess 1n l1g.3.2
takes place more rapidly compared with that in I1g.3.1.

In Fig.3.3, we show calculations for damping constants, kg = 1.0, x, = 0 and
k; = 0, namely, the dissipation from the the spin subsystem 1s taken into account and
the other dissipation mechanisms are totally ignored. The system parameters and the

initial condition are the same as in Fig.3.1 and 7" = 1.0. In Iig.3.3-a and 1n Fig.3.3-b

time evolution of the expectation values are shown in the short time regime and the
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long time regime, respectively. The histograms of absolute values are shown in Fig.3.3-
c. It 1s the characteristic point that both the phase relaxation time and the energy

relaxation time are longer compared with the previous case.

[n Fig.3.4, calculations with parameters ¢, = ¢, /x 100.0, ¢4 = gy/xk = 0,
wo = wo/k = H0.0, w, = wp/k = 50.0 from the mitial condition of z = 2.0 in (3.6.4) are
shown. With these values of parameters, energy level inversion occurs in the ground
state. Damping constants are kg = 0.0, K, = 1.0 and x; = 0 and the temperature
parameter takes values 7' = 1.0 and 7' = 50.0. In the short time regime at low
temperature 7' = 1.0, time evolution is similar to the one for Fig.3.1. On the other
hand, time evolution in the long time regime 1s peculiar to the system parameters
reflecting the transition property among diagonal elements toward thermal equilibrium

determined by the energy level configuration.



Fig.3.1-a Time evolution of the expectation values (S,); and (b'h), in the short time

)4 — §l=100.0, §“=0.0,
(T)O=2OO.O, (T)b=200.0

0.2
0.0 e
0.2 "
0.4
0.0 0.2 0.4 0.6 0.8 1.0
T—=X1
4.0
3.0 e -
Hﬁ&ﬁ.“‘“ T=200-O
2.0 N —_ /
10 ,;F——-IO/ ..................................
0.0 0.2 0.4 0.6 0.8 1.0
T—=XKt

regime for the initial condition of z = 2.0. System parameters are g; =

QJ./R — 100-01 §|| S Qll/"? — 0, Wy = wo/f'i — 200.0, Wy = wb/ﬁ' — 200.0 and

the damping constants are Ks = 0, kp = 1.0 and «; = 0. The temperature

parameter is given by 7' = kgT/hx = 1.0 (dashed line) and T = 200.0 (solid

line).
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1g.3.1-b Time evolution of the expectation values (92)- and (b'h), in the long time
regime.
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F1g.3.1-c Histograms representation of the reduced density matrix for several values of
T = kt; T = 1.0. See the main text for more details.
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g_l_z 1 OOO, §”=0.0,
©,=200.0, 3, =200.0
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1=1.0

T=XK1
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3.0
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7.0 T=200.0
o

5.0 O
4.0

0.0 0.1 0.2 0.3 0.4

Fig.3.2-a Time evolution of the expectation values (S.), and (b'b), in the short time
regime for the initial condition of z = 3.0. The system parameters and the
damping constants are the same as in Iig.3.1; 7" = 1.0 (dashed line) and

T = 200.0 (sold line).
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I1g.3.2-b Time evolution of the expectation values (S.,), and (b'b), in the long time
regime.
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F1g.3.2-c Histograms representation of the reduced density matrix for several values of
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F1g.3.2-d Histograms representation of the reduced density matrix for several values of
T = kt; 1" = 200.0.
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I'1g.3.3-a Time evolution of the expectation values (S5.), and (b'), in the short time

regime tfrom the initial condition of z = 2.0 for 7' = 1.0. The system parame-
ters are the same as in I1g.3.1. The damping constants are kg = 1.0, &, = 0
and K, = 0.
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I1g.3.3-b Time evolution of the expectation values (5,), and (b'), in the long time
regime.
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Fig.3.4-a Time evolution of the expectation values (S.), and (b'd), in the short time
regime for the initial condition of z = 2.0. System parameters are g, =
gi/k =100.0, gy = gy/k =0, wo = wo/k = 50.0, @y = wy/k = 50.0 and the
damping constants are ks = 0, x, = 1.0 and x; = 0; T = 1.0 (dashed line)
and 7' = 200.0 (solid line).
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Fig.3.4-b Time evolution of the expectation values (S.), and (b'), in the long time
regime.
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3.7 Short summary

We have investigated quantum dynamics of a strongly coupled dissipative system to-
ward the thermal equilibrium with use of a dissipative Jaynes-Cummings model. This
model of the coupled system ensures the correct canonical distribution in thermal equi-
librium irrespective of the interaction strength between the atom and the feld.

We expand the quantal master equation based on TCL formalism in terms of the
eigenstates of the Hamiltonian of the coupled system. Time evolution of the elements of
the reduced density matrix is described by the vector tri-diagonal differential equation
which has the analytic solution.

We consider the relaxation process revealed through the dynamics of elements of the
reduced density matrix. Since we expand the density matrix in terms of the eigenstates
of the system Hamiltonian, the physical picture of the dynamics of the elements 1s
clear: Decay of the off-diagonal elements (decoherence process) represents the phase
relaxation and transitions among the diagonal elements to construct the canonical
distribution (diagonal process) represents the energy relaxation. We also show how the
expectation values of the physical quantity are related with the matrix elements of the
reduced density matrix.

[t should be noted that Reynaud and Cohen-Tannoudji [14| used the dressed atom
bases to expand the density matrix as has been done in this paper. They treated the
resonance fluorescence including collisional effects. Our formalism treats the dissipation
offects from the more microscopic point of view, whereas in their work, the collisional
master equation is phenomenologically introduced. In our theory, the relaxation times
T, and T, for instance, are obtained from the microscopic calculations. It 1s interesting
to study their problem with use of our model.

By the numerical calculation of the diagonal part in the boson quantum number,
quantum characteristics of the strongly coupled dissipative system are found both 1n
the short time regime and the long time regime. The short time regime 1s characterized

by decoherence process, whereas the long time relaxation process 1s dominated by the

diagonal process.
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Appendix

3.A Coefficients matrices of the basic equations

The matrices appearing in the basic equation (3.4.45) are tabulated below:

For n.m > 0,

En — ET 0 0 0
| 0 E" — E™ 0 0
LM = - t | (3.A.1)
h 0 0 E™ — ET 0
0 0 0 E" — BT
1 ( £ — E& 0
Ln -1 N + 0 | (3 A 2)
h 0 Er — Eq
1 [ Eog— ET 0
1-1m_ 2 T (3.A.3)
h 0 Ey, — E™
and
L "= (3.A.4)
Forn,m > 1,
Ps 1111 (ﬂam) PS 1112 (nam) PS 1211 (nv?n) PS 1212 (n‘} m)
- ps 1121 (n,m)  ps 1122 (0, M) ps 1221 (1, M) Ps 1222 (n, m) . .
Ps = (3.A.5)
Ps 2111 (n,,m) PS 2112 (nv?n) PS 2211 (n';?n') PS 2212 (nam)
PS 2121 (nam) PS 2122 (n.}m) PS 2221 (_na m) PS 2222 (nv m)
where

ps apap (nym) = {_ (€25") + 7= (€05)} fas(n=1) fap (m—=1),  (3.A.6)

PS 1011 (n) 0) PS 1012 (na O)
" " ps 2011 (7,0) ps 2012 (n,0) y
P = p o = (3.A.7)
PS 1021 (Th 0) PS 1022 (na 0)
PsS 2021 (713 O) PS 2022 ('f% 0)



where

Ps 1010 (0,0)
pSOO _ PS 1020 (070)
Ps 2010 (0,0)
Ps 2020 (0, 0)
where
PS a0a’0 (0, 0) = {‘fl— (€a0) + n— (€4 0)} fao faro,
and
ps ~ =Ps =ps " =0
For n,m > 0,
gs1(n,m) gs2(m)  gs2(n) 0
qom = |95 (m)  gsa(n,m) 0 qs2 (n)
gs3 (1) 0 gss(m,n)  qs2(m)
0 gs3 (n) gss (M) qss (1, m)
where
gs1 (n,m) = n-(efy) {fun(m)} + () {far(n)}

+ + +
P

gs2 (n) = n-(e) fin(n) fiz(n) +n_(ey) far(n) fa2(n)
oty (631_1) fir(n—=1) fa(n—1)
T Ny (6351) fiz(n—1) faa(n —1)
gs3(n) = n_(€fy) fu(n) fiz(n)+7_(e5) fau(n) fa(n)
+ iy (6?{'1) fm(n—=1) fa(n—=1)
+ 7y (6?51) frz(n—1) fa2(n —1)
gsa (n,m) = () {fu(n)} +n_ () {fa(n)}

(3.A.8)

(3.A.9)

(3.A.10)

(3.A.11)

(3.A.12)

(3.A.14)

(3.A.15)



+ i () {2 (m)} + 0 (€5) {far(m)}’

+ hy (@7 {fn =D +ay (€7") {fz(n— 1))’

+ g (57Y) {fa (m = DY 4y (€557") {faz (m — 1)} (3.A.16)
gss (n,m) = A () {f2(n)}* + - (ehy) {fa(n))

+ o () {f2(m)}* + 7 (e55) {faa(m)}’

T Ny (621 ) {far (n = 1)} + 74 (632_1) {faa(n—=1)}

+ Ny (E?i_l) {fa (m = 1)} + 7y (6312_1) {fa2 (m —1)}" (3.A.17)

with the following definition

iy () {fn (0 + 0y () {fi2(=1)) = s (a0) (fi0)”

(3.A.18)
g (1) f(=1) fa (1) + 04 (65) fra(=1) faa (=1) =y (€20) fro fao:
(3.A.19)
i (67) fu(=1) far (=1) + s (67) fiz(=1) far (=1) = s (€20) fio foor
| (3.A.20)
iy (e) {f (DY + 4 (627) {2 (1)} =11y (€20) (f20),
(3.A.21)
and
) gs1 (n,—1) ¢s2(n,—1)
-1 o 1l n _ 3.A.22
" » ( gsa(n,—1) gss(n,—1) ) | |
where
gs1 (n,—1) = n_ (63111) { f11 (n)}z
+ - (ey) {fa (n)}*
+ n_ (€10) (flo)‘2 + n_ (€0) (f20)2
+ Ny (f?fl) {fuln = 1)}
+ ny (6?;1) { fi2 [ = 1)}2
+ gy (€10) (flo)2 : (3.A.23)



where

ds2

ds3

sS4

|

(nv _1)

(n,—1)

(nv ““1)

|

+ + + +

+ 4+ + o+

f (€) fu(n) fiz(n)

n_ (€5,) fa(n) faa(n)

iy (571) fa(n=1) fa(n—1)
iy (€327) frz(n—1) faa(n—1)
n 4 (‘520 f10 20,

) qi2 (m, n) G (n, m) ¢ (n,m)
) ¢is (n,m)  qis (n,™m)  qir (n,m)
) gic(m,n) qs(m,n) gz (m,n)
) Gio (n,m)  Gig (M,M)  Gito (n,m)

(3.A.24)

(3.A.25)

(3.A.26)

(3.A.27)

(3.A.29)
(3.A.30)
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32
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(3.A.31)
gia (n,m) = —ny (6") {hn (n) + hi1 (M)} {h12 () + ha (n)} (3.A.32)
gis (nym) = g (8") [{hi2 (n)}" + {har (n)}°
+ A (6™) [{hiz (m)}? + {har (m)}?] (3.A.33)
gic (n,m) = — {n_(6") + ny4 (6™)} {h12 (n) ko1 (M) + Ao (n) h1g (M)}
(3.A.34)
gir (n,m) = n_(8") {hia(n) + ko1 (n)} {h11 (n) + A1 (m)} (3.A.35)
gis (n,m) = — {ng (0%) +ny (6™)} {h12 () hyo (m) + hay (n) Ao (m) }
(3.A.36)
Gig (n,m) = —ng (6™) {h12 (n) + ha (n)} {h11 (n) — hny (m)} (3.A.37)
gio (nym) = A (6") {12 (n)}* + {ha1 (n)}°
+ A (6™) [{h2 (m)}2 + {hn (m)}g (3.A.38)
with 6" = 2\ (n),
_ _ (i1 (nv _1) 42 (n _1) ) ¥ .
n l.: | 171___ (3A39)
! ! ( 4:3 (7’2.,-—1) {4 (nv'—l)
where
g (n,—1) = g (6") [{h12 (M)} + {har ()}"] (3.A.40)
Giz (n,—1) = n_ (5”)h11(n){h12 (n) + ho1 (1)} (3.A.41)
iz (n,—1) = =y (") ki1 () {h12 (n) + ko (1)} (3.A.42)
qi4 (n, ""1) = N (5n) {h12 (77)}2 + {h21 (”)}2 (3-A-43)
and
g, =10 (3.A.44)
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For n,m > 0,

'S 1111 (n,m) r's 1121 (_nam) s 2111 (nv m) 'S 2121 (nam)
T n,m)j) r n, m n,m) r n, m
rS”m _ S 1112( ) S 1122( ) rs 2112( ) S 2122( ) (3.A.45)
s 1211 (nvm) 'S 1221 (n,m) 'S 2211 (na m) 'S 2221 (nam)
'S 1212 (n,m) r's 1222 (n?m) I's 2212 (n, m) I'S 2222 (nam)
where
s aparpr (n,m) = { iy (€5) + oy (€Zig) b farg () furgr (m), (3.A.46)
pr-l o =ln _ ( 'S 1011 (n, —1) 75 2011 (1, —1) 75 1021 (n, —1) rs 200 (7, —1) )
S — 1g —
'S 1012 (na "‘1) 'S 2012 (n, —'1) 'S 1022 (n —1) 'S 2022 (?7; "‘1)
(3.A.47)
where
rs aoa'g’ (N, —1) = {'Fl+ (€a0) + Ty (62:@)} fao farpr (1) (3.A.48)
and
Ps_] T = ( rs 1010 (—1, —-1) rs 1020 (—1, —1) 75 1020 (=1, —1) rs 2020 (—1, -1 )
(3.A.49)
where
s a0a0 (—1, —=1) = {fiy (€a0) + s (€a0)} Fao Faro (3.A.50)

T'he coeflicient matrices p,"™, q,"™ and r,"™ are obtained by replacing

(3.4.12)-(3.4.17) in p&™, q¢"™ and rd™ by (3.4.18)-(3.4.21).
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