数学②コース：自然の中の数理

茶圆幸子

昨年度に引き続き、「紙を折る」ことを数学で考えてみることにしました。

はじめに、昨年度の入試問題の3番を折り紙で考えてみました。もちろん計算で解くことのできる問題なのですか、折り紙で折ってみると、また面白いことに気がつきます。そして、その問題から発展させて、いろいろなことを考えてみました。

入試問題もいろいろな解き方があり、見方を変えると面白くなります。入試問題は、複雑かつまちまちの問題ではないのです。できなかった、あるいは、一つの方法で解いたからもうわかった、というだけでは終わらせずに、発展させて考えてくるとそれが楽しめると思い、昨年の問題をもう一度考えてみました。

その後は、昨年度と同じく、折り紙で作る曲線、放物線と楕円、双曲線を紙を折って作ってみました。

「紙を折る」という単純な、簡単なことのなかに隠れている美しい規則に気づいて楽しんでくれたようです。

15年度入試問題

3．下の図は，底面が正方形で側面はどれも合図な二等辺三角形である四角すいの展開図である。この四角すいの表面積が正方形ABCDの面積の$\frac{1}{2}$になるとき，この正方形ABCDの1辺の長さをaとして次の問いに答えなさい。

(1) aを用いてこの四角すいの底面積を表しなさい。

(2) aを用いてこの四角すいの体積を表しなさい。
図のように$\frac{1}{8}$にして考えます。
表面積を$\frac{1}{2}$にするには、印の部分と同じ長さにすればよいことがわかります。その長さは$\frac{a}{4}$。
底面の正方形の辺の長さは$\sqrt{2a}$、面積は$\frac{a^2}{8}$
そこで、この正四角錐を折り紙で折って作ってみました。すると、△DRMは、四角錐の△AQRと合同になる。
よって、四角錐の高さ AO は DM と等しくなるので、その長さは$\frac{a}{2}$、体積は
$\frac{1}{3} \cdot \frac{a^2 \cdot a}{2} = \frac{a^3}{48}$
このように、実際に折って立体を作ってみるとよくわかり面白く解くことができました。
紙を折っていく途中で、まちがえて折鶴を折るように、DM を DO に重ねて折ってしまった人がいました。「ではついでに」と、このように折った場合は、表面積はもとの正方形の面積の何倍になるのか計算してみました。

$\triangle ODR=\triangle RDM$より、
OR : RM = OD : DM = $\sqrt{2} : 1$
面積の比も $\sqrt{2} : 1$
よって、表面積はもとの正方形の面積の $\frac{\sqrt{2}}{\sqrt{2}+1} = 2-\sqrt{2}$（倍）になります。

表面積を$\frac{1}{3}$にしたければ、OR : RM = 1 : 2 によればよいわけです。
OR : RM = n : 1 のとき、表面積と正方形の面積の比は $n : (n+1)$ になります。